
Memristors: A New Approach in Nonlinear Circuits Design 
  

CHRISTOS K. VOLOS 

Department of Mathematics and Engineering Sciences  

Hellenic Army Academy 

Athens, GR16673 

GREECE 

chvolos@gmail.com 
 

IOANNIS M. KYPRIANIDIS, STAVROS G. STAVRINIDES, IOANNIS N. STOUBOULOS  

AND ANTONIOS N. ANAGNOSTOPOULOS 

Department of Physics 

Aristotle University of Thessaloniki 

Thessaloniki, GR54124 

GREECE 

imkypr@auth.gr, stavros@physics.auth.gr, stouboulos@physics.auth.gr, anagnost@physics.auth.gr 
 

Abstract: - The conception of memristor as the fourth fundamental component in circuit theory, creates a new 

approach in nonlinear circuit design. In this paper the complex dynamics of Chua’s canonical circuit 

implemented by using a memristor instead of the nonlinear resistor, was studied. The proposed memristor is a 

flux-controlled one, described by the function W(φ) = dq(φ) dφ , where q(φ) is a cubic function. Computer 

simulation of the dynamic behaviour of a Chua circuit incorporating a memristor, confirmed very important 

phenomena concerning Chaos Theory, such us, the great sensitivity of circuit behavior on initial conditions, 

the route to chaos through the mechanism of period doubling, as well as antimonotonicity.  
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1   Introduction 
Until 1971, electronic circuit theory had been 

spinning around the three, well known, fundamental 

components: resistors, capacitors and the inductors. 

It was that year that Leon Chua from the University 

of California at Berkeley, reasoned from symmetry 

arguments, that there should be a fourth fundamental 

element, which he named memristor (short for 

memory resistor) [1].   

     As it is known, circuit elements reflect 

relationships between pairs of the four 

electromagnetic quantities of charge, current, 

voltage and magnetic flux. But a link between 

charge and flux was missing (Fig. 1). Chua dubbed 

this missing link by introducing memristor and 

created a crude example to demonstrate its key 

property i.e. that it becomes more or less resistive 

(less or more conductive) depending on the amount 

of charge that has flowed through it. 

     In 2008, Hewlett-Packard scientists, working at 

its Laboratories in Palo Alto-California, reported  

the realization of a new nanometer-scale electric 

switch, which “remembers” whether it is “on” or 

“off” after its power is turned off [2]. The memristor 

created in HP labs, is based on a film of titanium 

dioxide, part of which is doped to be missing some 

oxygen atoms. Researchers believe, that memristor 

might become a useful tool either for constructing 

nonvolatile computer memory, which is not lost 

even after the power goes off or for keeping the 

computer industry on pace to satisfy Moore's law, 

i.e. the exponential growth in processing power 

every 18 months.  

     Recently, Itoh and Chua proposed several 

nonlinear oscillators based on Chua’s circuits. In 

these implementations Chua’s diode was replaced 

by memristors [3]. Also, in Refs [4] and [5] cubic 

memristors  were  used    in  well  known   nonlinear  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. The four basic circuit-element relationship. 
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circuits. Consequently, it is clear that a new 

scientific area inside nonlinear circuit theory has 

started to shape, in a way that nonlinear elements are 

being replaced by memristors.  

     In this paper, the study of the simulated dynamic 

behavior of a canonical Chua circuit, with a cubic 

memristor, is presented. In Section 2, the proposed 

system is studied. In Section 3, numerical 

simulations demonstrate very important phenomena, 

such us, the great sensitivity of the circuit on initial 

conditions, the route to chaos through the 

mechanism of period doubling, and the 

antimonotonicity. Finally, conclusion remarks are 

included in Section 4. 

