
 

 

  

Abstract—The spatial interaction plays an important role in many 

ecological situations. A lattice model is a popular tool for creating 

such a grid structure of discrete individuals together with their 

possible connection. The procedure, however, is very computation 

time consuming depending on the model complexity. Therefore, 

master equations, correlation equations, and pair approximations are 

proposed as analytical methods. In this paper, a new approach to pair 

approximation method is introduced. The main assumption beyond 

this approach is that the space average and the probabilistic average 

are identical when the total population size is large enough. This 

technique is suitable for a model composed of individuals whose 

event rates such as birth rate, death rate, transmission rate, and 

recovery rate are additionally affected by their nearby neighbor. We, 

finally, apply this technique to a simple SIS epidemic model. 

 

Keywords—Pair approximation, Probability distribution, SIS 

epidemic model, Spatial model.  

I. INTRODUCTION 

AIR approximation was first used to describe population 

dynamics by Matsuda et al. [1] in 1992. His method, so-

called the ordinary pair approximation (OPA) and the 

doublet decoupling approximation, was developed to construct 

a simple model as an ordinary differential equation where the 

global and the local densities are the state variables. Two years 

later, Sato et al. [2] improved the OPA by considering that the 

reproduction of host and pathogen take place only at its nearest 

neighbor site. Since then, the Japanese researchers have 

continuously contributed theoretical results and also applied to 

many biological phenomena [3]-[8]. Rand [9], however, used 

the pair approximation as a moment closure approximation 

where the number of sites and the number of pairs are the state 

variables. Moreover, he discussed how to calculate master 

equations and correlation equations. Pair approximation has an 

enormous potential for applications because the effect of 

spatial structure is usually considered. It has provided an 

attractive framework for studying epidemiology [10]-[14], 

ecology [15]-[17], and evolution [18], [19].  

 In order to contribute theoretical results understandably and 

precisely, we introduce some notations and conventions in 

section II. In section III, we provide the formulation of pair  
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approximation by using new approach (NPA). Then we apply 

the NPA to a simple SIS model in section IV. In section V, the 

numerical results are shown. Finally, we discuss the results and 

draw conclusion. In addition, the complicated mathematical 

expressions are collected in Appendix. 

II. NOTATIONS AND DEFINITIONS  

Under a given configuration ( )kσ σ=  where { , }k x e∈ , the 

following notations are defined. 

xσ   means the state of the site or the individual x ,   

eσ   means the state of the pair or the edge e ,  

x iσ =   means that the state of the individual x is i ,  

e ijσ =   means that one end of the edge e  is in state i , ie , 

while the other is in state j , je ,  

[ ],[ ],[ ]i ij ijk   are the number of sites, edges, and triples in state 

,i ij , and ijk , respectively,  

( )xQ i   is the number of neighbors of the sites x  which 

are in state i , 

xQ  is the number of neighbors of the sites x , 

( )
jeQ i   is the number of neighbors of the sites je  which 

are in state i ,  

x x i
Z

σ =
  is the average of quantity 

xZ  over all individuals 

x  which are in state i , 

ie
e ij

Z
σ =

  is the average of quantity 
ieZ over all edges e  

which are in state ij , 

( )x x j
Q i

σ =
 is the average value of the number of i -state 

neighbors of a j -state site,  

( )
je

e jk
Q i

σ =
 is the average value of the number of i -state 

neighbors of a j -state site in a jk -state edge, 

Q  is the average number of neighbors, 

N  is the total population size,  

iq  equals [ ]/i N , and 

|i jq  equals [ ] [ ]ij Q j . 

 

An example is shown in Fig. 1. 

                      
Fig. 1 , ,x i y j e ijσ σ σ= = =  
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III. FORMULATION OF PAIR APPROXIMATION 

We, firstly, construct a population network over a regular d-

dimensional lattice model whose site can be occupied by an 

individual carrying only one of many different states. An 

unoccupied or empty site, sometimes, is considered. We, then, 

assume that our system is composed of n individuals carrying 

k  different types of population with 2k ≥ . For 1,...,i k= , each 

type of the population, the number of each type, and the 

proportion of each type in the population are denoted by 

1.. kM M , 
1,..., km m , and 

ip , respectively. If 
1( ,... )kM M M=  has 

a multinomial distribution together with parameters n  and 

1( ,..., )kp p p= , then the following probability can be calculated 

by using this formula 

1

1 1 1

1

Pr( ,..., )
,...,

kmm

k k k

k

n
M m M m p p

m m

 
= = = ⋅ ⋅ ⋅ 

 
 

where 
1 1

!

