
GPGPU for Cheaper 3D MMO Servers

ASAVEI VICTOR, MOLDOVEANU ALIN DRAGOS BOGDAN, MOLDOVEANU FLORICA, MORAR

ANCA, EGNER ALEXANDRU

Faculty of Automatic Control and Computers

University “POLITEHNICA” of Bucharest

Splaiul Independentei 313, Bucuresti

ROMANIA

victor.asavei@cs.pub.ro, alin.moldoveanu@cs.pub.ro, florica.moldoveanu@cs.pub.ro,

anca.morar@cs.pub.ro, alexandru.egner@cs.pub.ro http://csite.cs.pub.ro

Abstract: Massive Multiplayer Online (MMO) applications have become extremely popular in the last years and this

has led to an increase in the numbers of users that 3D MMO servers need to cope with. The current Client-Server

architecture that is used by the majority of MMOs introduces a severe bottleneck regarding the performance and

scalability of the virtual spaces. In order to achieve the necessary level of performance for the 3D MMO servers the

operators of such virtual worlds are faced with a high financial cost to maintain the system infrastructure. In this paper

we describe the challenges that 3D MMO servers face, analyze the general architecture of 3D MMO servers, identify

key operation that can be optimized as GPGPU (General Purpose computation on Graphical Processing Units)

programs and propose adaptations for the server architecture to run GPGPU tasks. The tests that we have conducted

using a prototype implementation have shown encouraging results proving that it is feasible for a 3D MMO server to

offload tasks as GPGPU programs and thus reducing the overall costs.

Key-Words: GPGPU, Massive Multiplayer Online, CUDA, Virtual Worlds, Parallel processing

1 Introduction
Massive Multiplayer Online (MMO) games and also

other types of virtual spaces such as virtual museums,

virtual expositions, etc, are already attracting a great

number of users. The technology and the number of

these applications are in a continuous evolution and it is

likely that in the near future, 3D virtual spaces will

become the standard for communication over the

Internet, replacing or integrating current technologies

(web browsers, instant messengers, etc).

MMO applications are deployed online over the Internet

and have as support a persistent virtual world which is

accessed at the same time by hundreds or even

thousands of users.

A persistent world is an online virtual world that

continues to “function” even when the user is

disconnected and it is not involved anymore in the

events of the world. The user can reconnect back at any

moment of time and resume his interaction from the

point where he left the world.

One of the main goals of a 3D MMO application is to

create a high degree of immersion for the users of the

virtual space. Many MMOs implement modern 3D real-

time graphics engines, stereo and spatial audio creating a

very interactive and immersive virtual space. The main

advantage and feature that a MMO provides is that it

accommodates and allows the interaction of a great

number of users at the same time and this makes MMOs

different from other single-user / multiplayer

applications that simulate a virtual world.

However, providing this feature also rises the main

problem that all 3D MMO virtual spaces must confront

and that is the huge load that the virtual world must be

able to cope with.

This load is given not only by the sheer number of tasks

that is directly proportional with the number of online

users but also by the complexity of the tasks that is

affected very much by the particularities of the virtual

world.

In this paper we first describe the challenges that 3D

MMO Servers must overcome, give an overview of a

general 3D MMO Server Architecture, identify the

operations that can benefit from a GPGPU

implementation and propose adaptations for the server

architecture in order to support GPGPU.

2 Challenges for 3D MMO Servers
Although some necessary requirements in order to use a

MMO application in optimal circumstances such as high

bandwidth, low latency, are becoming more and more

accessible for the regular user, this is not sufficient to

solve the scalability problems that MMOs face in their

attempt to accommodate as many users as possible.

The scalability problems are mainly due to the necessity

to maintain the consistency of the virtual world.

Breaking the consistency requirements can lead for

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 238 ISBN: 978-954-92600-2-1

example to visual artifacts (e.g. : the avatar of an user

entering a building wall) that don’t have long term

consequences but also can cause more serious problems

such as the loss or duplication of object during financial

transactions.

Traditionally, the majority of MMO applications are

implemented using a client-server architecture that has

the following main advantages :

• Centralized control

• Increased security

• Relatively simple implementation

Although this architecture, that is widely spread, is

appropriate for many distributed applications when

talking about MMOs it also introduces the following

disadvantages / challenges :

1. Scalability : The performance of the central

system of servers that simulates the virtual

world may represent a bottleneck and thus

imposing a superior limit for the total

number of users that can access a virtual

world

2. Redundancy : To make sure that a certain

server can handle periods of peak usage, it

is necessary to provide a high degree of

hardware redundancy for the equipment

3. Reliability : This architecture does not have

a high degree of reliability because the

servers represent possible failure / break-

down nodes of the system

4. Cost : Usually, the development of a regular

MMO application takes 2-3 years and the

initial cost for the launch is a high one.

