

Angur: A Visualization System for XML Documents

KHALIL SHIHAB, DOREEN SIM, & AMIR MOHAMMAD SHAHI
School of Engineering, Computing & Science

Swinburne University of Technology (Sarawak Campus)
Simpang Tiga Road, 93350 Kuching, Sarawak,

MALAYSIA
khalil.shihab@gmail.com; ysim@swinburne.edu.my; amir@amirms.com

Abstract: - Complex data structures have been used in many applications that can make them difficult to
understand and manage. Visualization of these structures allows a user to get better insight both in the data
structure and in the application itself. In this work, we present a visualization system, called Angur, for the
structured data-oriented XML formats. We used a graphical representation that is based on tree maps. This type
of visualization is usually referred to as tree rewriting. It allows efficient filtration and transformation of the
document tree to fit particular user needs. In particular, our system allows the transformation of XML
documents to a structure of a graphical network of objects. These visualization objects can be easily analysed,
interpreted and managed without the need of dealing with their deep representations.

Keywords: XML, XML documents, visualization

1 Introduction
The use of XML (eXtensible Markup Language)
documents is growing rapidly, and as an important
new medium for communication, it provides a
tremendous amount of information related to a wide
range of topics, hence continues to create new
challenges for information retrieval [1]. XML
documents provide users with a mean to store and
deal with valuable information on a wide range of
domains. This encourages researchers and companies
to develop many XML-based databases that allow
preserving physical document structure, support
document-level transactions, and execute queries in
an XML query language [2]. However, the
increasing use of a large number of XML documents
causes many problems to the users [3, 4]. In
particular, the structure of these XML documents
adds an additional problem in dealing with them.
One of the problems of XML documents is the
searching that can be too complex for most users.
XML documents are generally not interoperable in
the same search environment, because of all the
different, incompatible vocabularies. XML searching
requires people or software to know a lot about the
structure of the documents. Moreover XML does not
have any browser support and does not have
anything to support the end user applications.
Therefore, automatic graph drawing is a necessary
solution of these problems. It has many important
applications in software engineering, database and

web design, networking, and in visual interfaces for
many other domains.

Yet another problem for those developing XML
based database is that most users are not experts in
information retrieval. The users usually asking the
question may not have enough experience to format
their query correctly. It is not always intuitively easy
to formulate queries which can narrow the search to
the precise area. Furthermore, regular users generally
do not understand the search mechanisms. The
document indices constructed by the current XML
searching tools are designed to be general and
applicable to all [1].

Although XML is good for data exchange
between applications, it is often not chosen for
visualization of the data because it is not very human
readable. Therefore, we focused on the users and
developed more intuitive ways to visualize the XML
documents.

In order to visualize the informative content of an
XML document, the structure of data has to be
carefully preserved. Therefore, we used a tree-like
structure in which nodes are used to represent the
children (nodes) of the XML document and links
between these nodes are used to represent the
relations between these nodes [5, 6]. However, we
used other type of links to represent connections
between arbitrary nodes in a tree. For instance, if a
document has three nodes and one of the nodes has a
link to one of the other nodes, a different link

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 159 ISBN: 978-954-92600-2-1

coloring style is used to represent this relation.
Therefore, the main links is only used from the root
to the children. However, if the XML document has
a complex structure (nested nodes or levels); at each
level, we used different shapes for the nodes to
represent their number of children, see Fig. 5.

In this work, we developed a system called Angur
for visualization of structured data-oriented XML
documents and databases. It is proposed because in
many applications, complex structured data has been
used and researched upon. However, fewer
researches had been done on using XML
visualization of these data structures or databases to
allow users to get better insights both in the data
structure and also in the application itself.
Customizable visualization on XML databases will
be done by means of nodes in a network
representation. This project researches upon an
efficient filtration and transformation of XML
database and documents to fit particular user needs
as well as a transformation to a structure with a
predefined graphical nodes presentation and
interpretation. A graphical arrangement of the
network nodes representation rules for an interactive
manipulation is presented, so the system itself can be
considered a graphical language. The graphical
network representation is based on the node maps.

