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    Abstract - We present a review of complex systems research which 

focuses on their similarities with self-organizing living systems. We 

classify the types of complex systems that relate to self-organisation 

and we discuss the overall requirements for self-organising modeling. 

As a novelty, the paper proposes a methodology to aid engineers in 

the design and control of adaptive complex systems. The 

methodology offers a conceptual framework and a series of steps to 

follow to find proper mechanisms that will promote elements which 

by actively interacting among themselves lead to better performance. 
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I. INTRODUCTION 

 The term self-organization has been used in different areas 

with different meanings, as in cybernetics (Heylighen, 2003), 

thermodynamics (Nicolis and Prigogine, 1977), biology (Feltz 

et al., 2006), computer science (Kohonen, 2000), complexity 

(Schweitzer, 1997), information theory (Haken, 1988), 

robotics (Steels, 2003), synergetics (Haken, 1981). Many 

people use the term “self-organization”, but it has no generally 

accepted meaning, as the abundance of definitions suggests. 

Also, proposing such a definition faces the philosophical 

problem of defining “self”, the cybernetic problem of defining 

“system”, and the universal problem of defining 

“organization”. We will not attempt to propose yet another 

definition of self-organizing systems. Nevertheless, in order to 

try to understand these systems better, we will combine 

insights from different contexts where self-organizing systems 

have been studied. 

 In a complex system it is often the case that the utility of a 

structure or process is expressed at the next higher level of 

organization relative to the process itself. Unlike entropy and 

the related concept of information, complexity is not extensive, 

nor is it entirely intensive. What is clear though is that 

complexity concerns a specific description, which is of course 

dependent on the technology and subjective capabilities of the 

observer. Anyway, we can consider that a complex system is a 

system with a large number of elements, building blocks or 

agents, capable of interacting with each other and with their 

environment. The interaction between elements may occur 

only with immediate neighbors or with distant ones; the agents 

can be all identical or different; they may move in space or 

occupy fixed positions, and can be in one of two states or of 

multiple states. The main characteristic of all complex systems 

is that they display organization without any external 

organizing principle being applied. The paper proposes a 

methodology that use these feature for a improved design of 

adaptive complex systems.  

 

II. TYPES OF COMPLEXITY 

 Previous work has identified four classes of complexity 

(Lucas, 1999), of which only the last is directly relevant to our 

focus here. In this more general treatment we will extend these 

concepts to cover high-dimensional complexity, where in the 

limit the system is assumed to possess infinite components. 

These four nested complexity types (the later including the 

former) are: i) type 1: Static Complexity - Fixed structures, 

frozen in time, (for example the visual complexity of a 

computer chip or a picture). ii) type 2: Dynamic Complexity - 

Systems with time regularities (this includes such states as 

planetary orbits, heartbeats, seasons; they have cyclic 

attractors). iii) type 3: Evolving Complexity - Open ended 

mutation, innovation (these are open, non-equilibrium systems 

and can be regarded as existing on a permanent non-repeatable 

transient; also related are diffusion-aggregration and similar 

branching tree structures). iv) type 4: Self-Organising 

Complexity - Self-maintaining systems.  

 Operating at the edge of chaos, the systems of the type 4 

loop back on themselves in nonlinear ways and generate the 

rich structure and complex mix of the above attractors. This is 

the advent of autopoiesis, the creation of adaptive self-

stabilising organic systems that can swap between the available 

attractors depending upon external influences and also modify 

and create the attractors coevolutionarily (by learning). They 

differ from the purely evolving category in that state space is 

canalized by the self-organising nature (downward causation) 

of their internal emergent processes, thus possible functions 

are self-limiting. These systems occupy dissipative, semi-

stable, far-from-equilibrium positions exhibiting the typical 

power law distribution of events familiar from critical systems 

at the phase transition, they are structurally and 

organisationally both open and closed, with semi-permeable 

material and informational membranes allowing the passage of 

operational triggers driving their attractor modes.  

 We can summarise the structure of these complex self-

organizing systems in an overall heterarchical view (Fig.1) 

where successively higher levels show a many to many (N:M) 

structure (metasystem).  
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   Fig. 1. A typical hyperstructure for self-organizing systems 

 

 Part interactions create emergent modules with new 

properties. These modules themselves interact as parts at an 

higher level and this process leads to the creation of an 

emergent Hierarchical system (the upward causation). The 

components at each level connect horizontally to form an 

Heterarchy - an evolving web like network of associations. 