Another aspect to consider is that MMO

applications need to simulate virtual worlds

that have a large geographical area and this

leads to the employment of a large number

of servers (sometimes even hundreds) to

fully host the virtual medium and the

facilities that it must provide. This means,

that after the launch of a MMO, the

maintenance costs get as high as 80% of the

total income [4].

Taking into account all the challenges mentioned, it is

obvious why there is a necessity to explore new ideas

and solutions for the architectures used by 3D MMOs

and also to find new methods to optimize the operations

used inside the simulations of the virtual world in order

to eliminate or at least to reduce to a certain degree the

problems that current MMOs face.

3 General 3D MMO Server Architecture
As mentioned previously, an important aspect when

designing the architecture is that MMOs must simulate

virtual worlds that have large physical span. This has

lead to the development of methods to split the virtual

space into several distinct sub-spaces.

3.1 Zoning
Currently there are two different approaches to split the

virtual world into sub-spaces. The simplest, from the

implementation viewpoint, is to strictly partition the

entire world into static zones that are small enough to be

managed by a single server.

The borders for these zones are very well determined,

logically connected and an user that crosses into another

zone will also connect to the server that manages the

destination zone.

There are obvious disadvantages for this approach, all of

them leading to the decrease of realism:

• there is a loading time when an user switches zones

• lack of possibility to see inter-zone objects

The second approach has from the start the goal to

provide a “seamless” simulation where the existence of

borders and server zones are transparent to the user. This

will create for the user the sensation that he is in a

“continuous” world that functions without

“interruptions”.

Although it is not explicitly visible to the user, the

logical separation in zones for the virtual world still

exists. Like the previous approach, important

neighboring zones are managed by different servers.

When a user exits from the zone that is managed by

zone 1 server, there will be a transition zone that is

synchronized with the adjacent zones. The user

management take over by the zone 2 server will not

happen immediately but only when the user will cross

the transition zone.

Fig.1 : “Seamless” zoning for a virtual world

The disadvantages for this approach are the complexity ,

from the implementation viewpoint, and also the

possibility of an increased data traffic when there is a

high number of events in the transition areas, both

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 239 ISBN: 978-954-92600-2-1

leading to a high number of operations that need to be

done by the zone servers.

3.2 Basic functionalities
The architecture for a MMO application needs to

provide the following basic functionalities/features:

• User authentication/accounting

• Manage access rights for the users inside the virtual

world

• Virtual world consistency

• Event order management

• Dispatch events to the entities of the virtual world

• Secure storage of the characters of the users and

their possessions

• Schedule the computational operations

• Low latency

• Security for the virtual world preventing eventual

fraud attempts

We can identify the following main components for a

general 3D MMO server architecture :

1) Authentication component : it is responsible

with access control for the virtual space

2) Communication component : it is responsible

with the message exchange and events

management. The main tasks for this component

are to maintain the correct order of events at the

level of the entire virtual space, to achieve a

latency as low as possible and to provide

security mechanisms in order to prevent

cheating attempts

3) Storage component : provides the long-term

persistent storage of the virtual world data

4) Computational component : schedules and

execution of the computational operations that

are linked to the virtual space logic.

5) Control component : this component provides

the high level decision mechanism and has the

role of managing, supervising and that of arbiter

for all the operations executed by the other

components of the system

3.3 Client-Server Model
Most of the MMO applications use a Client-Server

architecture. The clients first access the virtual space

through a Connection Server that redirects them to a

Shard Server.

Fig.2 : Client-Server Shard Architecture for MMO

Servers

The shards represent independent versions of the same

virtual world and they are used to improve the

scalability of the application. Usually, independent

shards are not synchronized between them and the users

of a shard cannot interact with the users of another

shard.

Although this solution provides a certain degree of

scalability for MMOs, it also limits the degree of realism

preventing the interaction of a high number of users.

There are some MMO applications that try to find new

solutions that don’t use shards, who split the virtual

space into many independent worlds, and to allow the

interaction of all the users inside of a single huge virtual

simulation [6]. However this attempts are for the

moment very strongly dependent of the particularities of

the virtual world.

4 Computations that can be moved as

GPGPU
The quantity of information and data that a MMO

application needs to process is growing constantly.