2 Review and Related Work
People are used to rely on visualizations to better
understand problems, to receive more information
and more quickly through the eyes, and to make
better decisions in less time. Visual interfaces have
an increasingly important role in almost all
computing application domains and devices. This is
a result of the consistent demand by the users to use
visual interfaces in allow experts and non-expert in
any domain managing complex and information-rich
tasks in particular. Therefore, using visualization
techniques and exploiting visual processing abilities
is one of the typical successful strategies that humans
use to decrease cognitive load and to simplify or ease
the tasks [7, 8, and 9].

In lieu of the literature review on Human-
Computer Interaction which will be elaborated later,
the term ‘human-computer interaction’ can be put
simply, the study of people, computer technology,
the ways these influence each other and how this
computer technology can be made more usable by
people [10]. In other words, study of HCI requires at
least the following : (1) computer technology, (2) the
people who interact with it, (3) understanding the

work that people are trying to perform by using the
technology, (4) how it can be made ‘more usable’.

How can visualizations relate well with Human-
Computer Interaction (HCI)? If they relate well, how
can visualization techniques or visual displays of
information work properly to incorporate human-
computer interaction (HCI) techniques and
methodologies? To achieve this, we need user visual
interfaces which are user-friendly, i.e. interfaces
which require very little or no training and can be
used by the general public almost immediately
without any prior knowledge. In addition, aesthetics
(i.e. visually pleasing interfaces) plays a significant
important role in consumers’ and users’ choices in
using the application devices.

For visualizations and HCI, in order to
incorporate them to ‘work together’ to achieve the
synergy affects, we consider the followings as the
main features:-
• Mapping – How should we visually encode

information through possible visual features such
as length, width, speed, icon, movement, color,
flicker, speed, animation and etc.?

• Selection – Among the data and information on
the visual interfaces, which is or are relevant to
ease the considered task?

• Presentation – How should we lay out the
visualization on the available display interface
space?

• Interactivity – What tools should we provide to
explore and optimize the visualization effects?

• Human Factors – Are we taking into account
human perception capabilities? Meanwhile, are
we taking into account what mental models our
users easily develop?

• Evaluation – How should we testify that the
visualization is really effective with users on the
considered task?

Dix et al. [11] considered that ‘human-computer

interaction is about devices that seem to exhibit a
kind of magic. These devices respond with complex
contingencies to actions visited upon them by
people. They are used to build ‘user illusions’ of
reactive paper or virtual worlds or artificial personae.
They are used as computational mediators and media
for individual and group work.

This research paper overall demonstrates how the
integration of large knowledge bases of semantic
information can be displayed through visualization
of XML documents and databases.

For the purposes of query refinement, it is useful
to deal with XML documents as a graph of elements.
Our system can retrieve an element’s children,

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 160 ISBN: 978-954-92600-2-1

parent, siblings, etc., and perform different kinds of
aggregation. XPath provides a simple way of
expressing a path through a document tree to select a
set of nodes. When a path expression is evaluated, a
set of nodes relative to a context node is selected.
The API for our integration framework consists of a
number of core classes that allow applications to
treat XML documents and databases as graphs and to
evaluate XPath expressions against a document, to
perform inter-document lookups and collect the
relevant nodes from the XML graphs. Classes are
also provided to treat the nodes as data of the
appropriate type, to enable aggregation in queries.

Recently a number of visualization systems has
been developed and widely used. Graphviz is one of
these systems, which was developed by Glen Low
[12], won two 2004 Apple Design Awards. The
Graphviz layout programs take descriptions of
graphs in a simple text language, and make diagrams
in several useful formats such as images and SVG
for web pages, Postscript for inclusion in PDF or
other documents; or display in an interactive graph
browser. (Graphviz also supports GXL, an XML
dialect.). GraphXML [13] is a graph description
language in XML that can be used as an interchange
format for graph drawing and visualization packages.

Hydra3D is a 3-dimensional XML visualization
and editing tool for UNIX variants [14]. Documents
are displayed as interactive 3D tree structures.
Hydra3D uses OpenGL graphic library for three-
dimensional display. The system is implemeted in
Visual C++ .NET (version 7 or newer). Currently,
Hydra only runs on Linux, other related operating
systems, and Windows.

The existing visualization system of XML
documents, however, either do not comfirm to the
good visualazation properties that are listed by
Young and Munro [15] or ignore the links (relations)
between different nodes from the same or different
roots. Therefore, we considered these main points in
the design and implementation of our system, Angur.
For a list of important features of Angur see section
4.

