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Abstract—The Lane-Emden equation that describes the
temperature in a self-gravitating star has been widely studied
due to its applications in astrophysics and as a prototype for
testing new mathematical and numerical techniques for solving
nonlinear equations. In this paper a new semi-analytical algo-
rithm for solving singular initial value problems of Lane-Emden
type is presented. Solutions for polytropic indices n = 2, 3 and
4 are found and compared with numerical results and the Sinc-
collocation approximations in the literature. Our investigations
indicate that there is excellent agreement between the numerical
results and the new method. Excellent agreement is also found
when comparing the results of the new method against the exact
analytic solution of the Lane-Emden equation for polytropic
index m = 5 showing the accuracy and computational efficiency
of the present technique.

Index Terms—Lane-Emden equation, Singular IVPs, lin-
earization method, Spectral method, series solution

I. INTRODUCTION

The Lane-Emden differential equation of index m is one
of the well studied classical equations of nonlinear mechanics.
Named after the pioneering work of Lane [1] and Emden [2],
the equation describes the equilibria of non-rotating polytropic
fluids in a self-gravitating star. The equation has been stud-
ied extensively by physicists because of its applications in
astrophysics and also because of its importance in the kinetics
of combustion and the Landau-Ginzburg critical phenomena,
[3], [4], [5], [6]. Some of the notable contributions in the
study of isothermal gas sheets are those of Chandrasekhar [7],
Eddington [8] and Spitzer [9].

For mathematicians, fascination with the Lane-Emden
equation might derive partly from its nonlinearity and singular
behaviour at the origin. Solving the Lane-Emden equation
analytically in closed form is only possible for the polytropic
indices m = 0, 1 and 5. The remaining solutions for other
indices are generally found numerically. Initial interest might
have related to the study of the properties of the known
solutions of the equation (such as the classification of the
solutions, bifurcations, uniqueness, etc). However, the Lane-
Emden equation is numerically challenging to solve because of
its singular behaviour at the origin. In recent times the Lane-
Emden equation has thus been used extensively as a prototype
for testing new methods for finding semi-analytic methods for

solving nonlinear differential equations.
Previous studies and attempts to find analytic solutions

of the Lane-Emden problem range from the approximate
analytical solutions of Seidov and Sharma [10] and Sharma
[11] to the power-series solutions of Nouh [12], Ramos [13]
and Seidov and Kuzakhmedov [14]. There were however
questions on the convergence of the power-series solutions
presented in [14] and the follow-up paper by Mohan and Al-
Bayaty [15] sought to find an improved power-series solution
to the Lane-Emden equation that is convergent in the whole
interior of a polytropic model. Power series solutions were
also obtained by Shawagfeh [16] and Wazwaz [17], [18] using
the Adomnian decomposition method. The series solution in
[17] is given in the later study by Momoniat and Harley [19]
where Lie group analysis was used to find new approximate
implicit solutions to the Lane-Emden equation with a larger
radius of convergence than the power series solution. This
was achieved by first reducing the Lane-Emden equation to
first-order and then determining a power series solution of
the reduced equation. The variational Iteration Method, He
[20] and the homotopy analysis method (see [21], [22], [23])
have also been used to find semi-analytical solutions of the LE
equation. Other methods that have been used to find analytic
solutions to the LE equation include the δ-perturbation method
by Datta [24]. Padé approximants were then used to accelerate
the convergence of the power series solution. The homotopy
perturbation method was used by Yildrim and Özis [25] while
a generalized homotopy perturbation method has been used
recently by Rafiq et al. [26] to solve LE type differential
equations. Numerical methods that have been used in the
recent past include the Legendre Tau method by Parand and
Razzaghi [27] and the sinc-collocation method by Parand and
Prirkhedri [28].

In this paper we present a new successive linearization
method (SLM) that promises computational efficiency, rapid
convergence and better accuracy than other semi-analytical
techniques currently being used, in particular, the homotopy
analysis method and its variants such as the spectral homotopy
analysis method [29]. So far the SLM has been successfully
tested on two non-linear two-point boundary value problems
arising in fluid mechanics, namely von-Karman swirling flow
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[30] and general Falkner-Skan type [31]. This is the first
attempt at applying the SLM to a non-linear initial value
problem (IVP).

II. THE LANE-EMDEN EQUATION

In this paper we consider the general Lane-Emden type
initial value problem with polytropic index m of the form

y′′(x) +
2
x

y′(x) + ym = 0, (1)

subject to the initial conditions

y(0) = 1, y′(0) = 0. (2)

Equation (1) is a second-order differential equation whose
closed form solutions are known only for special, integer
values of the index m, namely when m = 0, 1 and 5. In
this paper we use the successive linearization method (SLM)
to find the remaining solutions for other indices, particularly
for m = 2, 3, 4. The solution for the case m = 5 is also found
and compared with the known exact analytical solution.