Usually, a high profile MMO monitors and executes a

number of tasks that account for more than 1 million

operations per second in periods of peak usage [3].

It is clear that scalability for the number of events

processed is a necessity for MMO applications.

First generations of MMO event processing systems

were centralized ones, but lately there have been

solutions that try to achieve this scalability by using a

distributed approach.

However, the partitioning of the processes proves to be

very difficult due to the many dependencies that occur

between the processes and also the agents that manage

them.

Usually, the partitioning is done vertically, having a

single set of local partition data that then uses a

distribution mechanism that is centralized.

4.1 Low-level virtual space logic

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 240 ISBN: 978-954-92600-2-1

The core of a MMO application is represented by a

simulation loop that executes synchronized with a fixed

frame rate.

From a conceptual viewpoint, the state of a virtual world

inside a MMO can be seen as a data table that contains

the “objects” of the virtual space including the users and

the entities with which they interact.

To accommodate the strict demands for real time

simulation, the active state of the virtual space is kept

directly in the memory of the core servers of the virtual

world. Physical disks are used usually for persistency

and to store auxiliary data.

On each iteration of the simulation loop (usually called a

tick), portions of this state are updated by the virtual

world simulation logic. These updates can be triggered

by user actions, timers or other virtual world events.

Following, we present some key operations that are done

at the level of the simulation logic and are usually

executed using a distributed mechanism and thus

susceptible to optimizations using GPGPU.

4.1.1 Collision detection
Collision detections are one of the more frequent

operations that are executed by the MMO virtual space

servers and they require a high computational time.

The virtual space needs to assure the correctness of the

physical interactions between the entities that populate

the world and so it needs to execute a large number of

collision detection computations.

Usually, at every movement / update of the position of a

character inside the virtual space there are computation

executed to assure that the movement / update is valid.

Because collision detection computations are very

costly, in practice there is a limitation regarding the

number and the entities that support collision detection

(characters with the terrain, characters with certain

buildings, etc).

4.1.2 Zoning operations
As explained previously, zoning is one of the most

important mechanisms of a 3D MMO server

architecture. The zoning system executes a large number

of operations for the management of the users that are

inside in a geographical area of the virtual world.

Also, another category of operations are executed to

secure the persistency of the virtual space because a

perfect synchronization is necessary between adjacent

zones / transition zones and this has as effect an

increased information and data flow.

4.1.3 Instancing
In a MMO application, an instance represents a special

zone that creates a replica of itself, hence the name, for a

certain group of users that want to access it. The group

of users accesses the replica and thus is isolated from the

rest of the users from the virtual space because the

content of the instance they are in, is visible only in the

context of those users.

Usually, there are dedicated servers for instances

because they represent special areas that are not fit for a

large number of users.

Some of the advantages of using instances are :

• Some of the operations that need to be

processed by the virtual world servers are

transferred to the instance servers

• Network traffic for the users is reduced,

being practically isolated to events inside

the instance and this leads to a decrease in

latency

• Designing a user experience targeted

specifically to fixed number of users

• Competition elimination , that can

sometimes cause problems , on

objects/resources of the virtual space

5 Adaptation to architecture to support

GPGPU
GPGPU (General Purpose computation on Graphical

Processing Units) is the method of using the graphical

processing unit to process computations/programs that

are normally executed by CPUs. This has been possible

with the addition of programmable stages to the GPUs

and with libraries and development toolkits from the

vendors.

5.1 GPUs vs. CPUs
In the last years, the computing hardware , CPU and

GPU, have evolved dramatically in terms of computing

power and architecture. [5]

The modern GPU has transformed into a very versatile

hardware using parallel multi-core architectures. These

architectures that include GPUs, multi-core CPUs from

Intel and AMD, CELL processors, SUN UltraSparc

processors differentiate from the classical CPU

architecture in the following way: they are designed to

prioritize operations that can be executed in parallel over

a large quantity of data compared to single task

operations that have low latency.

Fig. 3 : Modern CPU and GPU architectures

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 241 ISBN: 978-954-92600-2-1

Although there are differences of implementations

between vendors, all the modern GPUs try to remain as

efficient as possible by using multi-core designs that use

hardware multithreading and SIMD processing.

These techniques are not unique for the graphical

processing units, but when compared with CPUs , the

GPUs design take these architectures to the extreme.

As an example, the NVIDIA GeForce 280GTX has a

total of 240 Streaming Processors that operate at a

frequency of 1.3 GHz, and has a peak rate of 933

GFLOPS. In comparison, a high-end processor from

Intel, a Core2Quad that operates at 3.0 GHz and has 4

cores has a peak rate of 96 GFLOPS [1].

