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Abstract: - This contribution is focused on control of single-input single-output (SISO) systems containing 
harmonically time-varying delay. Three different approaches to continuous-time control are studied and compared. The 
first technique utilizes a modified PI-PD Smith predictor in a combination with standard forms for minimum of integral 
squared time error (ISTE). The second methodology exploits a Coefficient Diagram Method (CDM) for another 
modified Smith predictor structure. And finally, the third approach to synthesis is based on general solutions of 
Diophantine equations in the ring of proper and Hurwitz-stable rational functions (RPS) for a classical feedback control 
loop. The comparison of proposed methods is accomplished through a simple simulation example. 
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1   Introduction 
Systems affected by time delay (TD) have attracted 
attention of control theory researchers for decades. The 
ground of this interest can be seen in common presence 
of TD in real controlled processes and thus in the 
necessity of quality and easily applicable control 
algorithms for this class of systems. Unfortunately, TD 
always deteriorates control conditions and, moreover, 
the time-varying TD terms induce even much more 
obstacles. 
     A possible effective and economical solution for 
systems with relatively small or limited changes of TD is 
the usage of robust enough fixed controllers [14]. The 
worthwhile closed-loop configuration for compensation 
of dead time has been well known as Smith predictor 
since 1959. Recently, many new modifications of Smith 
predictor with improved properties have been introduced 
– e.g. [2], [5], [9], [12]. Another way how to overcome 
TD resides in combination of its approximation and 
subsequent utilization of an algebraic control design 
method. The advantageous solution represents a 
fractional approach developed in [7], [19] and applied 
for robust control of TD systems e.g. in [16]. Moreover, 
many other stability investigation techniques [3], [15], 
[20] and robust control methods [4], [6], [8] applicable 
for time-varying delay systems have been published. 
     This paper studies three control principles for single-
input single-output (SISO) systems with periodically 
time-varying TD. The results given by continuous-time 
controller designed in the ring of proper and Hurwitz-
stable rational functions (RPS) [16], [17], [18] are 
compared with those obtained with the use of modified 

PI-PD Smith predictor [5] and also using the Smith 
predictor designed by Coefficient Diagram Method 
(CDM) [2]. 
     The work is organized as follows. In Section 2, basic 
description of controlled first order time-varying delay 
system is provided. The Section 3 contains the 
theoretical backgrounds for the trio of applied methods. 
Further, the specific controller calculations, simulative 
comparisons and analyses are presented in Section 4. 
And finally, Section 5 offers some conclusion remarks. 
 
 
2   Description of Controlled System 
All control design methods are applied on a simple 
example of first order controlled system with time-
varying delay described by differential equation: 

 ( ) 0.1 ( ) 0.2 ( ( ))y t y t u t t′ + = − Θ  (1) 

with zero initial condition. The TD term harmonically 
changes from 5 to 15 according to: 

 ( )( ) 10 5sin 0.4t tΘ = +  (2) 

System (1), (2) is considered as a really controlled plant 
for all simulations. As an alternative notation, it can be 
used also the non-standard hybrid “transfer function” 
which depends both on complex variable s and on time t: 
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The nominal system used for the purpose of control 
design is represented by time-invariant transfer function 
with average value of TD: 

 10 100.2 2( )
0.1 10 1

s sG s e e
s s

− −= =
+ +

 (4) 

for all compared techniques. 
 
 
3   Outline of Applied Control Design 
Methods 
 
3.1 Modified PI-PD Smith Predictor 
The first method is based on the modification of the 
classical Smith predictor presented in [5]. It exploits the 
structure with three controllers shown in fig. 1, where 

1cG  is a PI controller, 2cG  is a PD (or only P where it is 
appropriate) controller and 3cG  is the disturbance 
controller introduced in [11]. Furthermore, w, n, y denote 
the reference signal, disturbance in the input of the 
controlled plant, and output signal, respectively. 
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Fig. 1: Modified Smith predictor structure (PI-PD) 

 
     Generally, the synthesis is based on usage of standard 
forms for obtaining the optimal closed-loop transfer 
function parameters in the meaning of integral squared 
time error (ISTE) criterion. Control design formulas 
derived for the case of first order TD plant with example 
of controller computation can be found in Section 4. 
 
3.2 Modified Smith Predictor Design by 

Coefficient Diagram Method 
The second controller design using the Coefficient 
Diagram Method (CDM) was proposed in [2]. This 
method uses the improved Smith predictor structure with 
the trio of controllers according to fig. 2. 
 
The CDM design is based on the four principles: 

• Coefficient diagram: It is a semilogarithmic 
diagram which allows investigating the stability 
and response of systems in a single graph. The 
vertical axis logarithmically shows the coefficients 
of characteristic polynomial, stability indices, 

stability limits and equivalent time constant while 
the horizontal axis represents the order values 
corresponding to each of coefficients. 

• Modification of Kessler standard form: The form 
developed by Kessler in 1960 has decreased the 
oscillations and overshoots compared to the 
original Graham’s ITAE form. In this approach, a 
new form called “Standard Manabe Form” is used. 
This design should result in quite stable and robust 
responses with small settling time. 

