
Towards the Reliable Integration Testing: UML-based Scenario Analysis 

using an Automatic Prototype Generation Tool 
 

SHINPEI OGATA 

Functional Control Systems,  

Graduate School of Engineering 

Shibaura Institute of Technology 

307 Fukasaku, Minuma-ku Saitama-City,  

Saitama 337-8570 

JAPAN 

m709101@sic.shibaura-it.ac.jp 

http://www.sayo.se.shibaura-it.ac.jp/ 
 

SAEKO MATSUURA 

Department of Electronic Information Systems, 

College of System Engineering and Science 

Shibaura Institute of Technology 

307 Fukasaku, Minuma-ku Saitama-City,  

Saitama 337-8570 

JAPAN 

matsuura@se.shibaura-it.ac.jp 

http://www.sayo.se.shibaura-it.ac.jp/ 
 

Abstract: One key to success for high quality enterprise information systems development is to validate the 

customers' requirements sufficiently at the early stage. Scenarios are an effective means to an end because they 

make it possible to represent various situations of system usage. Most scenarios are defined by using a natural 

language or such a formal language as Unified Modeling Language (UML) and describe normal, alternative, and 

exceptional service flows from the point of view of system usage. As a result, scenarios make it easy for the 

customers to confirm their requirements intuitively because of the concreteness. On the other hand, based on the 

V-model, which is well-known software development process and denotes the correspondence of requirement 

analysis stage to integration test stage, it is desirable that the testers should test the system by using the test cases 

derived from the validated scenarios. We have proposed a UML-based requirements analysis (RA) model with 

automatic prototype system generation for enterprise Web application development. This paper proposes a way to 

efficiently create reliable test cases from the scenarios that have been validated by the customers using the 

prototype system which was generated by the RA model. 

 

Key-Words: Unified Modeling Language, Web Application, Scenario, Test Case for Integration Testing 

 

1   Introduction 
One key to success for high quality enterprise 

information systems development is to validate the 

customers' requirements sufficiently at the early stage. 

Scenarios are an effective means to an end because 

they make it possible to represent various situations of 

system usage. Most scenarios [1-5] are defined by 

using a natural language or such a formal language as 

Unified Modeling Language (UML) [6] and describe 

normal, alternative, and exceptional service flows 

from the point of view of system usage. As a result, 

scenarios make it easy for the customers to confirm 

their requirements intuitively because of the 

concreteness. On the other hand, based on the 

V-model, which is well-known software development 

process and denotes the correspondence of 

requirement analysis stage to integration test stage, it 

is desirable that the testers should test the system by 

using the test cases derived from the validated 

scenarios.  

Several researchers [1-3] have made use of their 

scenarios to generate user Interface prototype 

automatically so that they can define and validate 

requirements specification efficiently.  On the other 

hand, to decrease the time cost of test phase or to 

support exhaustive testing, several researchers have 

handled scenarios as the source to generate test cases 

[7-9] or test codes [9, 10] or test path [5]. 

We have proposed a UML-based requirements 

analysis (RA) model with automatic prototype system 

generation for enterprise Web application 

development In this paper, we propose a way to 

efficiently create reliable test cases from the scenarios 

that have been validated by the customers using the 

prototype system which was generated by the RA 

model The RA model consists of activity diagrams, 

class diagram, object diagrams and UML-based 

scenarios. The activity diagrams represent all flows 

which include normal, alternative and exceptional 

flows for every user authority and every service 

exhaustively. The class diagram represents data 

structures used in the flows of the activity diagrams. 

The object diagrams represent concrete data 

corresponding to the data structure of the class 

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 151 ISBN: 978-960-474-156-4



Fig.1 The Overview of Our Approach from the Requirements Analysis to Test Case Definition 

The entire flow of the requirements 

analysis model and test case definition. 