 

 

2   The Canonical Chua’s Circuit with 

Cubic Memristor 
Chua’s canonical circuit [6-9] is a nonlinear 

autonomous 3rd-order electric circuit (Fig. 2). In this 

circuit Gn is a linear negative conductance, while the 

nonlinear resistor is replaced by a memristor. The 

proposed memristor M is a flux-controlled 

memristor described by the function W(φ(t)), which 

is called memductance, and is defined as follows: 

 

dq(φ)
W(φ) =

dφ
   (1) 

 

where q(φ) is a smooth continuous cubic function of 

the form: 

 

( ) 3
q φ α φ + b φ− ⋅ ⋅=                 (2) 

 

with a, b > 0. As a result, in this case the 

memductance W(φ) is provided by the following 

expression: 

 

2dq(φ)
W(φ) α 3 b φ

dφ
⋅ ⋅= = − +        (3) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Memristor-based Chua  canonical circuit. 

The current iM through the memristor is: 

 

Mi = W(φ) υ⋅          (4) 

 

And the state equations of the circuit are the 

following: 
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3   Dynamics of the Circuit 
Numerical simulation of the system state equations 

(5), by employing a fourth order Runge-Kutta 

algorithm, is presented in this section. The circuit 

parameters were set to the following values: 

 

R=300Ω, L=100mH, Gn=−0.40mS, 

α= 40.5 10 C / Wb⋅ and b= 4 34 10 C / Wb⋅  

and the initial conditions were set: (φ)0=0Wb, 

(υ1)0=0.006V, (υ2)0=0.02V and (iL)0 =0.001A.   

     Bifurcation diagrams υ1 versus C2 were plotted, 

for a variety of constant values for capacitance C1. 

The comparative study of these bifurcation diagrams 

provides with a sense of the qualitative changes of 

the dynamics of the memristor, as C1 is set to 

different discrete values. Bifurcation diagram, υ1 

versus C2, for C1 = 50nF is shown in Fig. 3. The 

system remains in a period-1 stable state, as C2 

decreases. In Fig. 4 the period-1 limit cycle can be 

observed for C1 = 50nF. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 3. Bifurcation diagram, υ1 vs C2, for C1=50nF. 
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Fig 4. Phase portrait υ2 vs υ1, for C1=50nF. 

 

For C1=38nF, the bifurcation diagram υ1 versus C2, 

follows the scheme: period−1 → period−2 → 

period−1, as shown Fig. 5. As C2 is decreased, the 

system always remains in a periodic state but two 

different periodic states are emerging. This scheme 

is called “primary bubble” [10]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Bifurcation diagram, υ1 vs C2, for C1=38nF. 

 

Bifurcation diagram, υ1 versus C2, in the case of 

C1=36nF is shown in Fig. 6. The system remains 

again in a periodic state, but a period−4 state is now 

formed. In this case the system follows the scheme: 

period−1 → period−2 → period−4 → period−2 → 

period−1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Bifurcation diagram, υ1 vs C2, for C1=36nF. 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Bifurcation diagram, υ1 vs C2, for C1=35.1nF. 

 

     In bifurcation diagram, υ1 versus C2, for             

C1 = 35.1nF a period−8 is formed, correspondingly, 

as shown in Fig. 7.       

     As C1 is decreased, chaotic regions appear. This 

could be observed in Fig. 8, where the bifurcation 

diagram, υ1 versus C2, for C1 = 35nF is presented.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8. Bifurcation diagram, υ1 vs C2, for C1=35nF. 

 

Apparently, each bubble is now clearly chaotic. 

These chaotic regions, inside the bubbles, become 

larger as C2 is decreased (Fig. 9). For the chaotic 

bubbles in Figs 8 and 9, the initial and the final 

dynamic state are in period-1 state and as a result, 

they are characterized as “period-1 chaotic 

bubbles”. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 9. Bifurcation diagram, υ1 vs C2, for C1=30nF. 
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     In general, in many nonlinear dynamical systems, 

the forward period-doubling bifurcation sequences 

are followed by reverse period-doubling sequences, 

as a parameter is varied in a monotone way. This 

phenomenon is called antimonotonicity. 