,..., ! !k k

n n

m m m m

 
= 

⋅ ⋅ ⋅ 
. Moreover, ( )

i i
E M np=  and 

( ) (1 )
i i i

Var M np p= −  for 1,...,i k= . 

 In this paper, we have mainly focused on a latticed model 

with a constant number of neighbors, Q , as mentioned in the 

following assumption. 

 

Assumption 1. Assume 
x

Q Q≡  is independent of x  and ( )
x

Q i  

with x jσ =  is multinomially distributed with parameters Q  

and ip  where |i i jp q= . 

 

The next two assumptions imply that ( )
ieQ k  and ( )

jeQ k  are 

independent when e ijσ = . 

 

Assumption 2. For all k , ( )xQ k  and ( )yQ k  are independent 

when x y≠  because there is no triangle and no multiple 

connections. 

 

Assumption 3. Pr( ( ) ) Pr( ( ) | ( ) 1)
ie x xQ k q Q k q Q j= = = ≥ . 

 

The final assumption implies that the space average and the 

probabilistic average are identical. 

 

Assumption 4. (Large N  hypothesis) 

Where the total system size N  is large ( N → ∞ ), we can 

identify the configuration averages x x i
Z

σ =
 and e e ij

Z
σ =

, 

respectively with the P -expectations ( )
P x

E Z  and 
1
( )

iP eE Z . 

 

 Consequently, we can present a new way to approximate 

some special higher order terms that the OPA cannot do in the 

following theorems. 

 

Theorem 1. 
[ ]

( )
[ ]

x x j

ij
Q i

jσ =
= . 

Proof. By definition. 

 

Theorem 2. 
1 1

1 2

2

| | 1 2

1 2

| | 1 2

!
;

( 2)!
( ) ( )

!
;

( 2)!

i j i j

x x x j

i j i j

Q
Qq q i i

Q
Q i Q i

Q
q q i i

Q

σ =


+ = −

= 
 ≠
 −

. 

Proof.   

Case 1. 
1 2i i=   

2

1 1 10
( ) ( ) Pr( ( ) | )

Q

x x xmx j
Q i Q i m Q i m x j

σ
σ

==
= = =∑  

                                      
1 1

2

| |0
(1 )

Q m Q m

i j i jm

Q
m q q

m

−

=

 
= − 

 
∑  

 Finally, we obtain 

1 1

2

1 1 | |

!
( ) ( )

( 2)!
x x i j i jx j

Q
Q i Q i Qq q

Qσ =
= +

−
 

because  
2

2

0

! !
(1 )

!( )! ( 2)!

n k n k

k

k n n
A A nA A

k n k n

−

=
− = +

− −∑ . 

 

Case 2. 
1 2i i≠  

( )1 2 1 20 0
( ) ( ) Pr ( ) , ( ) |

Q Q m

x x x xm nx j
Q i Q i mn Q i m Q i n x j

σ
σ

−

= ==
= = = =∑ ∑

1 2 1 2| | | |0 0

!
(1 )

! !( )!

Q Q m m n Q m n

i j i j i j i jm n

mnQ
q q q q

m n Q m n

− − −

= =
= − −

− −∑ ∑ . 

Finally, we obtain 

1 21 2 | |

!
( ) ( )

( 2)!
x x i j i jx j

Q
Q i Q i q q

Qσ =
=

−
 

because 

1 1 2 1 2

1 2

1 2

0 0
1 2 1 2

! !
(1 )

! !( )! ( 2)!

n n k k k n k k

k k

k k n n
A B A B AB

k k n k k n

− − −

= =
− − =

− − −∑ ∑ . 

 

The next two theorems have already been proved in [19]. 

 

Theorem 3. 
|

|

( 1) ;
( )

( 1) 1 ;j

l j

e
e ij

l j

Q q l i
Q l

Q q l iσ =

− ≠
=  − + =

. 

 

Theorem 4.  

1 1

1 2

2

| | 1 2

1 2

| | 1 2

( 1)!
( 1) ;

( 3)!
( ) ( )

( 1)!
;

( 3)!

j j

l j l j

e e
e ij

l j l j

Q
Q q q l l

Q
Q l Q l

Q
q q l l

Q

σ =

−
− + = −

= 
− ≠

 −

. 

 

 In order to see how the average calculation works, we apply 

NPA to the simplest epidemic model. 