The relation among each diagram, 

scenario and test case. 

diagram. The UML-based scenarios represent a 

concrete flow by selecting and supplementing the 

appropriate part of exhaustive flows, data structures 

and concrete data extracted from the above-mentioned 

three kinds of models. Scenarios are defined in a 

Comma Separated Value (CSV) format. There are 

three strong points in our approach. First, a 

non-functional Web UI prototype which is described 

in Hyper Text Markup Language (HTML) can be 

generated automatically from the RA model stepwise 

at each stage adding a kind of diagram or scenarios 

[11, 12] so that the developer can validate their model 

iteratively with the generated prototype from very 

early stage defining only one kind of diagrams. The 

advantage of the UI prototype [13, 14] is mainly to 

enable the validation of the service flow in the both 

view of UI transitions and input/output data 

represented on UI by customers. Secondly, concrete 

data specified in the object diagram can be reflected 

into the generated prototype [11, 12] so that the 

customers can validate the services with the prototype 

intuitively and easily. Thirdly, the test cases can be 

defined semi-automatically according to the RA 

model in which the customers have approved the 

contents of the services through the generated 

prototype. As a result, the tester can carry out the 

integration testing systematically by using the test 

cases derived from the validated scenarios.  

The remainder of the paper is organized as 

follows. Section 2 explains the overview of the entire 

flow in our approach, and section 3 describes the RA 

model in detail. Section 4 explains the Web UI 

prototype generated automatically from the RA 

model, especially at the stage defining the UML-based 

scenario. Section 5 describes the process to define the 

test cases according to the UML-based scenario and 

discuss the effectiveness of our approach applying an 

order management system development for a 

confectionery. Section 6 describes comparing with the 

related works, and finally, section 7 describes the 

conclusions and future works. 

 

 

2 Overview: from Requirements 

Analysis Process to Test Case 

Definition Process 
As shown by the entire flow of the requirements 

analysis model and test case definition in Fig.1, there 

are five steps to define the RA model or the test case. 

At the former four steps, the developers define and 

validate and refine the RA model iteratively. To make 

it possible to validate the RA model effectively by 

introducing the prototyping into our approach, we 

have developed an automatic prototype generation 

tool which can generate a Web UI prototype 

automatically at each stage adding a kind of diagram 

or scenarios. Therefore, the developers can validate 

the RA model iteratively by such stepwise automatic 

prototype generation. In the latter step, as shown by 

the relation among each diagram, scenario and test 

case, the developers can define the test cases 

methodologically from the UML-based scenario 

which is defined by using the validated RA model 

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 152 ISBN: 978-960-474-156-4



fully in the viewpoint of both behavior and data 

structure. It notes that the developers need to obtain a 

set of services which are equal to the concept of use 

case from requirements of the customers before the 

first step. The following sections illustrate these steps 

in detail with the RA model of an order management 

system. 

 

  

3 The Modeling Process of the 

Requirements Analysis Model 
The RA model consists of activity diagrams, a class 

diagram and object diagrams in UML 2.0, and 

UML-based scenarios in the CSV format. Three kinds 

of the UML diagrams notation in the RA model 

correspond completely with the original UML 

notation. Also, they are defined by Astah* [15] which 

is an analysis or design support tool and which 

supports UML modeling. The following sections 

describe the three kinds of diagrams and the 

UML-based scenario along with the RA model 

example of the order management system 

development for a confectionery.  

 

 
Fig.2 The Use Case Diagram of an Order Management 

System for a Confectionery 

 

Fig.2 represents a use case diagram of the system. 

This system manages order information for 

confectionery. Also it handles customer information 

and stock information by interacting the Customer 

Management System and the Stock Control System. 

On the other hand, there are two kinds of user of the 

system. One is the Receptionist who receives a 

telephone call or an order mail to receive an order, the 

other is the Delivery Officer who records shipment of 

orders. As the overview of workflow, at the first step, 

the receptionist receives an order from a customer and 

registers the order into the system. Then, after the 

receptionist finished inputting the order, the system 

sends shipment sheets to the delivery officer of each 

distribution center. Finally, the delivery officer 

instructs the deliverer to ship the goods to the 

customer. Also, the delivery officer records goods 

shipment. If there is a request for changing or 

canceling orders or changing the shipment address of 

the customer, the receptionist conducts the work using 

the system. In this paper, the following sections 

illustrates about the service of "Change Shipping 

Address" in detail. 

 

 
3.1  The Interaction Activity Analysis 
The activity diagrams, which we call Interaction 

Activity Diagrams (IADs), define interaction among a 

user and systems every user authority and every 

service. The IAD defines all normal, alternative and 

exceptional flows. The developer should define IAD 

according to the following rules, so that they can 

define the interaction clearly and enough. 

(1) To define who performs each action, define 

partitions in an IAD which are named after a user 

authority or systems. And all nodes of the IAD 

should be defined within the partitions.  

