
 

 

  

Abstract—Mathematical models in continuous or discrete time 

are widely used to simplify real-world systems in order to understand 

their mechanisms for a particular purpose. Consequently, a well-

defined model should be able to carry out some predictions and be 

fitted to observational data in a variety of time measurements 

(seconds, hours, days, weeks, months, or years). Therefore, the time 

scales approach also plays an important role in the model. In this 

paper, we construct a time scales version of a simple epidemic model 

(SIS) and explore the variety of its qualitative behavior. For each 

parameter value, the theory of time scales allows the discovery of 

similar and dissimilar behavior of SIS epidemic models on different 

time scales. Finally, the dynamic behavior shows a period doubling 

bifurcation path to chaos as the distance of equally spaced points in 

time increases. 

 

Keywords— Bifurcation,    Chaos, Limit cycles, Period doubling, 

SIS epidemic model, Time scales analysis.     

I. INTRODUCTION 

HE theory of time scales has recently received a lot of 

attention.  First, Stefan Hilger introduced this theory in 

order to unify continuous (R ) and discrete ( Z ) analysis [1]. 

Since then, the theory has been extended. Nowadays time 

scales theory can be used to explain not only continuous and 

discrete times but also other types of time. Time scales theory 

has been used in the study of first order dynamic equations [2], 

first order dynamical systems [3]-[5], numerical results [6], 

and a variety of mathematical models, including a plant 

population model [7], economic model [8], predator-prey 

model [9], and West Nile virus model [10]. In this paper, the 

time scales theory is used to analyze the qualitative behavior of 

an SIS epidemic model as the time scale is changed. 
An SIS epidemic model is such a very well known disease 

transmission model for diseases in which the disease does not 

produce immunity. The population in this model is divided 
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into a susceptible (S) group and an infectious (I) group, with 

the S group becoming infected by the I group and the I group 

recovering from the disease and returning to the S group.  

Some diseases which follow this pattern are: some STD’s (e.g., 

chancroid), the eye disease haemorrhagic conjunctivitis, the 

common cold.  These SIS epidemic models have been studied 

for continuous ( R ) time by using differential equation models 

[11]. For a continuous time model in which the total 

population size is assumed to be constant, the solution 

trajectory tends either to an endemic or a disease free 

equilibrium point depending on the basic reproduction 

number. In addition, an SIS model with constant population 

size can be reduced to a one-variable model in which the 

behavior of a solution is always non-oscillatory and therefore 

oscillation cannot persist for the endemic disease region. 

For discrete ( Z ) time, the SIS model is constructed by 

using difference equation models, as in [12]-[17]. In this case, 

the behavior of the endemic solution can be very complicated 

as it can tend to an equilibrium point, to limit cycles or show 

chaos. 

An outline of this paper is as follows. In section II, we 

review the theory of time scales. In section III, we develop an 

SIS epidemic model using the theory of time scales. In section 

IV, we give a qualitative analysis of the SIS time-scale model. 

In section V, we show numerical results for the SIS model. In 

section VI, we discuss the results and draw conclusions. 

II. BASIC DEFINITIONS ON TIME SCALES 

A time scale is an arbitrary nonempty closed subset of the 

real numbers [7]. A time scale is usually denoted by the 

symbol T . Forward and backward jump operators are defined 

by  

( ) inf{ : }t s s tσ = ∈ >T  and  ( ) sup{ : }t s s tρ = ∈ <T , 

where inf sup∅ = T , sup inf∅ = T  and ∅  denotes the empty 

set. A point t∈T is called left-dense if inft > T  and ( )t tρ = , 

right-dense if supt < T and ( )t tσ = , left-scattered if ( )t tρ <  

and right-scattered if ( )t tσ >  as summarized in Table I.  

The set κ
T  is defined to be T  if T  does not have a left-

scattered maximum m ; otherwise it is T  without this left-

scattered maximum. The graininess function : [0, )µ → ∞T is 

defined by ( ) ( )t t tµ σ= − . Moreover, a function :f →T R  is 

said to be rd-continuous provided f  is continuous at right-

dense points and left-hand limits exist and it is finite at left-

dense points in T . 