3 The Main Features of Angur
Young and Munro [15] proposed a list of desirable
properties for software visualization. To properly
convey these properties in a clear and concise way
our visualization system is developed to have the
following main features:

• Simple navigation

The graphic manager part of Angur was
designed to include features to aid the user in
navigating the visualisation. In particular, if the
XML document contains a large number of
nodes, the graphic manager displays only the
root of the tree. The navigation of any part
(level) or the whole tree is left to the user.
Therefore, the graphic manager provides the user
a full control on the way he/she likes to be
displayed and to work on.

• High information content

The graphic manager of Angur allows the user to
display the content of any node of the tree by
moving and clicking the mouse on that node.

• Low visualisation complexity, well

structured
If an XML document has a complex structure,
the graphic manager displays not only the top
level of the tree but it displays only the parent
nodes of that level. The manager allows the user
to explode these nodes to their children nodes,
i.e. using partial display of the tree; the system
provides the desired information to the user.

• Resilience to change

The graph manager allows changes of content of
any node and provides an option to the user for
saving or ignoring the changes. In case of
updating and saving the resulting tree, the
system maintains the integrity of the data
structure of XML document.

• Good use of interaction

The system provides a pull down menu of a few
top level options. Each of these options contains
a few low level options. Therefore, the system is
designed and implemented to be user friendly
and easy to use.

In addition to these features, Angur is
characterized by having the following important
features:

1. Angur is platform independent; it is developed in
Java and can be used on any platform (Windows,
Linux, Mac, etc.) out of the box. Also, it can be
used as a web applet to be integrated into web
pages. Angur occupies less than 50 MB of
system memory when running.

2. Due to the shape of the nodes, Hydra and other
existing visualization system would not produce
readable results when drawing large XML
documents. Angur uses specific algorithms

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 161 ISBN: 978-954-92600-2-1

which sort the nodes to be presentable to the
human user.

3. Angur allows the user generating an XML
document visually, without any XML
knowledge. It is technically referred to as "XML
WYSWYG Editor".

4. Angur is able to export the graph as Image and
GraphML files. GraphML is a de facto standard
for graph representation and this feature enables
Angur to collaborate with external graph
drawing libraries such as yFiles. Users are not
bond to Angur's graphical features when it
comes to XML visualization; they could convert
their XML files to GraphML by Angur and then
draw the GraphML file in their desired
application.

5. Angur is a multi graph application. Therefore,
users can open and visualize multiple XML
documents simultaneously and work on them
individually.

6. Angur draws the graphs in multiple layouts (Tree
and Circle are currently implemented; many
more layouts are possible to apply)

4 System Design
The main components of this system are XML
documents and XML database, XML processor, and
Graph Manager. The XML processor, supported by
XML parser (JAXP), has two functions:
transforming the XML database into proper XML
documents and vice versa. The Graph Manager,
supported by the graph library Jung, is the interface
module. It accepts an XML document and produces
a tree-like structure that is displayed on the screen.
The Graph Manager has also another task; it converts
the tree-like documents to XML documents. Figure 1
shows the interaction of these components.

Fig. 1: Angur’s system architecture.

As the objective of this system is visualising
XML documents and databases for the purposes of
understanding, we separate the visualisation task into
two main parts:

1. Processing part: it has a bidirectional activity; it
accepts XML database or documents and generates
acceptable documents to the second part, which is
the Graph Manager, and vice versa. For XML
databases, we used only the file structure that is
produced by native-XML database. Native XML
Databases store XML documents of the same type in
document collections, similar to relational databases
that store tuples in tables.

2. Graphic Manager: It is the interface part, it
accepts the files produced by the first part, i.e. the
processing part, and generate the tree-like trees.
Also, it handles the modifications of these trees by
the users during the execution processes. The types
of information that can be handled include not just
object updating, creation, and deletion but also the
tree-like shape modification and rotation. In addition,
it handles the actions of exploding and collapsing of
any subtree of the whole tree.

