
Host Frame User Interface and Its Architecture

 MEHMET S. UNLUTURK KAAN KURTEL COSKUN ATAY

Department of Software Engineering

Izmir University of Economics

Sakarya Cad. No.156 Balcova 35330 Izmir

TURKEY

suleyman.unluturk@ieu.edu.tr http://www.ieu.edu.tr

Abstract: - User interface research has shown that the user’s primary focus is the center of the screen. The periphery is

available and often used to contain elements that are helpful but non-essential to the specific existing goals. Strong

present examples of this can be found in Microsoft’s Multiple Document Interface Office products (such as MS Word

and MS Excel). Microsoft Outlook and Lotus Notes are good examples of products that are more in tune with multiple

application interfaces rather than just multiple instances of similar documents. This paper is following many of the

elements set forth in those examples, as significant marketing research has been incorporated into those products. User

personas of window’s applications range from sales demo’s to trade show viewers to beginning users to expert users.

The PC host of these can be touch screen or mouse driven, and the display itself, while typically standard VGA

variation, may also go to a wide screen format for some applications. The frame / application combination allows

variations to create an optimum experience for each of these scenarios. In addition, this paper introduces the enhanced

status line by applying a basic user interface design principle of “combine display and update capabilities” to the status

line of a host frame.

Key-Words: - Interface, Multiple Document Interface, Polymorphism, Status Line, User Interface, Window DLL.

1 Introduction
The following common elements (see Table 1) should

appear in every application. If they can be part of the

frame, they do not have to be specified and designed

multiple times (for each application) and the spatial

relationship remains the same for each application,

providing a familiarity as the user moves from

application to application.

Table 1: Common Elements

Company Logo Must appear somewhere

Facility Logo Optional for user

Help Optionally always visible is significantly

greater benefit than a user selected dialog

Application

Name / Type:

Critical as we allow application switching

Application

Selection

Menu, dropdown list, toolbar, and/or button

selection of foreground application

Operation

Selection

Menu, dropdown list, toolbar, and/or button

selection of these applications major

operations

Wizard Buttons Cancel, Back, Help, Next, Finish generic

buttons for any wizard-style operation

sequence

Application

Status Line

Any problems with the current state of this

application

Login Name Who am I logged in as?

System Status

Icon

Is the system feeding this application currently

fully functional?

 In this paper, common elements that are given above

are defined as interfaces. These interfaces describe only

the signature of properties and methods, while

applications that are hosted by the host frame provide

actual code for those properties and methods as

necessary. The code in each property and method can

differ from application to application, given the

semantics of each method is protected. Each application

can implement the same method in a different way is the

basis for polymorphic behavior [1, 2].

 Host frame places these common elements around its

client area that is the middle of the screen (see Figure 1).

Host frame loads each selected application inside this

client area as long as the selected application implements

the interfaces for the common elements. During the

loading process, host frame changes its caption, help

content (visible to the user), menu items with respect to

each foreground application. These requests are received

through software interfaces. Next section details how the

frame does customization base on user’s computer skills.

2 Frame Customization
Frame customization (a set of view properties) is set up

from the menu under a VIEW option. Each login can

create its own view property preferences, and has

exclusive access to change them. A password (the same

as the login password) is required so that users of 24/7

applications (which auto-login) will not be able to

LATEST TRENDS on COMPUTERS (Volume I)

ISSN: 1792-4251 95 ISBN: 978-960-474-201-1

change the view properties, unless specifically

authorized through access to the password.

 Customization is encouraged by making the process

as simple as possible, and by letting the user work with

the changes before deciding whether or not to save them.

The application status bar warns the user of unsaved

changes to the view properties, and it is easy to either

save them if the user likes them, or to restore default

settings or user’s previously saved settings. In addition,

it is simple to import settings saved from another login.

This lets the administrator create a unique look, and let

each login use that as its baseline, and customize from

there.

 All the view properties are stored in the database for

each login. Regardless of what machine user logs into,

user’s application frame will look the same.

 The suite of applications hosted by the frame is

dependent on the login privileges granted by the

administrator. Each can be accessed via application lists

(menu, dropdown list, and toolbar) or via buttons.

Default lists include all the privileged applications, plus

some formatting: the applications are grouped into

categories, a category title line precedes each category,

and a blank spacer line precedes each category title. The

application list itself begins always begins with the first

line “Choose another application” and the second line a

blank spacer. Any item to appear in the application list

can be disabled if a particular login will not be using it

(except the first two lines). This includes disabling

category names and spaces if the user believes the

application list is clearer without them. Disabling items

from the application suite list affects the applications

menu, the dropdown list, and the toolbar.