Additionally systems can have overlapping members at each 

level (e.g. individuals can belong to many social groups, 

molecules to many substances, a situation to many models and 

a model to many situations). These large scale interacting 

emergent systems are called Hyperstructures, groups of 

interlaced dual networks constrained by downward causality 

(Baas, 1994). Here we extend these ideas slightly by allowing 

explicit cross level interference between systems (e.g. an 

individual affecting another country overall, a cell affecting an 

external part). This extended design we call here an 

Heterarchical Hyperstructure. Given that a metasystem has 

such a set of structures, then the overall fitness will relate to 

the interdependent properties at all levels, in other words to the 

full contextual environment. Now, putting some of the main 

points together we can arrive at a significant definition of the 

interraction process in self-organizing systems.            

Definition. Critically interacting components self-organize to 

form potentially evolving structures exhibiting a hierarchy of 

emergent system properties. 

 The elements of this definition relate to the following 

features: Critically Interacting (System is information rich, 

neither static nor chaotic); Components (Modularity and 

autonomy of part behavior implied); Self-Organize (Attractor 

structure is generated by local contextual interactions); 

Potentially Evolving (Environmental variation selects and 

mutates attractors); Hierarchy (Multiple levels of structure and 

responses lead to a hyperstructure); Emergent System 

Properties (New features are evident). Therefore, to better 

understand self-organizing systems we must concentrate less 

on the building blocks and more on their internal interactions. 

 

 

 

 

III. COMPLEX ADAPTIVE SYSTEMS AS SELF -

ORGANIZING STRUCTURES 

 Over the last half a century, much research in different areas 

has employed self-organizing systems to solve complex 

problems. Particular methodologies using the concepts of self-

organization have been proposed in different areas, such as 

software engineering (Zambonelli and Rana, 2005), electrical 

engineering (Ramamoorthy et al., 1993) and collaborative 

support (Jones et al., 1994). However, there is as yet no 

general framework for constructing self-organizing systems. 

Different vocabularies are used in different areas, and with 

different goals. The methodology proposed in this section, 

useful for designing and controlling complex systems, provides 

a conceptual framework to assist the solution of problems. 

What this methodology suggests is a way of introducing the 

expectation of change into the development process.  

 Many of the key processes in coevolution - adaptation on 

multiple levels, dynamic feedback loops, mutually causal 

flows of knowledge across boundaries - are at the core of 

several complexity disciplines. More importantly, the essential 

goal of coevolution - studying the adaptive changes within and 

between all levels of organizational and environmental 

interactions - can be operationalized in terms of emergence. In 

this sense a complex process can be modeled as a complex 

attractor, which, like strange attractors in deterministic chaos 

theory, provides a method for mapping the dynamics of 

interactive systems. According to this view, exploitation and 

exploration processes are complementary means for 

optimizing organizational resources and design features in the 

face of multiple environmental constraints.  

 Complex adaptive systems (CAS) offers an alternative 

approach for studying the emergent behaviors of agents or 

populations adapting and coevolving in a computational 

context. In complex adaptive systems, agents adapt by 

changing their rules as experience accumulates. In addition, 

each change of strategy of an agent alters the context in which 

the next change will be tried and evaluated. When multiple 

populations of agents are adapting to each other, the result is a 

coevolutionary process. Studying this emergence process can 

generate insights about the mutual, simultaneous and nested 

effects of coevolution. Perhaps more important, CAS as a 

discipline can help define interaction process that hold across 

levels, which may allow researchers to identify similar patterns 

acting in macroevolution and in microevolution. This search 

for similar patterns across scale can be aided by the 

mathematics of fractals. The fractal notion of “self-similarity 

across scales,” and the resulting topological mapping 

techniques used to uncover those often unseen patterns, has 

been utilized by complexity scholars. Although the 

operationalization of “fractal dimensions” may not yet be 

obvious in coevolutionary contexts, the mathematics is a 

unique way to reveal whole-part relations that are a key to 

understanding mutual adaptation processes. 