Fig.4: Comparison between NVidia GPUs and Intel

CPUs. Source: NVidia CUDA SDK 2.0

5.2 CUDA
For our implementation we have used NVidia GPU

hardware with CUDA development.

CUDA (Compute Unified Device Architecture) is a

hardware and software platform for GPGPU programs

that makes the graphical unit available as a parallel

computation device for the developer without the need

to use a graphics API.

CUDA uses three important abstractions:

• Hierarchy of thread groups

• Shared memory

• Barrier Synchronization

Using CUDA, it is possible to partition a computing

problem into different sub-problems that can be

processed independently in parallel.

Using this partitioning the group of threads can

cooperate in solving each sub-problem achieving a

natural scalability because computations for each sub-

problem can be scheduled to run on any of the available

streaming multiprocessors.

5.3 Implementation and results
For our solution we have decided to implement the

following operations as GPGPU programs :

- Zone client computations using a spatial heuristic

allocation on GPU for the users (number of users in

a certain zone, workload balancing between zones)

- World Physics

o Collision detection between entities

o Computations regarding forces involved in

the virtual world (friction, gravity, ground

collision)

In order to accommodate the GPGPU computations in

the MMO server architecture the following modules

have been implemented and are used by the virtual

world server :

- Client Allocation Module : this module is

responsible with the heuristic allocation of the client

on the GPU streaming multiprocessors

- Task Scheduler Module : this module is responsible

with the creation of the CUDA tasks, scheduling the

tasks and with the propagation of the results

- CUDA Processing Module : this module executes

the tasks as GPGPU programs on the graphics

hardware

Fig. 5: Adaptation to the server architecture to run

GPGPU tasks

Using the above prototype architecture and modules we

have achieved encouraging results, running simulations

that behaved with real-time response for a number of

4096 users on a single GPU NVidia card (9600M GT).

Fig. 6 : Server running GPGPU physics tasks for 4096

users simulated as spheres

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 242 ISBN: 978-954-92600-2-1

6 Conclusion
The growing popularity of 3D MMO virtual spaces has

lead also to an increase in the numbers of users that

access such spaces. This has pushed to the extreme the

load that the architecture of these spaces must face.

Currently, Client-Server architectures provide the

necessary functionalities required by a MMO application

but with a high cost that limits practically the scalability

of the virtual space and thus being forced to split the

world into several instances / shards.

In order to achieve a performance level that will satisfy a

large number of users, the producer behind virtual

spaces are confronted with a significant financial cost to

maintain the infrastructure of the system

Another aspect to take into account is the fact that

currently GPUs evolve at increased rate when compared

with CPUs and regarding future scalability we can

mention the following facts :

- Current workstations motherboards can

accommodate up to 4 GPUs and this number could

increase in the future

- Current NVidia GPUs have a maximum of 480

cores and this number will continue to grow in the

future

- As a conclusion we can have now in a workstation

up to 2000 programmable cores and the next

generations of GPUs might push this number up to

hundreds of thousands

Our approach has proved that it is feasible to offload

heavy computational operations from the virtual world

servers as GPGPU programs and so reducing the overall

effort that is necessary to run 3D MMO applications.

References:

 [1] Fathalian K., Houston M., A closer look at GPUs,

Communications of the ACM, ACM Press, 2008

[2] Chris Chambers, Wu-chang Feng, Wu-chi Feng,

Towards public server MMOs, Proceedings of 5th

ACM SIGCOMM workshop on Network and system

support for games, 2006

[3] Geetika T. Lakshmanan, Yuri G. Rabinovich, Opher

Etzion, A stratified approach for supporting high

throughput event processing applications,

Proceedings of the Third ACM International

Conference on Distributed Event-Based Systems,

2009

[4] J. Kesselman, Server Architectures for Massively

Multiplayer Online Games, In Session TS-1084,

Javaone conference, SUN, 2005

[5] Breitbart J., Case studies on GPU usage and data

structure design, Dept. of Computer Science and

Electrical Engineering, Universitat Kassel, 2008

[6] Eve Online

 Available at: http://www.eveonline.com

[7] Leigh Achterbosch,Robyn Pierce,Gregory Simmons,

Massively multiplayer online role-playing games: the

past,present, and future, Computers in Entertainment

(CIE),Volume 5 Issue 4, 2008

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 243 ISBN: 978-954-92600-2-1