Qualitative behavior of SIS epidemic model  

on time scales 

Wichuta Sae-jie, Kornkanok Bunwong, and Elvin J. Moore 

T

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING

ISSN: 1792-4332 159 ISBN: 978-960-474-210-3



 

 

 
 

The (delta) derivative of :f →T R  at point t κ∈T  is 

defined as follows. Assume :f →T R  is a function and let 

t κ∈T . Then ( )f t∆  is defined to be the number (provided it 

exists) with the property that for all 0ε > , there is a 

neighborhood U of t  (i.e., ( , )U t tδ δ= − + T∩  for some 

0δ > ) such that 

( ( )) ( ) ( )( ( ) ) ( )f t f s f t t s t sσ σ ε σ∆− − − ≤ − , 

for all s U∈ . 

 Another useful formula for the relationship concerning the 

(delta) derivative is given by 

( ) ( )
lim ( ) 0

( )
( ( )) ( )

( ) 0.
( )

s t

f t f s
if t

t s
f t

f t f t
if t

t t

µ

σ
µ

σ

→
∆

−
= −

=  − >
 −

              (1) 

 To avoid separate discussion of the two cases ( ) 0tµ =  and 

( ) 0tµ > , there is another useful formula, which holds when f  

is delta differentiable at t κ∈T : 

( ( )) ( ) ( ) ( )f t f t t f tσ µ ∆= + .                                (2) 

 In this paper we mainly focus on three different time scales 

as visualized in Fig. 1. 
 

 
Fig.1 An example of time scales. 

 

In the case =T R , we have 

( ) ( )t t tσ ρ= =  , ( ) 0tµ = , ( ) ( )f t f t∆ ′= , ( ) ( )
n n

m m
f t t f t dt∆ =∫ ∫ ,   

where '( ) ( ) /f t df t dt=  is the right-derivative of ( )f t . Thus, the 

time scales operators reduce to the corresponding continuous 

operators.  

 

In the case { : , 0}h hk k h= = ∈ >T Z� Z , i.e., where the points 

are  equally spaced points in time, we have  

         ( )t t hσ = + , ( )t t hρ = −  , ( )t hµ = ,  

( ) ( )
( )

f t h f t
f t

h

∆ + −
= , 

1

( ) ( )
nn

m
t m

f t t hf t
−

=

∆ = ∑∫ . 

Obviously, =T Z� is a particular case when 1h = . 

Therefore, every point is isolated. This time scales is 

considered as discrete and the delta derivative operator 

corresponds to the forward finite difference operator ( ∆ ) and 

the delta integration corresponds to summation.  

Assume 0t ∈T  and it is convenient to let 0 0t > . The time 

scale interval 0[0, )t
T
 is defined by 0 0[0, ) [0, )t t=

T T
T∩ . The 

nontrivial function, ( )z t , is called the solution of the dynamic 

system 

 ( ) ( , ( )),z t f t z t∆ =   nz∈R ,  t∈T                  (3) 

when 1

0( ) ([ , ) , )
n

rdz t C t∈ ∞
T
R  and satisfies (3). If ( )z t  also 

satisfies the initial condition  

0 0( )z t z= ,                                     (4) 

then ( )z t  is called the solution of initial value problem (3) and 

(4).     

III. SIS EPIDEMIC MODELS ON TIME SCALES 

For the SIS epidemic model on time scales T , ( )S t  

represents the number of susceptible individuals at time t  and 

( )I t  is the number of infectious individuals at time t . We 

assume that the total population size is a constant N . Let γ  be 

the recovery rate of an infectious individual who then returns 

to the susceptible population.  Then ( )I tγ  represents the total 

number of infectious individuals who recover per unit time at 

the time t . Let α  be the disease virulence per unit time, i.e., 

the rate of infection of a susceptible person due to contact with 

an infectious person. Then ( / ) ( ) ( )N S t I tα  represents the 

infection rate at which the susceptible population contracts the 

disease at time t . Thus the SIS epidemic system for time 

scales can be written in the following form: 

( ) ( ) ( )S t I t S t
N

α
γ∆  

= − + 
 

, ( ) 0S t ≥                (5) 

( ) ( ) ( )I t I t S t
N

α
γ∆  

= − 
 

, ( ) 0I t ≥                   (6) 

with positive initial conditions )(0S  and )(0I  satisfying 

N0I0S =+ )()( . The total population size remains constant and 

thus 

( ) ( ) ( ( )) ( ( ))S t I t S t I t Nσ σ+ = + =  for 0t ≥ .  