 A critical part of explaining interactions between and across 

levels is the feedback loops that are involved. The bi-

directional influencing processes are a central property of 

coevolution research, and system dynamics provides a 

powerful means for modeling the non-linearities of these 
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positive feedback systems. System dynamics forces 

researchers to carefully identify each feedback process within 

an entire system; the rule-based computational model can 

reveal hidden interdependencies and emergent characteristics 

that are not tractable using linear thinking. 

 At a more micro level, cellular automata modeling could 

augment coevolution research by examining the relationship 

between individual agent moves (e.g. strategic adaptations) 

and the moves of that agent’s immediate neighbors. Like other 

computation-based disciplines of complexity, the algorithmic 

tractability of the model makes it easy to test many different 

configurations in a short period of time, thus speeding up the 

theory-building process.  

 Whereas many of these computational models are grounded 

in structured rules that mediate flows of behavior, deep 

structures and resource flows are also at the heart of the 

qualitative theories of autogenesis/autopoiesis. Autogenesis is 

a theory of identity-making, in which an agent’s core values 

and schemas define the rules that formulate emergent 

structures. The value of autogenesis/autopoiesis is its 

conceptualization of the mutual causality of resource flows and 

environmental potentials. According to the theory, entities 

(agents) are constituted by flows of tangible and intangible 

resources; these flows provide the capability for accessing 

further regimes of resources, for example in the form of 

knowledge, opportunity and competitive advantage. According 

to the theory of dissipative structures, when this resource flow 

moves to a far-from-equilibrium dynamic, whole-system 

structures can emerge through the process of self-organization. 

In coevolutionary terms, environmental changes can spark 

major organizational transitions.  

 Finally, emergent evolution provides a broad theoretical 

foundation for coevolution, by explaining the contingent 

differences in internal factors and external environments in 

terms of a continuous expansion of developmental capacities 

conditioned by localized constraints. Coevolutionary variation 

is represented by the emergence of new levels of self-

organized order, which then undergo selection and retention 

according to the well-known processes of organizational 

evolution. As such, co-evolutionary change can be understood 

as a coherence of factors at multiple levels (individual, 

organizational, institutional), with an overall direction of 

increased information, communication, trust, interdependence, 

and managerial development. 

 

IV. A CONCEPTUAL FRAMEWORK FOR CAS 

DESIGN 

 Elements of a complex system interact with each other. The 

actions of one element therefore affect other elements, directly 

or indirectly. These interactions can have negative, neutral, or 

positive effects on the system. Now, intuitively thinking, it 

may be that the “smoothing” of local interactions, i.e. the 

minimization of “interferences” or “friction” will lead to 

global improvement. To solve this problem, the design 

principles of multi-agent systems (Wooldridge, 2002) can be 

used. We can start with a basic definition: An agent is a 

description of an entity that acts on its environment. Examples 

of this can be a trader acting on a market, a school of fish 

acting on a coral reef, or a computer acting on a network. 

Thus, every element, and every system, can be seen as agents 

with goals and behaviors aiming to reach those goals. The 

behavior of agents can affect (positively, negatively, or 

neutrally) the fulfillment of the goals of other agents, thereby 

establishing a relation. The satisfaction or fulfillment of the 

goals of an agent can be represented using a variable 

]1,0[∈σ  (in some cases, σ could be seen as a fitness 

function). Relating this to the higher level, the satisfaction of a 

system σsys can be recursively represented as a function f : 

R→[0, 1] of the satisfaction of the n elements constituting it: 

   σsys = f (σ1, σ2, ..., σn,w0,w1,w2, ...,wn)      (1) 

where w0 is a bias and the other weights wi determine the 

importance given to each σi. If the system is homogeneous and 

the components have linear interactions, then f will be the 

weighted sum of σi, with wi = 1/n,∀ i ≠ 0 and w0 = 0. Note that 

this would be very similar to the activation function used in 

many artificial neural networks (Rojas, 1996). For 

heterogeneous systems, f may be a nonlinear function. 

Nevertheless, the weights wi’s are determined tautologically 

by the importance of the σi of each element to the satisfaction 

of the system σsys. If several elements decrease σsys as they 

increase their σi, we would not consider them as part of the 

system. It is important to note that this is independent of the 

potential nonlinearity of f. An example can be seen with the 

immune system (Dobrescu et al., 2006). It categorizes 

molecules and micro-organisms as akin or alien. If they are 

considered as alien, they are attacked. Auto-immune diseases 

arise when this categorization is erroneous, and the immune 

system attacks vital elements of the organism. On the other 

hand, if pathogens are considered as part of the body, they are 

not attacked. 