We use Java programming language that
supported by JUNG software library for the
implementation of the Angur system. JUNG (Java
Universal Network/Graph Framework) provides a
common and extendible language for the modeling,
analysis, and visualization of data that can be
represented as a graph or network. It was created by
three Information and Computer Science PhD
students at the University of California, Irvine:
Joshua O'Madadhain, Danyel Fisher, and Scott
White [16].

5 System Implementation
The Angur system is implemented in the Java
programming language and supported by JUNG
software library. JUNG provides a common and
extendible language for the manipulation, analysis,
and visualization of data that can be represented as a
graph or network. This allows our system, in
particular, making use of the extensive built-in
capabilities of the Java applications.

Currently, the implementation of the system is
divided into three main modules: Visualizing an
Existing XML file, Creating a new XML data file
and Saving the Graph as XML. The pseudo code of
these modules as follows:

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 162 ISBN: 978-954-92600-2-1

5.1 Visualizing an Exiting XML file
1. User chooses to import the XML file and selects

the file.
2. The file address on disk is sent to XML Loader

(part of XML Processor).
3. XML Loader verifies the file's structure

according to the standard schema.
4. If any error is found, and exception is thrown.
5. If no error, the file loads in memory as an XML

Document object.
6. Document object is sent to Plotter (Part of Graph

Manager).
7. Plotter reads the Document object's contents and

generates the graph by creating the
corresponding vertices and connecting those
using edges.

8. The graph is sent to the currently active Canvas
window to be inserted and shown to the user.

9. User chooses to add/remove/modify a node.
9.1 Receive required information/confirmation.
9.2 Modify the Document object accordingly.
9.3 Go to step 6

5.2 Creating a new XML data file
1. User chooses to generate a new Canvas.
2. A blank Document object is created.
3. Document object is sent to Plotter (Part of Graph

Manager).
4. Plotter reads the Document object's contents and

generates the graph by creating the
corresponding vertices and connecting those
using edges.

5. User chooses to add a new node.
1.1 Receive required information/confirmation.
1.2 Modify the Document object accordingly.
1.3 Go to step 3.

5.3 Saving the Graph as XML
1. User chooses to save the graph as XML.
2. The selected path and XML Document are sent

to the XML Writer (Part of XML Processor).
3. XML Writer explores the Document and writes

the content to a text file with .XML extension,
with accordance to a standard XML schema.

4. Saving the Graph as GraphML.
5. User chooses to save the graph as GraphML.
6. The selected path and XML Document are sent

to the GraphML Writer (Part of XML
Processor).

7. XML Writer explores the Document and writes
the content to a text file with .GML extension,
with accordance to GraphML Premier.

6 Visualization of XML Documents -
Screenshots and Workflow

Figure 2 shows a screenshot of the main window of
Angur, user has two options: 1) creating a new XML
data file (composing), and 2) Visualize an existing
XML data file (importing).

Fig. 2: A screenshot of the main window of Angur

By clicking the Add Node button, the "Add
Node" window appears to help users create a new
XML node, see Fig. 3. The same window is used to
update or delete an existing node.

Fig. 3: Clicking the "Add Node" button, the system
displays this window allowing the user to enter the
attributes (elements) along with their values.

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 163 ISBN: 978-954-92600-2-1

From the main window of the system, the user

can import an XML document. Now, suppose that
the following XML document is imported; the
system provides an option from its main window for
importing XML documents. Fig. 4 shows the tree-
like visualization of this document.

<?xml version="1.0" encoding="UTF-8"?>

<!--
 Document : balloon.xml
 Created on : March 7, 2010, 2:23 AM
 Author : Amir
 Description:
 Purpose of the document follows.
-->

<A0>
 <B0>
 <C0></C0>
 <C1></C1>
 <C2>
 <H0></H0>
 <H1></H1>
 </C2>
 <C3></C3>
 </B0>
 <B1>
 <D0>
 <F0></F0>
 <F1></F1>
 <F2></F2>
 </D0>
 <D1>
 <G0></G0>
 <G1></G1>
 <G2></G2>
 <G3></G3>
 <G4></G4>
 <G5></G5>
 <G6></G6>
 <G7></G7>
 </D1>
 <D2></D2>
 </B1>
 <B2>
 <E0></E0>
 <E1></E1>
 <E2></E2>
 </B2>
</A0>

Fig. 4: visualization of the tree-like structured documents.