Another assumption is that the population is homogeneously 

mixed at all times. The parameters , , Nα γ  are all positive 

constants. 

For the continuous time scale, the system becomes  

( ) ( )
dS

I t S t
dt N

α
γ 

= − + 
 

, ( ) 0S t ≥                    (7) 

( ) ( )
dI

I t S t
dt N

α
γ 

= − 
 

, ( ) 0I t ≥                      (8) 

The system can be changed to be a single equation by 

substituting ( ) ( )I t N S t= −  into (7). Therefore, 

2 ( ) ( ) ( )
dS

S t S t N
dt N

α
α γ γ= − + +                    (9) 

An exact solution of (9) can be obtained by integrating 

/ds dt using the method of partial fractions.  The result is: 

( ) ( )0
0( ) 1 1t tC

S t e N C e Nα γ α γγ
α

− −   = − −    
, 

where  )/()(
α
γN

SNSC 000 −−=  and 
0 (0)S S= . 

TABLE I 

CLASSIFICATION OF POINTS 

t right-scattered ( )t tσ<  

t right-dense ( )t tσ=  

t left-scattered ( )t tρ <  

t left-dense ( )t tρ =  

t isolated ( ) ( )t t tρ σ< <  

t dense ( ) ( )t t tρ σ= =  

 

, 0h h >

R

Z

Z
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Obviously, the asymptotic behavior of ( )S t for large t  is 

( )

N
for

S t

N for

γ
α γ

α
α γ


>

= 
 <

 

Therefore, the solution of (9) is non-oscillatory and reaches an 

equilibrium point.  

In the case { : , 0}h hk k h= = ∈ >T Z� Z , the graininess function 

is defined by ( ) ( )t t h t hµ = + − = . Therefore, the SIS epidemic 

model is 

           
( ( )) ( ) ( ) ( )

( )
( )

S t S t S t h S t
S t

t h

σ
µ

∆ − + −
= =  

                  ( ) ( )I t S t
N

α
γ

 
= − + 

 
, ( ) 0S t ≥ .   (10) 

            
( ( )) ( ) ( ) ( )

( )
( )

I t I t I t h I t
I t

t h

σ
µ

∆ − + −
= =  

                     ( ) ( )I t S t
N

α
γ

 
= − 

 
, ( ) 0I t ≥ .      (11) 

The system can be changed to a single equation as before 

                 2( ) ( ) ( ) ( )S t S t S t N
N

α
α γ γ∆ = − + +                         (12) 

For the discrete time scale, the equation can be written as a 

difference equation:  

     2( ( )) ( ) (1 ) ( ) : ( ( ))S t S t S t N f S t
N

αµ
σ αµ γµ γ µ= + − − + = .   (13) 

The analytical solution of (13) for all values of parameters is 

still unknown, although numerical solutions can be obtained 

for any given parameter values. Therefore, qualitative analysis 

is a useful tool.  

IV. QUALITATIVE ANALYSIS OF SIS EPIDEMIC MODELS 

A. Equilibrium Points 

For a natural disease process, each parameter is assumed to 

be positive and each variable is non-negative. Therefore, the 

region of interest is 
2{( , ) | 0, 0, }S I S I S I NΓ = ∈ ≥ ≥ + =R  

The equilibrium point or the steady state (time-independent) 

solution is obtained by setting *( ( )) ( ) ( ( ))S t S t f S t Sσ = = =  in 

(13).  

        2 ( ) 0S S N
N

α
α γ γ− + + = .                       (14) 

Therefore, 
( )

*

1,2

( )

2

N
S

α γ α γ

α

+ ± −
= . 

There are two equilibrium points for both α γ<  and α γ> , 

namely, the disease-free equilibrium point * *

1 1( , ) ( ,0)S I N=  and 

the endemic equilibrium point * *

2 2( , ) ( / , / )S I N N Nγ α γ α= − . 