IV. THE SIS SPATIAL MODEL 

The simple SIS epidemic model is a good example to see 

the usefulness of the new approach of pair approximation. As 

usual, the simple SIS model can be separated into two possible 

states, that is, S  (a susceptible individual) and I  (an infective 

individual). The state of each site and edge can evolve over 

time according to two major types of events such as infection 

and recover. Clearly, infection changes the state e SIσ =  of the 

edge e  into the state 'e IIσ =  at rate β . Moreover, recovery 

changes the state x Iσ =  of a site x  into the state 'x Sσ =  at 

rate δ . 
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Consequently, we can derive the master equations for the 

simple SIS model (as shown in Appendix A) by summing over 

all events in the population which affect f . In addition, the 

total change produced by those events is 

( )
events

df
r f

dt
εε

ε
∈

= ∆∑  

where ( )r ε  is the rate of event ε  and fε∆  is the change 

produced in f  by event ε . According to the concept of space 
average, 

( ) [ ] ( )x xx j x j
Q i j Q i

σ σ= =
=∑  and ( ) [ ] ( )

j je ee jk e jk
Q i jk Q i

σ σ= =
=∑  

the master equations, then, can be rewritten in average forms 

instead of summation terms as shown in Appendix B. Finally, 

we can use the NPA to obtain pair approximation of the SIS 

model. Particularly, if the infection rate and the recovery rate 

are constant, then the OPA and NPA are obviously identical.  

However, the human-to-human transmission of Swine Flu 

occurs by inhalation of infectious droplets and droplet nuclei, 

and by direct contact, which is facilitated by air and land travel 

and social gatherings [20]. Therefore, the transmission rate and 

the recovery rate could vary depending on the surrounding 

infectious people. Consequently, we able to assume that the 

infection rate and the recovery rate are 
0 1 ( )

Seb b Q Iβ = +  and 

0 1
( )

x
d d Q Iδ = − , respectively where 

0 1 0 1
, , ,b b d d  are constant. 

Then we can see the limitation of OPA. In Appendix C, we 

derive the correlation equations by using the NPA. 

 Firstly, we neglect spatial structure altogether by ignoring 

the correlation between neighboring sites on the lattice [6]. 

Hence the superscript M, the superscript P, and the subscript e 

symbolize for mean-field approximation, pair approximation, 

and equilibrium, respectively. 

A. Mean-field Approximation 

In this case, it implies that the local density ( |i jq ) equals the 

global density (
iq ). Consequently, we obtain fewer equations. 

The following equation is the change of infectious people 

3 2 2

1 1 0 1 1

0 1 0

[ ]
( 1)[ ] [ 2 ][ ]

[ ][ ]

d I
b Q Q I b Q b Q b Q d Q I

dt

b Q b Q d I

= − − + − − +

+ + −
         (1) 

Case 1. 
1 0b = , the equilibrium points are 

1,2

0 0

0 1

( )
[ ] 0,

( )

M

e

N b Q d
I

Q b d

−
=

−
            

Case 2. 1 0b ≠ , the equilibrium points are 

1,2

2

1 0 1 0

1

4 ( 1)( )
[ ] 0,

2 ( 1)

M

e

NL N L b Q Q b Q b Q d
I

b Q Q

± + − + −
=

−
 

where 0 1 1( 2)L b Q b Q Q d Q= − + − + .  

B. Pair Approximation 

Instead of neglecting the difference between the local and 

the global densities. We can also search for the equilibrium in 

the same manner. 

Case 1. 
1 0b = , the equilibrium equations are 

( )
20 0 0

1 1

0 0 0 0 0

( 1) ( )( 1)
[ ] ( )

( 1) ( 1)

P

e

d N Q b Q d Q N
S d O d

b Q Q d b Q Q d b

− − −
= − +

− − − −
        (2.1) 

( )
( )

0 0 20 0
1 1

0 0 0 0 0

( 1) ( )( 1)
[ ] ( )

( 1) ( 1)

P

e

NQ b Q d b Q d Q N
I d O d

b Q Q d b Q Q d b

− − − −
= + +

− − − −
  (2.2) 

( )

( )

0 0 0

0 0 0

20 0 0 0
1 12

0 0 0

( ( 1) )
[ ]

( 1)

( ( 1) (2 1))( )
( )

( 1)

P

e

d NQ b Q d
SI

b Q Q d b

b Q q d q b Q d N
d O d

b Q Q d b

− −
=

− −

− − − −
− +

− −

     (2.3) 