 A reductionist approach would assume that maximizing the 

satisfaction of the elements of a system would also maximize 

the satisfaction of the system. However, this is not always the 

case, since some elements can “take advantage” of other 

elements. Thus, we need to concentrate also on the interactions 

of the elements. If the model of a system considers more than 

two levels, then the σ of higher levels will be recursively 

determined by the σ’s of lower levels. However, the f’s most 

probably will be very different on each level. Certainly, an 

important question remains: how do we determine the function 

f and the weights wi’s? To this question there is no complete 

answer. One option would be to approximate f numerically. An 

explicit f may be difficult to find, but an approximation can be 

very useful. Another method consists of lesioning the system: 

removing or altering elements of the system, and observing the 

effect on σsys. Dealing with complex systems, it is not feasible 

to tell each element what to do or how to do it, but their 

behaviors need to be constrained or modified so that their 

goals will be reached, blocking the goals of other elements as 

little as possible. These constraints can be called mediators 

(Michod, 2003). They can be imposed from the top down, 

developed from the bottom up, be part of the environment, or 

be embedded as an aspect of the system. Mediators are 

determined by an observer, and can be internal or external to 
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the system (depending on where the observer sets the 

boundaries of the system). The efficiency of the mediator can 

be measured directly using σsys. Individually, we can measure 

the “friction” ]1,1[−∈iϕ  that agent i causes in the rest of the 

system, relating the change in satisfaction ∆σi of element i and 

the change in satisfaction of the system ∆σsys: 

      φi = (−∆σi − ∆σsys (n − 1))/n                 (2) 

 Friction occurs when the increase of satisfaction of one 

element causes a decrease in the satisfaction of some other 

elements that is greater than the increase. If φi > 0, it is 

because there was a noticeable decrease in σsys, or a 

disproportional decrease in σi. If φi < 0, then most probably it 

is due to an increase of σsys, or at least a noticeable in increase 

in σi with a negligible cost to the system. Negative friction 

would imply synergy, e.g. when ∆σi ≥ 0 while other elements 

also increase their σ. The role of a mediator would be to 

maximize σsys by minimizing φi’s.  

 Concurrently, the dependence ]1,1[−∈δ  of an element to 

the system can be measured by calculating the difference of 

the satisfaction σi when the element interacts within the system 

and its satisfaction 
iσ ′  when the element is isolated: δ=σi- iσ ′ . 

In this way, full dependence is given when the satisfaction of 

the element within the system σi is maximal and its satisfaction 

iσ ′  is minimal when the element is isolated. A negative δ 

would imply that the element would be more satisfied on its 

own and is actually “enslaved” by the system. 

Now we can use the dependencies of the elements to a system 

to measure the integration ]1,1[−∈τ  of a system, which can 

be seen also as a gradual measure of a meta-system transition 

(MST) (Turchin, 1977). A MST is a gradual process, but it 

will be complete when elements are not able to reach their 

goals on their own, i.e. 
iσ ′  → 0. In the next section, the steps 

suggested for developing a self-organizing system are 

presented, using the concepts described in this section.  

 

V.  A METHODOLOGY FOR CAS DESIGN 

 The proposed methodology receives the requirements of a 

system, i.e. what the system should do, and enables the 

designer to produce a system that fulfills the requirements. The 

methodology includes the following five steps: Representation, 

Modeling, Simulation, Application and Evaluation, These 

steps should not necessarily be followed one by one, since the 

stages merge with each other. The stages proposed are not 

new, and similar to those proposed by iterative and 

incremental development methodologies. The novelty of the 

methodology lies in the taxonomy used to describe self-

organizing systems. 