When an XML file is visualized, the Angur
system allow users carrying out many actions
including update, delete, relocate and reconnect a
node (s) on another branch of the tree-like structure.
In addition, the system allows the user to rotate the
whole image.

Nodes can be collapsed to improve complex
graphs' readability, see Fig. 5. When a node is
Collapsed, its shape will change according to the
number of immediate successors it has e.g. Square if
it has 4 children, Pentagon is it has 5 children, etc.
Users can Collapse and Expand the nodes by right
clicking on them in “Picking" mode.

Fig. 5: if a node is collapsed, the shape of this node will
change according to the number of its children nodes.

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 164 ISBN: 978-954-92600-2-1

7 Conclusion
The current research shows not only promising
public domain data visualization software systems
running on the personal computer platform but also
the effectiveness and the usefulness of such systems
to the users.

 In this paper we have described the Angur
system for visualization of XML documents. The
system is based on an efficient visualization method
that utilizes the JUNG software library in order to
improve its capabilities. To get some insights into
the functionality of Angur, we showed some of its
features using an XML document.

Further research areas include the visualization
and management of multiple XML documents. This
is important to allow users visually moving a node
(s) from one document to another.

Reference:

[1] W3C. Extensible Markup Language (XML).
http://www.w3.org/XML, last accessed April
2010.

[2] Atay, Mustafa and Shiyong Lu, Storing and
Querying XML: An Efficient Approach Using
Relational Databases, ISBN 3639115813, VDM
Verlag, 2009.

[3] Shihab, K., Ramadhan, H. and Al-Chalabi, N.
An Integrated Approach to Digital Objects
Storage and Retrieval, Journal of Computer
Science, 2 (9), pp. 683-689, 2006.

[4] Burch, M., Diehl, S., and Weissgerber, P.
Visual data mining in software archives, ACM
Symposium on Software Visualization. ACM
Press. 37-46, 2005.

[5] Erwig, M. A Visual Language for XML,
Proceedings of the 2000 IEEE International
Symposium on Visual Languages (VL'00),
p.47, 2000

[6] Shneiderman, B. Tree visualization with tree-
maps: 2-d space-filling approach, ACM
Transactions on Graphics (TOG), v.11 n.1,
p.92-99, Jan. 1992

[7] Pietriga E., Vion-Dury J. and Quint, V. VXT:
a visual approach to XML transformations,
Proceedings of the 2001 ACM Symposium on
Document engineering, USA, 2001.

[8] Collberg, C., Kobourov, S., Nagra, J., Pitts, J.,
and Wampler, A system for graph-based
visualization of the evolution of software,
ACM Symposium on Software Visualization,
ACM Press 77-86, 212, 2003..

[9] Frishman, Y., and Tal, A. Visualization of
Mobile Object Environments, ACM

Symposium on Software Visualization, ACM
Press.. 145-154, 213, 2005.

[10] Eick, S.G., Graves, T.L., Karr, A.F., Mockus,
A., and Schuster, P. Visualizing software
changes. IEEE Transactions on Software
Engineering. 28 (4), pp. 396-412, 2002.

[11] Ronald Laurids Boring, Human-Computer
Interaction as Cognitive Science, Proceedings
of the Human Factors and Ergonomics
Society, 46th Annual Meeting, pp. 1767-1771,
2002.

[12] Dix, A. et al, Human-computer Interaction,
Prentice-Hall, 3rd ed. 2004.

[13] http://www.graphviz.org/, last accessed April
2010.

[14] Herman, I. and Marshall M. GraphXML - An
XML-Based Graph Description Format,
Lecture Notes In Computer Science; Vol.
1984, Proceedings of the 8th International
Symposium on Graph Drawing, pp. 52-62,
2000.

[15] http://hydra3d.sourceforge.net /indexFrames.
html), last accessed April 2010.

[16] Young, P., and Munro, M. Visualising
software in virtual reality, IEEE First
International Workshop on Visualizing
Software for Understanding and Analysis,
IEEE Computer Society Press, pp. 19-26,
1998.

[17] http://jung.sourceforge.net/, last accessed
April 2010.

Proceedings of the 9th WSEAS International Conference on TELECOMMUNICATIONS and INFORMATICS

ISSN: 1790-5117 165 ISBN: 978-954-92600-2-1