( ) ( )

2
20 0 0 0

1 12

0 0 0 0 0 0

(2 1)( )
[ ] ( )

( 1) ( 1)

P

e

d NQ Q b Q d d N
SS d O d

b Q Q d b b Q Q d b

− −
= − +

− − − −
 

                                                                                        (2.4) 

     
( )

( )
( )

0 0 0 0

0 0 0

0 0 0 0 2

1 12

0 0 0

( )( ( 1) )
[ ]

( 1)

2 ( 1) (2 1) ( )
( )

( 1)

P

e

NQ b Q d b Q d
II

b Q Q d b

b Q Q d Q b Q d N
d O d

b Q Q d b

− − −
=

− −

− − − −
+ +

− −

 (2.5) 

Unluckily, we cannot obtain the explicit form of the 

equilibrium point when 1 0b ≠ .   

V. NUMERICAL RESULTS 

In this section we mainly investigate the density of infected 

individuals, defined by iq = [ ]/I N , along the time series. 

Consequently, we have to modify (1) by dividing N both sides. 

The upcoming figures indicate the asymptotic behavior of 

solutions of the modified equation. In case that the infection 

rate and the recovery rate are not affected by the surrounding 

infectious individuals (
1 10, 0b d= = ), the solution curves are 

visualized in Fig. 2 with the fixed parameters 0 00.3, 0.2b d= =  

and the varying parameter 1,2,4,8Q = . Obviously, the highest 

solution curve occurs when 8Q =  which means that the more 

neighbors, the higher density of infected individuals at the 

equilibrium point.  

 

 
Fig. 2 Time evolution of the density of infected individuals iq . 

Parameters: 0 1 0 10.3, 0, 0.2, 0b b d d= = = =  and 8,4,2,1Q = (from top 

to bottom, respectively).  

 

 In case that only the infection rate is affected by the 

surrounding infectious individuals (
1 1

0, 0b d≠ = ), Fig. 3 shows 
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the solution curve when 0 00.3, 0.2, 4b d Q= = =  are fixed and 

1b  is assigned with the following values 0.9,0.3,0.05,0.01 . The 

highest solution curve occurs when 1 0.9b =  implying that the 

stronger effect of the surrounding infectious individuals on the 

infection rate, the higher density of infected individuals at the 

equilibrium point.  

 
Fig. 3 Time evolution of the density of infected individuals 

iq . 

Parameters:
0 0 10.3, 0.2, 0, 4b d d Q= = = =  and 

1 0.9, 0.3,0.05,0.01b =  

(from top to bottom respectively).  

 

In case that only the recovery rate is affected by the 

surrounding infectious individuals (
1 10, 0b d= ≠ ), the solution 

curves are then illustrated in Fig. 4 with the fixed parameters 

0 1 00.3, 0, 0.2, 4b b d Q= = = =  and the varying parameter 
1d =  

0.05,0.04,0.02,0 . The highest solution curve occurs when 
1

d =  

0.05  referring that the stronger effect of the surrounding 

infectious individuals on the recovery rate, the higher density 

of infected individuals at the equilibrium point. 

 
Fig.4 Time evolution of the density of infected individuals 

iq . 

Parameters:
0 1 00.3, 0, 0.2, 4b b d Q= = = = and

1 0.05,0.04,0.02,0d =  

(from top to bottom respectively).  

 

Next Fig. 5 shows the solution curves obtained by setting 

0 1 0 10.3, 0.1, 0.2, 0.01b b d d= = = =  and 8, 4, 2, 1.Q =  

 

 
Fig. 5 Time evolution of the density of infected individuals iq . 

Parameters: 0 1 0 10.3, 0.1, 0.2, 0.01b b d d= = = =  and 8, 4, 2, 1Q =  

(from top to bottom respectively).  

 

Not only do we focus on (1), but we also observe the 

behavior of (2) by comparing the numbers of infected 

individuals and links between two infected individuals at the 

equilibrium point. For example, we could enter the following 

parameter values 0 0 1 10.3, 0.2, 0, 0.01, 4, 100b d b d Q N= = = = = =  

into (2.2) and (2.5). After some calculations, we obtain 

[ ] 85P

eI ≈  and [ ] 294P

eII ≈ . Obviously, [ ] [ ]P P

e eI II<  implying that 

the infected individuals prefer staying close together or tend to 

be clumped spatially. 