 Application buttons are also available (up to 7) for

touch screen switching between applications and to show

off the applications available. Any application (but not

categories and spacers) is available to appear as a button

independent of its enable/disable state in the list. Button

disables work similar to list disables it. Application

buttons should center in the application button bar if less

than the full 7 is enabled.

 Text can be changed on the buttons and lists to match

a facility’s specific terminology. Text changes appear

on the buttons, dropdown list, and application menu,

plus wherever the application name appears (header,

caption, view menu). The 1 to 2-character toolbar

abbreviation text should be changed as well to match the

full text. Spacing between words in the custom text can

force the words to 2 lines on the buttons, but should be

condensed in all other displays of the text.

 Elements of the screen can be turned on and off to

customize the screen for different user personas,

depending on the goals and experience levels of that

particular user, as well as the hardware (touch screen)

available. Options include

• Main menu

• Screen width (3D, full screen, and wide screen

options)

• Header (active help, facility logo, and

application name and type)

• Upper application buttons, lower application

buttons, application dropdown list, application

toolbar

• Upper operation buttons, lower operation

buttons, operations dropdown list, operation

toolbar

To simplify the element selections, 6 preset

combinations, or themes, are easily presented to the user

as follows:

2.1 Default Theme
Default theme is for the beginning single application

user who has all options in a wizard, active help and no

menu or multi-application options.

 This option set shows a header (help, application

name) for simplicity, limits options (no menu or

application switching) and limits visual clutter (no

buttons). All operations are in a drop-down list, with an

integrated toolbar to encourage user growth as they

become familiar with the application. 3D offset

emphasizes application area (see Figure 1). Enabled

feature options are Help, Facility Logo, Application

Name, Operation Dropdown List, and Operation

Toolbar.

Figure 1: Default Theme

2.2 Demo Theme
Demo theme is for a multi-application user with touch

screen that has the power (launch applications, touch

buttons, logo), and simplicity (operation wizard, active

help).

LATEST TRENDS on COMPUTERS (Volume I)

ISSN: 1792-4251 96 ISBN: 978-960-474-201-1

 This option set is designed to highlight features of the

application suite, and attract the customer at first glance.

Help highlights simplicity, operation buttons highlight

simplicity and touch compatibility, application buttons

and name highlight the suite, the menu allows for

customization to match the audience, and the facility

name personalizes the demo. Features that are added to

Default Theme are Menu, Upper Operation Buttons, and

Lower Application Buttons (see Figure 2).

Figure 2: Demo Theme

2.3 Wide Theme
Wide theme is for the intermediate/expert user with

touch screen that has upper application buttons, many

operation buttons and its application screen is set to

wide.

 This option set is designed to provide maximum

width, and more operation buttons, and switches the

position of application and operation buttons. Features

that are changed from the demo theme are, removed

header (help, logo, application name), application

buttons are moved to top, operation list and toolbar are

removed, widened application area of screen, and

operation buttons moved to bottom (button capacity

grows from 5 to 9) (see Figure 3).

2.4 High-Low Theme
High-low theme is for the intermediate/expert touch

screen user who has top-down flow using upper

operation buttons and lower application buttons. This

option set is designed to provide users familiar with

menu operation as clean a screen as possible while still

supporting touch screen for frequent operation and

application switching. Putting the frequent operation

buttons at the top of the screen supports top-down

workflow. Intermediate and expert users gain some

application screen space by eliminating the 3D effect.

(Separation of frame and application is helpful to

beginners). Features that are changed from the wide

theme are operation buttons moved to top, application

width set to full (no 3D), and application buttons moved

to bottom (see Figure 4).

Figure 3: Wide Theme

Figure 4: High-Low Theme

2.5 Plain Theme
Plain theme is for the intermediate/expert touch screen

user who has menu-smart, upper buttons for known

frequent operations, menu for other operations and

applications. This option set is designed to provide

menu-smart users more screen simplicity and application

height by forcing application switching to a 2 step menu

operation, but leaving the more frequently used

operations as a single step touch screen operation. A

feature that is changed from High-Low Theme is the

Lower Application Buttons removed (see Figure 5).