(2) To define the interaction as sequence of the 

actions which is performed by a user and systems 

by turns, do not define concurrent flows over 

several partitions. 

(3) To clarify responsibility of actions every 

partition, define each action of a user as an input 

action to a system. Also, define each action of the 

system as an output action to the user or an 

internal logic action. 

(4) To avoid defining a complex action, define the 

content of an action with a simple sentence. 

Therefore, we have specified the simple format 

"<verb> <noun>" for the action. For example, an 

action which follows the format is "input 

password". In an action of a user, the verb defines 

input behavior toward a system. And the noun 

defines a target of the behavior such as an input 

item. On the other, in an action of the systems, the 

<verb> defines output behavior toward the user 

or logic behavior such as CRUD (Create, Read, 

Update and Delete). And the <noun> defines a 

target of the behavior such as an output item or a 

message. 

(5) To clarify input/output data provided to the user, 

define the object node in the middle of the control 

flow which strides the boundary of a user 

partition and a system partition.  

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 153 ISBN: 978-960-474-156-4



(6) To clarify the conditions on control flow 

branches, define guard conditions on the control 

flows just behind a decision node. 

(7) To clarify pre and post conditions precisely when 

a service is executed, define a note, which its 

content starts with "pre-condition:", as the 

pre-condition for an initial node. And define a 

note, which its content starts with 

"post-condition:", as the post-condition for an 

activity final node. 

(8) To distinguish normal flows from exceptional 

flows, define a partition named "Interaction". The 

control flow, which reaches the node in the 

"Interaction" partition just after a conditional 

branch in the system or "Interaction" partition, 

are handled as the exceptional flows.  

About the noun of the rule of (4), we have given a 

simple format to the noun to indentify clearly and 

uniquely an input/output item which belongs to a data 

structure represented by an object node (see Fig.3). 

Actually, it is possible to assume a class as 

input/output data structure because the object node on 

Astah* can assign a class as the base class. In Fig.3, an 

“object_node_name” is the name of an object node 

which corresponds to the root name of data structure 

defined by the base class. A “parent_item_name” and 

an “item_name” are the name of a structured item 

represented by an attribute of the base class. The 

“parent_item_name” implicates the name of the 

structured item which is in the middle-layer if the data 

structure has multi-layer. 

Fig.4 represents the interaction flow of the service 

of "Change Shipment Address". As the explanation of 

the flow, at the first step, a receptionist executes the 

service by selecting "Change shipment address". Next, 

to identify the customer data that shipping address 

would be changed, the receptionist input the ID of the 

customer to the system and makes the system start 

search by selecting "search". Then, if the expected 

data was found, the receptionist inputs new shipping 

address for the customer data and selects "update". 

Next, the system asks the receptionist whether the 

edited data is correct. If the receptionist confirmed the 

data, he selects "update". Finally, after the system 

updated the internal data correctly, it finishes the 

service. 

 
<noun> := object_node_name "::::" item | item 

item := parent_item_name "::" item | item_name 

object_node_name := string 

parent_item_name := string 

item_name := string 

string := ("[^();,]")+ 

Fig.3 The Formal Grammar of the <noun> 

 

 

3.2  The Input/Output Data Structure 

Analysis 
The class diagram, which we call Input/Output Data 

Structure Diagram (IODSD), defines data structure 

based on input/output data represented as object nodes 

in the IAD. Therefore, the IODSD is expected to 

define essential data which must be handled on UI. 

Since the data handling on UI include generally a lot 

of entity data which are referred by the boundary, it 

can regards a defined input/output data structure as a 

class candidate and a defined input/output item as a 

class or attribute candidate. Since some of them are 

not entity data which means the persistent data, but 

data handling on UI only, the developers can elicit 

these candidates for not only entity classes but also 

Fig.4 The Interaction Activity Diagram of a Service of “Change Shipping 

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 154 ISBN: 978-960-474-156-4



boundary classes. Just after the stage assigning classes 

to the object nodes, the IODSD may include the same 

candidates among the resultant class and attribute 

candidates. The developers elaborate an appropriate 

class diagram to integrate the candidates properly. 

Fig.5 represents an example of the IODSD. 