 Representation.  The goal of this step is to develop a 

specification (which might be tentative) of the components of 

the system. There are many possible representations of a 

system. According to the constraints and requirements, which 

may be incomplete, the designer should choose an appropriate 

vocabulary (metaphors to speak about the system), abstraction 

levels, granularity, variables, and interactions that need to be 

taken into account. The designer should try to divide a system 

into elements by identifying semi-independent modules, with 

internal goals and dynamics, and with few interactions with 

their environment. Since interactions in a model will increase 

the complexity of the model, we should group “clusters” of 

interacting variables into elements, and then study a minimal 

number of interactions between elements. The first constraints 

that help us are space and time. It is useful to group variables 

that are close to each other (i.e. interacting constantly) and 

consider them as elements that relate to other elements in 

occasional interactions. Multiscale analysis (Bar-Yam, 2005) 

is a promising method for identifying levels and variables 

useful in a Representation. Since the proposed methodology 

considers elements as agents, another useful criterion for 

delimiting them is the identification of goals. Dividing the 

system into modules also divides the problem it needs to solve, 

so a complex task will be able to be processed in parallel by 

different modules. Nevertheless, modularity in a system also 

increases its robustness and adaptability. 

 Modeling. In science, models should ideally be as simple as 

possible, and predict as much as possible. These models will 

provide a better understanding of a phenomenon than 

complicated models. The Modeling should specify a Control 

mechanism that will ensure that the system does what it is 

required to do. For example, since we are interested in self-

organizing systems, the Control will be internal and 

distributed. But there are a lot of other attributes a Control 

must have, as we can see in the following. 

 The Control mechanism can be seen as a mediator, ensuring 

the proper interaction between elements of a system, and one 

that should produce the desired performance. However, one 

cannot have a strict control over a self-organizing system. To 

develop a Control, the designer should find aspect systems, 

subsystems, or constraints that will prevent the negative 

interferences between elements (friction) and promote positive 

interferences (synergy). In other words, the designer should 

search for ways of minimizing frictions φi’s that will result in 

maximization of the global satisfaction σsys.  

 The Control mechanism should be adaptive. Since the 

system is dynamic and there are several interactions within the 

system and with its environment, the Control mechanism 

should be able to cope with the changes within and outside the 

system, in other words, be robust. An adaptive Control will be 

efficient in more contexts than a static one. In other words, the 

Control should be active in the search of solutions. A static 

Control will not be able to cope with the complexity of the 

system. 

 For a system to self-organize, its elements need to 

communicate: they need to “understand” what other elements, 

or mediators, “want” to tell them. This is easy if the 

interactions are simple: sensors can give meaning to the 

behaviors of other elements. But as interactions become more 

complex, the cognition required by the elements should also be 

increased, since they need to process more information. New 

meanings can be learned to adapt to the changing conditions. 

 The problem of cooperation has been widely studied. This 

will certainly reduce friction and therefore increase σsys. 

Elements of a system should coordinate while reducing 

friction, not to obstruct each other. An important aspect of 
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coordination is the division of labor. This can promote 

synergy, since different elements can specialize in what they 

are good at and trust others to do what they are good at. A 

good Control will promote division of labor by mediating a 

balance between specialization and integration: elements 

should devote more time doing what they are best at, but 

should still take into account the rest of the system. Another 

aspect of coordination is the workflow: if some tasks are 

prerequisites of other tasks, a mediator should synchronize the 

agents to minimize waiting times. 

 As conclusions for the importance of Modeling, let consider 

several trade-offs that a system needs to reach a balance and 

cope with the complexity of its domain. We must keep in mind 

during the development of the system the following ratios 

between: Quality and Quantity, Economy and Redundancy, 

Homogeneity and Heterogeneity, Ability and Clarity, 

Generality and Particularity. There are only very relative ways 

of measuring the above mentioned trade-offs. However, they 

should be. While developing a particular system, the trade-offs 

will become clearer once the Simulation is underway. They 

can then be reconsidered and the Modeling updated. 

 Simulation. The aim of this stage is to build computer 

simulation that implement the model developed in the 

Modeling stage, and test different scenarios and mediator 

strategies. This is a key stage, since the precise behaviors of a 

complex system cannot be easily deduced from the Modeling, 

i.e. they are not reducible. The Simulation development should 

proceed in stages: from abstract to particular. First, an abstract 

scenario should be used to test the main concepts developed 

during the Modeling. Only when these are tested and refined, 

should details be included in the Simulation. This is because 

particular details take time to develop, and there is no sense in 

investing before knowing whether the Modeling is on the right 

track. Ideally, the designer should develop more than one 

Control to test in the simulation. The designer can then adjust 

or combine the Controls, and then compare again in the 

Simulation. A Simulation should be mature before taking the 

implementation into the real world. 