2.6 Tall Theme

LATEST TRENDS on COMPUTERS (Volume I)

ISSN: 1792-4251 97 ISBN: 978-960-474-201-1

Tall theme is for the expert user without touch screen

needing maximum rows with left-right flow using left

side operation toolbar, right side applications toolbar and

Figure 5: Plain Theme

no menu. This option set is designed to provide expert

users knowing exactly what they want to do with

maximum screen height and minimum frame clutter. It

is not touch screen compatible, or wide-screen

compatible. Features that are changed from the plain

theme are menu removed, upper operation buttons

removed, left side operation toolbar added, and right side

application toolbar added (see Figure 6). The next

section details the architecture for the applications and

the host frame.

Figure 6: Tall Theme

3 Architecture
Each application that is loaded inside the host frame is a

VB.NET DLL that implements the ICommunicate-

WithApp interface (see Figure 7).

Figure 7: ICommunicateWithApp Interface

 When the application is loaded but it is not in the

foreground then the value for the ActiveApp is false so

messages from user such as mouse or keyboard

messages are not delivered to the background application

by the host frame. Every application window DLL has

its own main form that is displayed when the user brings

it to the foreground. MyAppForm represents the main

form of the application’s window DLL. Host frame

draws this MyAppForm inside frame’s client area when

ActiveApp for this application becomes true.

ResizeWithString is the command sent from frame to

application so that application adjusts its main form

inside the frame’s client area. RegisterMe passes the

ICommunicateWithFrame interface (see Figure 8) to

application so that application can send messages to host

frame. These messages could be changes to the client

area of the host frame such as displaying error or

warning messages for the application. UnRegister is

used when the ActiveApp becomes false and signals to

the frame that the current application is about to switch

to another application’s main form. MDIParentForm is

used by the application to add its main form as a MDI

child to the frame. When the user makes changes on the

screen and its ActiveApp is true, messages are sent to the

application through MessageFromFrame command.

When there is a request from frame and host frame

expects the response from application in the same

function call like login privileges, then frame uses

RequestFromFrame command.

 Host frame that is a VB.NET application implements

the ICommunicateWithFrame interface to communicate

with the foreground application (see Figure 8).

LATEST TRENDS on COMPUTERS (Volume I)

ISSN: 1792-4251 98 ISBN: 978-960-474-201-1

Figure 8: ICommunicateWithFrame Interface

 Each application sends messages to host frame using

MessageFromApp command. These messages are like

Logoff and so on. Furthermore, BtnWizAll* commands

are used by the foreground application to enable/disable

buttons such as Next, Finish, Cancel, etc. during user’s

wizard operations. Foreground application can change

frame’s caption, company’s logo, text content for help,

and menu items using Change* commands.

 On the right, you may see the code snippets for

starting an application and logoff process.

4 Status Line with a Correction Button
It is common for applications to employ a status line

(see Figure 9) to alert the user of the condition of

the application. Specifically, the status line contents

can include passive messages, such as reassurance

of an acceptable condition or notification of an

application being too busy to accept user input. The

status line can also contain an active message

requiring user action, such as a prompt for the most

likely user choices or a warning that some settings

within the application are invalid and should be

corrected. However, this is where the usefulness of

the status line ends. It is typically up to the user to

determine how to perform the action suggested on

the status line. A correction button that performs a

simple suggested action (with no options), or takes

the user directly to a screen to do so for more

complex suggested actions (with several options)

greatly enhances the usefulness of the status line

and the simplicity of the application [3, 4, 5, 6].

 The next section shows how to improve a typical

status line in the host frame.

Public Sub StartApp(ByVal sDirectory As String, ByVal

sTypeName As String,

 ByRef MyAssembly As System.Reflection.Assembly, _

 ByRef MyApp As ICommunicateWithApp, ByRef

MyCurrentApp As CApp, _

 ByVal sMenuText As String)

 Dim A As New CApp

 A.MyAssembly = A.MyAssembly.LoadFrom(sDirectory)

 'create the interface, so frame can send messages to the

application

 A.MyApp = CType(A.MyAssembly.CreateInstance

(sTypeName), _

 ICommunicateWithApp)

 A.MyApp.ActiveApp = True

' create the reference inside the application so app can talk

' to the frame

 A.MyApp.RegisterMe(boss)

 A.MyApp.MDIParentForm = boss

' add the CApp.MyApp.MyForm into the panel, so it can be

drawn in the client ' area

 boss.pnlWideScreen.Controls.Add(A.MyApp.MyAppForm)