     Bier and Bountis, demonstrated that reverse 

period-doubling sequences are expected to occur, 

when a minimum number of conditions is fulfilled 

[10]. The main point was, that a reverse period-

doubling sequence is likely to occur in any nonlinear 

system, provided that there is a symmetry 

transformation, under which state equations remain 

invariant.  

     Indeed, in the case under question, state 

equations (5) remain invariant under the following 

transformation:  

 

φ → −φ, υ1 → −υ1, υ2 → −υ2, iL → −iL         (6) 

   

     It has also been demonstrated in the literature, 

that reverse period-doubling commonly arises in 

nonlinear dynamical systems that involve the 

variation of two parameters [10, 11]. In the studied 

circuit, these parameters appear to be the two 

capacitances C1 and C2. Moreover, what is important 

is the fact that the period-doubling “trees” should 

develop symmetrically towards each other, along 

some line in parameter space.   

     Reverse period doubling is destroyed for            

C2<29.72nF, when C1=25nF, as demonstrated in 

Figure 10. It is apparent in this case that the chaotic 

regions are enlarged. The bifurcation diagram in Fig 

10, demonstrates the fact that the memristor follows 

the period-doubling route to chaos, a very common 

mechanism in chaotic systems.  

     In Figure 11, the phase portraits υ2 versus υ1 for a 

route to chaos via period doubling, in the case of C1 

= 25nF, are presented. In Figure 12 the chaotic 

spiral attractors for C1 = 25nF and C2 = 37nF is 

shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10. Bifurcation diagram, υ1 vs C2, for C1=25nF. 
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Fig 11. Phase portraits υ2 vs υ1, for C1=25nF and  

(a) C2=44nF (period-1), (b) C2=42nF (period-2),   

(c) C2=41nF (period-4), (d) C2=40.8nF (period-8). 
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Fig 12. Chaotic spiral attractors for C1 = 25nF and 

C2 = 37nF in (a) υ1 – υ2 plane, (b)  υ1 – φ plane, (c) 

υ2 – φ plane and (d) i – φ plane.  

     The creation of bubbles is also very sensitive to 

initial conditions. The chaotic spiral attractors 

coexist with periodic limit cycles, resulting to a state 

where the circuit can be driven to quite different 

states, depending on the initial conditions. This 

phenomenon is clearly demonstrated in Figure 13, 

where different coexisting attractors are produced by 

slightly changing the initial condition of the first 

system parameter φ, (in the case of C1=28nF and 

C2=37nF). As a result, chaotic spiral attractor (Fig. 

13a) coexists with five different limit cycles of 

period-(1, 2, 3, 4 and 6) according to the value of the 

initial condition of parameter φ.  
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  (continued) 
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Fig 13. Phase portraits υ2 vs υ1, for C1=28nF and 

C2=37nF, with (υ1)0=0.006V, (υ2)0=0.02V, 

(iL)0=0.001A (period−1):  

(a) (φ)0=0Wb (chaotic state),  

(b) (φ)0=
3 W0.5 10 b−⋅ (period−4),  

(c) (φ)0=
3 W1 10 b−⋅ (period−3 state),             

(d) (φ)0=
3 W1.2 10 b−⋅ (period−6 state),                                 

(e) (φ)0=
3 W1.5 10 b−⋅ (period−1 state),                      

(f) (φ)0=
3 W1.8 10 b−⋅ (period−2 state). 

 

 

4   Conclusion 
In this paper the dynamic behavior of a Chua’s 

canonical circuit, in which the nonlinear resistor has 

been replaced by a cubic memristor was studied. 

Using tools of nonlinear analysis, such as 

bifurcation diagrams and phase portraits, various 

phenomena concerning Chaos Theory were 

observed. In general, this work is the first attempt to 

approach nonlinear circuits implemented by the use 

of memristors. Future work should be concetrated 

on the use of memristors in other nonlinear circuits, 

as well as on the study of synchronization 

phenomena between coupled nonlinear circuits with 

memristors.  
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