 Application. The role of this stage is basically to use the 

developed and tested models in a real system. If this is a 

software system, the transition will not be so difficult, since the 

software would have been already developed in the Simulation 

stage. Good theoretical solutions can be very difficult or too 

expensive to implement. The feasibility of the Application 

should be taken into account during the whole design process. 

In other words, the designer should have an implementation 

bias in all the Methodology stages. The legacy of previous 

systems should also be considered for the design: if the current 

implementation is to be modified but not completely replaced, 

the designer is limited by the capabilities of the old system. 

Usually, a pilot study should be made before engaging in a full 

Application, to detect incongruence and unexpected issues 

between the Simulation or Modeling stages and the 

Application. 

 Evaluation. Once the Application is underway, the 

performance of the new system should be measured and 

compared with the performances of the previous systems. 

Constraints permitting, efforts should be continued to try to 

improve the system, since the requirements it has to meet will 

certainly change with time (e.g. changes of demand, capacity, 

etc.). The system will be more adaptive if it does not consider 

its solution as the best once and for all and is able to change 

itself according to its performance and the changing 

requirements.  

 

         VI. CONCLUSIONS 

 

 The proposed Methodology will be useful for unpredictable 

and/or dynamic problem domains, where all the possible 

system’s situations cannot be considered beforehand. It could 

also be useful for creative tasks, where a self-organizing 

system can explore the design space in an alternative way. The 

Methodology in principle is applicable to describe any system, 

but it would be redundant in simple or static problem domains, 

i.e. with a fixed solution, where adaptation is not required. 

 The proposed Methodology is not quite a spiral design 

model, because the last stage does not need to be reached to 

return to the first. That is, there is no need to deploy a working 

version (finish a cycle/iteration) before revisiting a previous 

stage, as for example in extreme programming. Rather, the 

Methodology is a “backtracking design model”, where the 

designer can always return to previous stages. It is not 

necessary to understand a solution before testing it. In many 

cases understanding can come only after testing, i.e., the global 

behavior of the system is irreducible. Certainly, understanding 

the causes of a phenomenon will allow the modelers to have a 

greater control over it. 

 The backtracking between different steps in the 

Methodology is necessary because the behavior of the system 

cannot be predicted from the Modeling, i.e. it is not reducible. 

It might be possible to reason about all possible outcomes of 

simple systems, and then to implement the solution. But when 

complexity needs to be dealt with, a mutual feedback between 

experience and reasoning needs to be established, since 

reasoning alone cannot process all the information required to 

predict the behavior of a complex system. For this same 

reason, it would be preferable for the Control to be distributed. 

 Even when a central supercomputer could possibly solve a 

problem in real time, the information delay caused by data 

transmission and integration can reduce the efficiency of the 

system. Also, a distributed Control will be more robust, in as 

much as if a module malfunctions, the rest of the system can 

still provide reliable solutions. If a central Control fails, the 

whole system will stop working. 

 Since the behavior of a complex system in a complex 

environment cannot be predicted completely, the models need 

to be contrasted with experimentation before they can be 

validated. This Methodology suggests one possible path for 

finding solutions. The lack of predictability does not come 

only from chaotic processes. It might come also from new 

information generated by the interactions, so that the system 

behavior cannot be predicted from the behavior of the 

elements. 

 Finally, let answer if the proposed Methodology is a top-

down or a bottom-up approach. Well, it is both and neither, 

since (at least) higher and lower levels of abstraction need to 
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be considered simultaneously. In fact, the approach tests 

different local behaviors, and observes local and global 

performances, for local and global requirements. Thus, the 

Methodology can be seen as a multi-level approach and its 

architecture corresponds to the heterarchical structure shown 

in fig. 1. And also let notice that the Methodology strives to 

build artificial systems. Nevertheless, these could be used to 

understand natural systems using the synthetic method. 

 Therefore, the ideas presented here are potentially useful not 

only for engineering, but also for science. The backtracking 

ideology is also applicable to this Methodology: it will be 

improved once applied, through learning from experience.  
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