 MyCurrentApp = A

 A.MyApp.MessageFromFrame("<Login><UserName>" &

boss.UserName & "</UserName><Passwd>" & _

 boss.UserPass & "</Passwd><DB>" & DBServer &

"</DB></Login>", Nothing, "Login")

 A.MyAppName = sMenuText

 A.MyFileAppName = sMenuText

 Me.AddApp(A)

A.MyApp.ReSizeWithString("<EOF><TOP>0</TOP><LEFT>

" & _

 "0</LEFT><HEIGHT>" &

CStr(boss.pnlWideScreen.Height) & "</HEIGHT><WIDTH>"

& _

 CStr(boss.pnlWideScreen.Width) & "</WIDTH></EOF>")

End Sub

Code Snippet for Starting an Application

Public Sub LogOff(ByVal sName As String, Optional ByVal

bToSwitch As Boolean = True)

 Dim a As CApp

 Dim i As Integer = 0

 For Each a In Me

 If a.MyAppName = sName Then

 boss.pnlWideScreen.Controls.Remove

 (a.MyApp.MyAppForm)

 boss.MyApp = Nothing

 boss.MyAssembly = Nothing

 ' another ref for current CApp object

 boss.MyCurrentApp = Nothing

 UnRegister(a.MyApp)

 a.MyAssembly = Nothing

 end if

 next

end sub

Code Snippet for Logoff

LATEST TRENDS on COMPUTERS (Volume I)

ISSN: 1792-4251 99 ISBN: 978-960-474-201-1

Figure 9: Typical Status Line

5 Enhanced Status Line
This paper introduces an enhanced status line with the

typical text property, but with the added properties of

text and background color, whether the button is visible,

and the button text. As with typical status lines today, an

application determines at any given time the status text

to display. In addition, the application determines a

background color based on how critical the status

message is. Simple assurances that everything is OK

typically have a background color that matches the

surrounding area, so that the status message does not

distract the user. More urgent messages have a

contrasting color designed to be noticeable, while the

most urgent messages use a bright color specifically

designated to attract the user’s attention. The text color

in all cases should be set to be readable against the

designated background color [7, 8, and 9].

Figure 10: Enhanced Status Line Showing a

Passive Message

 If the status message indicates a condition that should

be corrected, the designer sets the “button is visible”

property to true, and sets the button text. Text and

background colors of the button match those of the status

message. When the user selects the button, a Status

Correction event is sent to the application, which

responds appropriately to correct the faulty status

immediately or jump to a screen in the application that

queries the user for needed information before selecting

the appropriate status correction action.

Figure 11: Enhanced Status Line Showing a Suggested

Action and Correction Button

5.1 Enhanced Status Line Design Architecture
Figure 12 shows the design of the status display. The

application determines its own status based on its current

state, and passes that to the application status controller.

This controller converts the status into the five status

display properties, via a lookup table. The table stores

all 5 values for all possible status conditions.

 The status controller sets the status property values.

These properties are dynamic, and can be set by the

status controller upon a value change only, as a periodic

background task for maintenance purposes, or as a

combination of both, depending on the response time

needed by the application. Additional static status

display properties, such as position, size, font, etc. of the

status line and button are set at design time and remain

fixed throughout the life of the application.

 The text and color drawing controller periodically

polls the status display properties, and creates a drawing

based on them. The drawing is fed to the IO device,

typically a VGA terminal or equivalent.

Figure 12: Status Display Design Flow

 Figure 13 shows the design flow for a user request for

status correction. The IO sends a mouse click event to

the Input Controller, which determines that the click

occurred within the confines of the Status Correction

Button. This event is raised to the Status Controller,

which converts it to a Status Correction event which is

passed on to the application’s Status Controller. The

application knows what the current status is, and the

action needed to correct the status. If it has all the

information needed, it will immediately take corrective

action on the faulty condition. If, however, the

corrective action is complex enough that additional user

input is necessary, a user input screen is displayed,

Application
Controller

Application
Status
Controller

Button Visible

Background Color

Button Text

Line Text

Text Color

Text and
Color
Drawing

Status

I/O Display

Status Display
Property Values

Status Display
Property Values

Display Drawing

 (VGA)

Static Properties
(Font, Size,
Position)

LATEST TRENDS on COMPUTERS (Volume I)

ISSN: 1792-4251 100 ISBN: 978-960-474-201-1

describing the condition, potential solutions, and how the

user selections will affect the choice of solutions. Once

all required user input is obtained, the corrective action

can be taken.