• Lipatov stability analysis: The effect of coefficient 
variations can not be seen clearly for higher order 
systems. The conditions for stability or instability 
of such systems, based on Lipatov’s work, are 
included in CDM design technique. 

• Obtaining characteristic polynomial: A method 
similar to pole placement is applied. However, the 
main difference is the Manabe form. 
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Fig. 2: Modified Smith predictor structure (CDM) 

 
     Again, a concise illustration of controller calculation 
is shown in Section 4. For details about the technique see 
[1], [2], [10] or other related literature. 
 
3.3 Algebraic Control Design in RPS 
The third method adopts an algebraic fractional approach 
developed in [7], [19] and discussed in [17], [18]. 
Algebraic tools enable relatively deep insight into 
control tuning and parametric expression of all suitable 
controllers. 
     The first step of algebraic control design in RPS for 
TD systems is to approximate a TD term by a 
polynomial approximation in order that the model 
becomes usable for linear Diophantine equations. A 
conventional and suitable tool is the Padé 
approximation. 
     Then the systems have to be described in RPS as a 
ratio of two rational fractions: 
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where { }max deg( ),deg( )n a b=  and 0m > . 
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The scalar positive parameter m which enters into the 
synthesis process can be later conveniently used as a 
“tuning knob” influencing the final control behavior. 
     This factorization approach can be used for various 
control structures. For simplicity, the well known 
classical one-degree-of-freedom (1DOF) configuration 
was used. The control loop is depicted in fig. 3. In 
addition to previous two figures, u and v represent 
control signal and disturbance in the output of the 
controlled plant, respectively. All signals and functions 
depicted in this figure should be expressed in RPS. 
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BsG =)(  

u y
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Fig. 3: One-degree-of-freedom closed loop system 

 
     The basic task is to ensure internal stability of the 
system in fig. 3. All stabilizing feedback controllers are 
given by all solutions of the linear Diophantine equation: 

 1AP BQ+ =  (6) 

with a general solution 0P P BT= + , 0Q Q AT= − , 
where T is free in RPS and 0P , 0Q  is a pair of particular 
solutions. 
     In other words, ratio: 

 0
0

0

; 0Q Q AT P BT
P P BT

−= + ≠
+

 (7) 

represents all possible stabilizing controllers and it is 
known as Youla – Kučera parameterization. For details 
and proofs see [7], [19]. 
     Another important property is the convergence of 
control error e to zero. Under assumption that no 
disturbances affect the system in fig. 3 ( )0n v= =  it 
follows for this loop: 

 w

w

AP Ge
AP BQ F

=
+

 (8) 

where w

w

G
F

 is the reference signal w (in RPS). For 

example, a stepwise reference signal w has the 

denominator w
sF

s m
=

+
. 

     Substitution of (6) to (8) and subsequent algebraic 
analysis leads to the outcome that for zero control error: 

 [ ]
0

lim ( ) lim ( ) 0
t s

e t s e s
→∞ →

= ⋅ =  (9) 

the expression wF  must be cancelled from the 
denominator of (8). Therefore wF  must generally divide 
product AP (or only P in many practical cases). 
     One of the main advantages of the mentioned 
technique is the possibility of tuning of controller 
parameters by the only scalar parameter m. The optimal 
choice of m is a nontrivial task. Some recommendations 
are provided for example in [13]. However, for most 
simulations and practical events, the primitive “trial and 
error” method can be successfully applied to find a 
suitable m. 
     The details, results and references for the two-degree-
of-freedom (2DOF) configuration or for other control 
problems (disturbance rejection, disturbance attenuation, 
etc.) can be found e. g. in [16], [17], [18]. 
     An illustration of the controller computation is shown 
in the following part. 
 
 
4   Calculations of Controllers and 
Simulation Results 
Remind that a controlled plant with time-varying delay 
is given by (1), (2) or (3) and mathematical model for 
control design purpose is supposed in the form (4). The 
controllers for all PI-PD, CDM and RPS design were 
experimentally tuned to obtain visually acceptable 
results without or with only small overshot and short 
settling time. For better comparability, responses with 
nearly the same time of reaching the reference value 
were chosen. Furthermore, the following simulation 
conditions were used: simulation time 600ST s= , 
reference value 1 with step to 2 in 1 3  of ST , load 
disturbance injected into the plant input 0.3n = −  in 2 3  
of ST , and zero disturbance v in the plant output. 
     For the first method, modified PI-PD Smith predictor, 
the controlled system model (without TD) has been 
supposed in the form: 

 0

0

0.2( )
0.1mG s

s s
β

α
= =

+ +
 (10) 

The transfer functions of all controllers in fig. 1 are: 

 1
1 1( ) 1 0.015 1

1.1c c
i

G s K
T s s

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (11) 

 2 ( ) 0.1650c fG s K= = −  (12) 

 3( ) 0.4c oG s K= =  (13) 

Parameters cK , iT  and oK  have been adjusted by user, 
while fK  follows from equations: 
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 0 0.0522c

i

K
T

βα = =  (14) 