VI. CONCLUSION 

Intuitively, people infect flu virus easily from their nearby 

neighbors. The health organization usually suggests infectious 

people to have some rest and be away from public places. It 

implies that if we surrounding with more infectious people, 

then we have higher chance to infected and/or lower chance to 

recover as shown in the numerical results.  

Not only useful for a simple SIS epidemic model, does this 

given technique (NPA) is also suitable for a model evolving 

according to the transition rates affecting additionally by 

neighbors.  

APPENDIX 

A. The master equations: version 1  

[ ]
x I e SI

d S

dt σ σ
δ β

= =
= −∑ ∑  

[ ]
x I e SI

d I

dt σ σ
δ β

= =
= − +∑ ∑  
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[ ]
( ) ( ( ) ( ))

( )

S Sx e ex I e SI

xx I

d SI
Q S Q S Q I

dt

Q I

σ σ

σ

δ β

δ

= =

=

= − + −

+

∑ ∑

∑
 

 
[ ]

2 ( ) 2 ( )
Sx ex I e SI

d SS
Q S Q S

dt σ σ
δ β

= =
= −∑ ∑  

[ ]
2 ( ) 2 ( )

Se xe SI x I

d II
Q I Q I

dt σ σ
β δ

= =
= −∑ ∑  

 

B. The master equations: version 2  

0 1 0 1

[ ]
[ ] [ ] ( ) [ ] [ ] ( )

Sx ex I e SI

d S
d I d I Q I b SI b SI Q I

dt σ σ= =
= − − −  

[ ] [ ]d I d S

dt dt
= −  

0 1

0 1

0 1

0 1

[ ]
[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( )

S S S

S S S

x x xx I x I

e e e
e SI e SI

e e e
e SI e SI

x x xx I x I

d SI
d I Q S d I Q I Q S

dt

b SI Q S b SI Q I Q S

b SI Q I b SI Q I Q I

d I Q I d I Q I Q I

σ σ

σ σ

σ σ

σ σ

= =

= =

= =

= =

= − +

+ +

− −

+ −

 

0 1

0 1

[ ]
2 [ ] ( ) 2 [ ] ( ) ( )

2 [ ] ( ) 2 [ ] ( ) ( )
S S S

x x xx I x I

e e e
e SI e SI

d SS
d I Q S d I Q I Q S

dt

b SI Q S b SI Q I Q S

σ σ

σ σ

= =

= =

= −

− −
 

0 1

0 1

[ ]
2 [ ] ( ) 2 [ ] ( ) ( )

2 [ ] ( ) 2 [ ] ( ) ( )

S S Se e e
e SI e SI

x x xx I x I

d II
b SI Q I b SI Q I Q I

dt

d I Q I d I Q I Q I

σ σ

σ σ

= =

= =

= +

− +
 

 

C. The spatial SIS model  

0 1 0 1 |

[ ]
[ ] [ ] [ ] [ ][( 1) 1]I S

d S
d I d II b SI b SI Q q

dt
= − − − − +  

[ ] [ ]d I d S

dt dt
= −  

0 1 | |

0 | 1 | |

0 |

2

1 | |

2

0 1 | |

[ ] !
[ ] [ ]

( 2)!

( 1)!
[ ]( 1) [ ]

( 3)!

[ ] ( 1) 1

( 1)!
[ ] ( 1)

( 3)!

!
[ ] [ ]

( 2)!

I I S I

S S I S S S

I S

I S I S

I I I I

d SI Q
d SI d I q q

dt Q

Q
b SI Q q b SI q q

Q

b SI Q q

Q
b SI Q q q

Q

Q
d II d I Qq q

Q

= − +
−

−
+ − +

−

 − − + 

 −
− − + − 

 
+ − + 

− 

 

0 1 | |

0 | 1 | |

[ ] !
2 [ ] 2 [ ]

( 2)!

( 1)!
2 [ ]( 1) 2 [ ]

( 3)!

I I S I

S S I S S S

d SS Q
d SI d I q q

dt Q

Q
b SI Q q b SI q q

Q

= −
−

−
− − −

−

 

0 |

2

1 | |

2

0 1 | |

[ ]
2 [ ] ( 1) 1

( 1)!
2 [ ] ( 1)

( 3)!

!
2 [ ] 2 [ ]

( 2)!

I S

I S I S

I I I I

d II
b SI Q q

dt

Q
b SI Q q q

Q

Q
d II d I Qq q

Q

 = − + 

 −
+ − + − 

 
− + + 

− 
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