Figure 13: Status Correction Design

 While many applications use a status line to alert

users of acceptable or unacceptable state of the

application, none allow for integral correction of an

unacceptable condition within the status line itself. This

paper incorporates this new feature into host frame

design, simplifying the operation of each of these

applications by applying the basic user interface design

principle of “combine display and update capabilities” to

the status line.

6 Conclusion
In this paper, host frame and enhanced status line

concepts are developed. Common elements that are

depicted in Table 1 are drawn in the periphery of the

host frame’s client area. Host frame implements the

ICommunicateWithFrame software interface (see Figure

8). Each application is successfully loaded inside host

frame’s client area as long as the interface class

(ICommunicateWithApp) that is given in Figure 7 is

implemented. Each foreground application can change

the frame’s caption; help content, and menu items. The

communication between the frame and this foreground

application is carried out through interface classes given

in Figure 7 and 8.

 It is common for applications to employ a status

line to alert the user of the condition of the

application. Specifically, the status line contents

can include passive messages, such as reassurance

of an acceptable condition or notification of an

application being too busy to accept user input. The

status line can also contain an active message

requiring user action, such as a prompt for the most

likely user choices or a warning that some settings

within the application are invalid and should be

corrected. However, this is where the usefulness of

the status line ends. It is typically up to the user to

determine how to perform the action suggested on

the status line. An integral button that performs a

simple (with no options) suggested action, or takes

the user directly to a screen to do so for more

complexes (with several options) suggest actions

greatly enhances the usefulness of the status line

and the simplicity of the application.
 This paper introduces an enhanced status line with the

typical text property, but with the added properties of

status level, back color, button visible, and button text.

When the button is selected by the user, a Status

Correction event will occur, allowing the application

both to control the look and feel of the advanced status

line / button combination and to respond appropriately to

user requests to correct a status condition requiring

action.

References

[1] G. D. Abowd and R. Beale, Users, Systems and

Interfaces: A Unifying Framework for Interaction,

People and Computers VI, pp. 73-87, Cambridge

University Press, Cambridge, 1991.

[2] L. Bass and J. Coutaz, Developing Software for the

User Interface, Addison-Wesley, New York, 1991.

[3] M. Beigel, H. W. Gellersen and A. Schmidt,

MediaCups: Experience with Design and Use of

Computer-augmented Everyday Objects, Computer

Networks, pp. 35(4):401-9, Special Issue on Pervasive

Computing, Elsevier, March 2001.

[4] B. W. Boehm, Verifying and Validating Software

Requirements and Design Specifications, IEEE

Software, January 1984, pp. 75-88.

[5] J. Coutaz, Architectural Design for User Interfaces,

Proceedings of the 3
rd

 European Conference of Software

Engineering, ESEC’91, 1991.

[6] C. Gram and G. Cocton, editors, Design Principles

for Interactive Software, Chapman and Hall, London,

1996.

[7] A. Howes and S. Payne, Display-based Competence:

Towards User Models for Menu-driven Interfaces.

I/O

Input
Controller

Status
Controller

Condition Update

Mouse Click

User Input
Screen

Status Correction
Button Click

Simple
Event

Application
Status
Controller

Status Correction
Event

Complex
Event

User
Responses

LATEST TRENDS on COMPUTERS (Volume I)

ISSN: 1792-4251 101 ISBN: 978-960-474-201-1

International Journal. of Man-Machine Studies, pp.

33:637-55, 1990.

[8] D. J. Mayhew, Principles and Guidelines in Software

and User Interface Design, Prentice Hall, Englewood

Cliffs, NJ, 1992.

[9] A. Monk, editor, Fundamentals of Human-Computer

Interaction. Academic Press, London, 1985.

[10] B. A. Myers, Creating User Interfaces by

Demonstration. Academic Press, New York, 1988.

[11] B. A. Myers and M. B. Rosson, Survey on User

Interface Programming, Conference Proceedings on

Human Factors in Computing Systems, pp. 195-202,

ACM Press, New York, 1992.

[12] I. Sommerville, Software Engineering, 4
th
 edition,

Addison-Wesley, Workingham, 1992.

LATEST TRENDS on COMPUTERS (Volume I)

ISSN: 1792-4251 102 ISBN: 978-960-474-201-1