However, this second equilibrium point only satisfies the 

conditions 0 ( )S t N< < , 0 ( )I t N< <  when α γ> . Consequently, 

we first consider α γ> .  

B. Stability  

We consider a first-order dynamic equation in the following 

form: 

( ) ( , ( ))x t F t x t∆ =  

where ( )x t is the value of x  at time t . 

The conditions for asymptotic stability of equilibrium 

points, *x , are obtained by linearization of the equations [18]. 

For the discrete time scale, the condition is that / 1dF dx < , 

where *x x= , and for the continuous time scale, the condition 

is that the real part of 0
dF

dx
< , where *x x= . 

To determine the asymptotic stability of the discrete case 

(13) we look at ( )S t  close to *S  where *
S  is the equilibrium 

point and define 
*

( ) ( )S t S S t= + ɶ                                (15) 

where ( )S tɶ  is a small quantity termed a perturbation of the 

equilibrium point *
S . Then, 

* * * *( ( )) ( ( )) ( ( )) ( ( ))S t S t S f S t S f S S t Sσ σ= − = − = + −ɶ ɶ      (16) 

and a Taylor series expansion of ( ( ))f S t  about the point *
S  

gives: 

* * 2

*

( ( )) ( ) ( ) ( ( ))
S

df
f S S t f S S t O S t

dS

 
+ = + +  

 

ɶ ɶ ɶ . 

2( ( ))O S tɶ  is very small and can be neglected. The linear 

approximation for (16) is: 

*

( ( )) ( ) ( )
S

df
S t S t aS t

dS
σ

 
= =  

 

ɶ ɶ ɶ . 

Thus, if 1a < , then the equilibrium point is asymptotically 

stable. 

 

Theorem 1. If the inequalities 2 ( ) 0α γ µ− < − <  hold, then a 

disease-free equilibrium point *

1S N=  is locally asymptotically 

stable. Otherwise, *

1S N= is unstable. 

Proof. For (13), the asymptotic stability is given by   

       *
1

*
1

2
(1 )

S N
S N

S
a

N

αµ
αµ γµ

=
=

= + − − 1 ( ) 1µ α γ= + − < . 

 

Theorem 2. If the inequality 0 ( ) 2α γ µ< − <  holds, then an 

endemic equilibrium point *

2 /S Nγ α=  is locally asymptotically 

stable. Otherwise, *

2 /S Nγ α=  is unstable. 

Proof. For (13), the stability is determined by 

*
2

2
(1 ) 1 ( ) 1

S

N
a

N

µα γ
αµ γµ µ γ α

α
= + − − = + − < . 

 

C. Initial Conditions 

Lemma 1. For ( ) 1 0α γ µ+ − < , 1γµ <  and α γ> , the 

solutions to the single-population SIS model are positive for 

all initial conditions [0, ]N . 

 

Lemma 2. The solutions to SIS epidemic model are positive 

for all initial conditions if and only if 20 1 (1 )γµ αµ γµ≤ − < < +  

and α γ> . 

Proof. It is similar to the proof in [12].  
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Lemma 3.  For ( ) 1 0α γ µ+ − > , α γ> , and 1γµ > , the 

solutions to the single population SIS model are positive for 

initial conditions 
( 1)

,
N

N
γµ
αµ

 −
 
 

. 

 

Proposition 1. The solutions of the SIS epidemic model of 

(5) and (6) remain nonnegative and are bounded under 

conditions stated in Theorems 1, 2 and Lemmas 1-3. 

 

D. The Period-Doubling Route to Chaos  

To find the period two cycle, we need to find the solutions 

of ( ( ( )) ( )f f S t S t= . In addition to the equilibrium point of (13) 

given by ))(())(()( tSftStS == σ , there are two more 

equilibrium points of (13) given by  

         )),(()))((()))((()( tSftSfftSftS 2=== σ  

which form a period 2 cycle. Therefore, the two points on the 

period 2 cycle are 

( ) ( )2 2

1,2 2 ( ) 4 2S Nαµ γµ α γ µ αµ= + − ± − − . 