 1 10.05745 1.3405ic T dα= = ⇒ =  (15) 

 1 0 0

0

c
f

d KK α α β
β

− −=  (16) 

The size of 1d  in (15) must be determined on the basis of   
according to graph from [5]. For the purpose of this 
paper, the graphical relation has been approximated by 
the sixth order polynomial: 

 
6 5 4

1 1 1 1
3 2
1 1 1

0.0028 0.0376 0.1766

0.3076 0.0502 0.1533 1.3315

d c c c

c c c

= − + − +

+ + + +
 (17) 

     Besides, a non-zero value of oK  ensures better 
disturbance rejection, but there is trade-off between this 
rejection and oscillation of the control and output signal. 
The behaviour is “smoother” for 0oK =  (see the 
corresponding curves from figs. 4 and 5 vs. fig. 6). 
     Generally, according to [5], the time scale α  can be 
selected by the choice of cK , 1c  by the choice of iT  and 

1d  by the choice of fK . The same authors subsequently 

claim that, in practice, cK  will be constrained, possibly 
to limit the initial value of the control effort, so that the 
choice of cK  and iT  may involve a compromise 
between the values chosen for α  and 1c . 
     In CDM, as the second method, the settling time was 
preset to 50st s=  and disturbance rejection structure was 
selected. The resulting controllers are: 

 1( ) 1cG s =  (18) 

 2
1

1 1( )
43.1141cG s

l s s
= =  (19) 

 3 1( ) 1 1.6577 1cG s k s s= + = +  (20) 

The coefficients of regulators follow from: 

 
2

1 2.5
Kl

T
τ=  (21) 

 
2

1 2.5
k

T
ττ= −  (22) 

where 

 2.1538stτ =  (23) 

and transfer function of controlled system model 
(without TD) is assumed in the form: 

 2( )
1 10 1m

KG s
Ts s

= =
+ +

 (24) 

     Regarding to the third technique, control design in 
RPS, the nominal system is obtained using the first order 
Padé approximation of TD in (4): 
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The resulting nominal system has non-minimum phase 
behaviour (unlike some other approximation methods), 
but it is not any problem for the RPS design. Furthermore, 
a higher order Padé approximations than the first one 
would lead to a more complicated structure of the 
controller. Thus, the applied way is commonly used for 
such cases because it simply but also sufficiently 
approximates behaviour of TD system. 
     The application of the algebraic approach described 
in the Subsection 3.3 and the choice 0.12m =  give the 
feedback controller: 

 

2
2 1 0

2
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2

( )
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 (26) 

Practically, the parameters of (26) can be calculated 
from pre-derived equations: 

 

1
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and 
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     The comparison of closed-loop output variables for 
all methods is shown in fig. 4 while corresponding 
control signals are plotted in fig. 5. Moreover, the fig. 6 
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depicts both the output and control signal once more 
only for PI-PD control design but now without 
disturbance controller – i.e. 3( ) 0c oG s K= = . All other 
parameters and settings remain the same as in (11), (12). 
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Fig. 4: Comparison of closed-loop control responses 
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Fig. 5: Comparison of control signals 
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Fig. 6: Output and control signal for Method 1 (PI-PD) 

and 0oK =  

     Depicted results of all methods obtained during 
simulative control of given time-varying delay system 
should be acceptable for majority of real technological 
applications. Control design in RPS gives the fastest 
responses, on the top of that without any overshoots, in 
comparison with both modified Smith predictors. 
Moreover, it has relatively good rejection of load 
disturbance. On the other hand, the cost for it is more 
aggressive control signal. The modified PI-PD Smith 
predictor provides probably the best disturbance 
rejection thanks to the mentioned disturbance controller, 
but it has the biggest overshoot. The CDM takes the 
second place from the overshoot point of view and its 
disturbance rejection is the slowest. 
     An interesting and objective appreciation of control 
quality can be obtained by meaning of Integrated 
Squared Error (ISE) criterion, which is calculated 
according to: 

 2

0

ISE ( )e t dt
∞

= ∫  (29) 

The evaluation of control behaviour (figs. 4, 5 and also 
6) from the ISE viewpoint can be found in table 1. 
 

Table 1: Outcomes of ISE calculations 

Method ISE 
PI-PD ( 0.4)oK =  61.65 

CDM 60.22 
RPS 38.02 

PI-PD ( 0)oK =  66.47 
 
     Besides, drawbacks of both modifications of Smith 
predictor are more complicated control loop structure 
and necessity of TD model in the inner loop. All in all, 
obtained results indicate that the proposed control design 
in RPS can be considered as an effective method for 
studied class of systems. 
 
 
5   Conclusions 
In the paper, control of SISO systems with harmonically 
time-varying delay has been addressed. Three various 
continuous-time strategies based on the idea of 
robustness have been compared. The first two methods 
use the modified Smith predictor structures in 
combination with standard forms for minimum of ISTE 
or design by CDM, respectively. The third method is 
based on the fractional representation in RPS, general 
solutions of Diophantine equations and conditions of 
divisibility. The simulations of control were done in 
Matlab + Simulink environment. 
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