III. SUCCESSIVE LINEARISATION METHOD OF SOLUTION

The successive linearisation method (SLM) is based
on the assumption that the unknown functions y(x) can be
expanded as

y(x) = Yi(x) +
i−1∑
n=0

yn(x), i = 1, 2, 3, . . . (3)

where Yi are unknown functions and yn are successive ap-
proximations whose solutions are obtained recursively, from
solving the linear part of the equation that results from
substituting (3) in the governing equations (1) using y0(x) as
an initial approximation. The initial approximation is chosen
in such a way that it satisfies the boundary conditions (2). A
suitable initial approximation for (1) is

y0(x) = 1. (4)

The linearisation technique is based on the assumption that Yi

becomes increasingly smaller as i becomes large, that is

lim
i→∞

Yi = 0. (5)

Substituting (3) in the governing equation (1), and using the
Binomial theorem notation, gives

Y ′′
i +

2
x

Y ′
i +

m∑
s=0

(
m
s

)
Y m−s

i

[
i−1∑
n=0

yn

]s

=

−
i−1∑
n=0

(
y′′n +

2
x

y′n

)
(6)

Starting from the initial approximation (4), the subsequent
solutions for yn, n ≥ 1 are obtained by iteratively solving
the linearized form of equations (6) which are given as

y′′i +
2
x

y′i + mam−1
i−1 yi = φi−1, (7)

subject the boundary conditions

yi(0) = y′i(0) = 0, (8)

where

ai−1 =
i−1∑
n=0

yn, (9)

φi−1 = −
[

i−1∑
n=0

y′′n +
2
x

i−1∑
n=0

y′n +

(
i−1∑
n=0

yn

)m]
. (10)

Once each solution for yi (i ≥ 1) has been obtained, the
approximate solution for y(x) is obtained as

y(x) ≈
M∑

n=0

yn(x) (11)

where M is the order of SLM approximation. We remark that
the coefficient parameters and the right hand side of equations
(7) for i = 1, 2, 3, . . ., are known (from previous iterations).
Thus, equation (7) can easily be solved using analytical
means (whenever possible) or any numerical methods such as
finite differences, finite elements, Runge-Kutta based shooting
methods or collocation methods. In this work, equation (7) is
solved using the Chebyshev spectral collocation method. This
method is based on approximating the unknown functions by
the Chebyshev interpolating polynomials in such a way that
they are collocated at the Gauss-Lobatto points defined as

zj = cos
πj

N
, j = 0, 1, . . . , N. (12)

where N is the number of collocation points used (see for
example [32], [33], [34]). In order to implement the method,
the physical region [0, 1] is transformed into the region [−1, 1]
using the mapping

x =
z + 1

2
, −1 ≤ z ≤ 1 (13)

The unknown functions yi are approximated at the collocation
points by

yi(z) ≈
N∑

k=0

yi(zk)Tk(zj), j = 0, 1, . . . , N (14)

where Tk is the kth Chebyshev polynomial defined as

Tk(z) = cos[k cos−1(z)]. (15)

The derivatives of the variables at the collocation points are
represented as

dryi

dxr
=

N∑

k=0

Dr
kjyi(zk), j = 0, 1, . . . , N (16)

where r is the order of differentiation and D = 2D with D
being the Chebyshev spectral differentiation matrix (see [32],
[34]). Substituting equations (13 - 3) in (7) leads to the matrix
equation given as

Ai−1Yi = Φi−1, (17)
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in which Ai−1 is a (N + 1)× (N + 1) square matrix and Yi

and Φ are (N + 1)× 1 column vectors defined by

Yi = [yi(z0), yi(z1), . . . , yi(zN−1), yi(zN )]T ,

Φi−1 = [φi−1(z0), φi−1(z1), . . . , φi−1(zN−1), φi−1(zN )]T ,

Ai−1 = D2 +
[

2
x

]

d

D + mam−1
i−1 .

In the above definitions, [ ]d and ai−1 are diagonal matrices of
size (N+1)×(N+1). After modifying the matrix system (17)
to incorporate boundary conditions, the solution is obtained as

Yi = A−1
i−1Φi−1. (18)

IV. RESULTS

In this section we show the accuracy and fast con-
vergence of the SLM by comparing the current results with
those in the literature. Table I gives a comparison of the SLM
results against the numerical computations of Horedt [35] and
the sinc-collocation results of Parand and Prirkhedri [28] for
polytropic indices m = 2, 3, 4. The successive linearisation
method gives a series solution and improvement in the ac-
curacy and convergence of the results in general increases
with the order of the solution series. In this case accuracy up
to seven decimal places is obtained at the fourth order SLM
results when comparing with the numerical results of Horedt
[35] which are widely used as a benchmark for testing the
accuracy of new methods of solution.

We note that the sinc-collocation results of Parand and
Pirkhedri [28] appear to be less accurate than both our current
results and those of Horedt [35]. This is confirmed in Table II
where the solution y(x) is presented for the case m = 3. In all
the selected values of x, matching up to six decimal places is
achieved at the sixth order of the SLM series solution and the
numerical results of Horedt [35]. The sinc-collocation results
of Parand and Prirkhedri [28] are only accurate up to three
decimal places.

In Table III we compare the SLM results for m = 5
against the exact solution (19) at different values of the scaled
variable x. When m = 5 the Lane-Emden equation (1) has an
exact solution given by

y(x) =
(

1 +
x2

3

)− 1
2

. (19)

The results are self-evident and show that the SLM results
match with the exact solution at the fifth order of the SLM
series solution. For smaller values of x exact matching is
obtained at the second order but the level of accuracy de-
creases with x. From these findings we may conclude that the
successive linearisation technique is computationally efficient,
accurate and converges rapidly.

Figure 1 shows the Lane-Emden equation solution
curves for m = 2, 3 and 4 obtained using the fourth order
SLM solution series. These solution curves are accurate and
match with those obtained from the numerical solution of the
Lane-Emden equation.
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Fig. 1. Lane-Emden graphs for the 4th order successive linearisation solution
for m = 2, 3, 4

V. CONCLUSION

We have presented a successive linearisation method
for the solution of the Lane-Emden equation. We have shown
that the SLM is a robust and reliable technique for obtaining
semi-analytical solutions of nonlinear differential equations.
The SLM is computationally efficient, accurate and converges
rapidly. It is worth noting that the SLM provides a simple
unified treatment of the nonlinear equation that requires no
acceleration of convergence unlike the power series and the
δ-perturbation methods.
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