The period two cycle exists when the square root is real, i.e., 

when 2>− µγα )( . 

The stability is determined by  
1 2

1
S S S S

a a
= =

< . 

From this condition it can be shown that the period 2 cycle 1,2S  

is locally asymptotically stable if 2 ( ) 6α γ µ< − < , Otherwise 

the cycle 1,2S  is unstable. 

To find the period 2n  cycle, let 2 ( ( )) ( )
n

f S t S t=  and solve 

for equilibrium points ( Ŝ ). The stability is considered by 

1 2
ˆ ˆ ˆ... 1

nS S S S S S
a a a

= = =
< . It is extremely complicated, if not 

impossible, to find these higher-order limit cycles by analytical 

methods, and therefore numerical methods are useful. 

V. NUMERICAL RESULTS 

The SIS epidemic model exhibits various dynamical 

behaviors in respect of the number of susceptible individuals, 

if the bifurcation parameter µ  exceed certain values as shown 

in Fig. 2. The number of susceptible individuals shows many 

different equilibrium states (infinite number of possibilities), 

for certain high values of the parameter as shown in a 

hierarchy of bifurcations.  

 

 
Fig. 2 The time series solution of (13) with 3.4α = , 0.9γ = . The 

solutions appear as asymptotically stable, a period two cycle, a period 

four cycle when 0.1,0.9,1.0µ = respectively. 

Fig. 3 shows that the equilibrium is a stable point for all 

[0,1.13]µ ∈ , 2α = , 0.9γ = , and 100N = . For these parameter 

values, the continuous SIS model and the discrete SIS model 

give the same behavior for the solution, namely one 

asymptotically stable equilibrium point. The solution tends to 

the equilibrium point *

2 45S = . 

 

 
Fig. 3 The bifurcation diagram of µ . The parameter values in (13) 

are: 2α = , 0.9γ = .  There is one asymptotically stable equilibrium 

point. 

 

Fig. 4 shows the solution behavior of (13) for 3.2α = , 

0.9γ = . For (0,0.869565)µ ∈ , the solution is non-oscillatory 

and the behavior is the same as the continuous SIS model. At 

1µ = , the SIS model exhibits periodic behavior with a period 

two cycle. At higher values of µ  the solutions show a 

bifurcation path to chaos. 

 

 
Fig. 4 The bifurcation diagram of µ . The parameter values in (13) 

are : 3.2α = , 0.9γ = , and 100N = . 

 

Fig. 5 shows the solution behavior of (13) when 3.4α = , 

0.9γ = . For (0,0.8)µ ∈  the solution is non-oscillatory. For 

these parameter values, the SIS model exhibits periodic 

behavior with a period four cycle at 1µ = .  
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Fig. 5 The bifurcation diagram of µ . The parameter values in (13) 

are: 3.4α = , 0.9γ = , and 100N = . 

 

The period four cycle can be obtained by numerical 

computation of the equilibrium points of 4 ( ( )) ( )f S t S t= . For 

parameter values 3.6α = , 0.9γ = , and 100N = , The system 

has a stable period two cycle when (0.740741,0.907218)µ ∈ , 

and a stable period four cycle when (0.907218,0.942256)µ ∈ . 

From [14], [19], the SIS epidemic model can be transformed 

to the discrete logistic model  

( )( ( )) ( ( )) ( ) 1 ( )x t f x t rx t x tσ = = − , 

by the substitutions 
( )

( )
(1 )

I t
x t

N

αµ
γµ αµ

=
− +

 and 1r γµ αµ= − + . 

r  is a bifurcation parameter in the logistic model while µ  

is a bifurcation parameter in the SIS epidemic model. 

However, as stated above r and µ are related by 1r γµ αµ= − + .  

0 ( ) 2α γ µ< − <  provides the inequality 1 1 ( ) 3α γ µ< + − < , 

which corresponds to the condition 1 3r< < , which is the 

condition for asymptotic stability of a non-zero equilibrium 

point for the logistic model. 

From [20], the ratio ( ) ( )1 1n n n nµ µ µ µ− +− −  is equivalent to 

( ) ( )1 1n n n nr r r r− +− − , called the Myrberg or Feigenbaum number 

δ . From analysis [17] this ratio approaches a constant, 

( ) ( )1 1
0

lim 4.669202n n n n
n

δ µ µ µ µ− +→
= − − ≈  

since 

( )
( )

( ) ( )( )
( ) ( )( )

( )
( )

11 1

1 11

1 ( ) 1 ( )

1 ( ) 1 ( )

n nn n n n

n n n nn n

r r

r r

α γ µ α γ µ µ µ

µ µα γ µ α γ µ
−− −

+ ++

+ − − + −− −
= =

− −+ − − + −
. 

 

 

Some numerical estimates of the Feigenbaum number are 

given in Table II. These estimates are, however, subject to 

appreciable numerical errors as the limit for δ  approaches 0/0. 

Fig. 6 shows how the solution behavior of (13) changes for 

3.6α = , 0.9γ = . For (0,0.740741)µ ∈  the discrete equation 

has a stable equilibrium point, which corresponds with the 

stable equilibrium point of the continuous SIS model. 

For 1µ = , the solution is chaotic. 

 

 
Fig. 6 The bifurcation diagram of µ . The parameter values in (13) 

are: 3.6α = , 0.9γ = . 

 

As shown in [17] (see also [21]), if there exists a period 3 

cycle, then there exists chaotic behavior. For 3.6α = , 0.9γ = , 

the bifurcation diagrams show a period three cycle for 

(1.0476,1.0524)µ ∈  and also show chaos. More interesting 

behaviors are shown in Fig. 7 and Fig. 8. 

 

 
Fig. 7 The time series solution of (13) with 3.6α = , 0.9γ = and 

100N = . The non-oscillatory solution occurs when 0.1µ =  while 

oscillating period-2 solution occurs when 0.8µ = . 

 

 
Fig. 8 The time series solution of (13) with 3.6α = , 0.9γ = , and 

100N = . The chaos occurs when 1µ = .   

TABLE II 

THE FEIGENBAUM CONSTANT 

n n
µ  

1n n
µ µ −−  ( ) ( )1 1n n n n

µ µ µ µ− +− −  

1 0.740741   

2 0.907218 0.166477 4.751327 

3 0.942256 0.035038 4.656831 

4   0.94978 0.007524               4.66685 

5 0.951392 0.001612 4.665595 

6 0.951738 0.000346 4.688442 

7 0.951811 7.37E-05  
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To summarize, the ( , )µ α  parameter space is given in Fig. 9. 

It is delineated into three areas by the curves of 

( ) 2α γ µ− = and ( ) 6α γ µ− = . The plots in Fig.9 are for 

parameter value 0.9γ = . In area I, the solution of (13) is a 

single stable equilibrium state *

2S . In area II, the solution of 

(13) is a stable period two cycle. In area III, the solutions of 

(13) are stable cycles of period 3 or more or correspond to 

chaos. 

 

 
  Fig. 9 The x-axis is µ  and the y-axis is α . Area I is the region 

of stable equilibrium point, area II is the region of stable period two 

cycle, and area III is the region of stable higher period cycles and 

chaos. Parameter value 0.9γ = . 

VI. CONCLUSION AND DISCUSSION 

The SIS epidemic model is well known in both continuous 

and discrete cases. Both of them give two distinct types of 

solution. The continuous case gives two equilibrium points 

which are asymptotically stable or unstable depending on 

parameter values. For the continuous case, stable oscillating 

solutions do not exist. On the other hand, the discrete case 

gives various types of oscillatory solutions such as period two 

cycle, period four cycle, period three cycle and also gives 

chaotic solutions in addition to the equilibrium point solutions 

of the continuous model. The time scales can produce large 

changes in the qualitative behavior of solutions. 

Obviously, the continuous and discrete time SIS models 

behave sometimes differently, sometimes similarly depending 

on values of other parameters. It is clear that the choice of a 

time scales is important when building mathematical models 

and that predicted behaviors from a model can be qualitatively 

very different for different time scales. Therefore, in order to 

understand observed data in a variety of time measurements 

and predict its behavior precisely, choosing a suitable time 

scale is important for model formulation. Therefore, the theory 

of time scales can be a powerful tool for mathematical models. 
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