 

 
Fig.5 The Input/Output Data Structure Diagram 

Related to the Service of “Change Shipping Address” 
 

 

3.3  The Concrete Input/Output Data 

Analysis 

 
Fig.6 The Concrete Input/Output Data Diagrams 

Related to the Service of "Change Shipping Address" 

 

The object diagrams, we called Concrete Input/Output 

Data Diagrams (CIODDs), define concrete data of the 

input/output data structure defined by an IODSD. By 

defining the concrete data needed when the usage 

situation of a service such as a normal or alternative or 

exceptional flow is presumed, the developers can 

validate the RA model in the viewpoint of both data 

structure and behavior. For example, a data structure 

which can't describe required data or a flow which 

can't represent required data is improper model. 

However, these problems are difficult to be detected 

from abstract data structure such as a class diagram 

and make the possibility of creating 

misunderstandings about the data constraints between 

the developers without a specification about concrete 

data. Therefore, we have adopted the CIODD into the 

RA model specifically. In our approach, to define 

multiple concrete data to one slot, comma as the 

separator between the data is inserted. Also, to define a 

concrete data into a slot which has a class type, the 

object name of instance specifications which has the 

class type is defined into the slot. Fig.6 represents 

examples of the CIODD. 

 

 

3.4   The UML-based Scenario Analysis 
In the above-mentioned three steps, the developers 

have defined three kinds diagram of the RA model; the 

IAD represents the exhaustive interaction flow; the 

IODSD represents the input/output data structure 

needed in the interaction flow; the CIODD represents 

the concrete input/output data, which can be used to 

validate the RA model in the viewpoint of the 

validation of data structure. Then, the UML-based 

scenarios define concrete flow paths to validate the 

exhaustive interaction flow in the viewpoint of 

behavior, using concrete input/output data. Concretely, 

the UML-based scenarios are defined for every normal, 

alternative and exceptional flow. Also, they define the 

prepared and predicted data which are the internal 

system data before and after the service execution to 

clarify the usage situation of the system. These 

scenarios are defined by the CSV format and consist of 

the following elements. It notes that the Transition 

Condition is a set of guard expressions which specifies 

a flow path through the "Interaction" and system 

partition. 

(a) A Service Name is the name of the service which 

corresponds to the name of an IAD. 

(b) A Scenario Name is the name of a scenario for the 

above-mentioned service. 

(c) Prepared Data are the internal system data needed 

to execute the scenario, which define the data 

related only to the scenario to execute. 

(d) Predicted Data are the internal system data after 

the scenario execution, which define the data 

related only to the executed scenario. 

(e) Scenario Steps consist of the sequence of UIT 

trigger actions and transition conditions and 

object nodes. The UIT trigger actions and 

transition conditions specify a concrete normal or 

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 155 ISBN: 978-960-474-156-4



alternative or exceptional flow path of an IAD. 

On the other hand, the object nodes specify a 

concrete data using in the scenario such as an 

input/output data or internal system data.  

Our automatic prototype generation tool can 

generate automatically a base scenario file which is 

given a format to define above-mentioned elements. 

On the base scenario file, the above (a) is defined 

completely; the above (c) and (d) define a form that 

completes if an object diagram is specified; the above 

(e) defines all candidates, which are the elements to 

specify a flow path uniquely or the object nodes, for 

each service. To complete the base scenario file, the 

developer edits it by the following steps. 

(1) Define the appropriate scenario name related to a 

flow type such as a normal or alternative or 

exceptional flow. 

(2) In order to specify a flow path which is 

considered by the developers referring to the IAD, 

edit the scenario step candidates by copying or 

arranging or deleting parts of the candidates. 

(3) In order to define the concrete data according to 

the usage situation of scenario, define the 

CIODDs into the prepared and predicted data, 

and into the object nodes which are in the 

scenario steps. 

Fig.7 represents the normal scenario of the service 

of "Change Shipment Address" which was edited 

according to the above-mentioned steps.  

 

 
Fig.7 A Normal Scenario of the Service of "Change 

Shipping Address" 

 

 
Fig.8. The Structure Tree of Object Diagrams 

 

This scenario used only the data defined in Fig.4, 

Fig.5, Fig.6 and Fig.8 except for the scenario name. In 

particular, the CIODDs on the scenario must be 

defined in the Astah* Structure Tree View with the 

structure which consists of the service name, the 

scenario name and the CIODD as shown in Fig.8. 

Concretely, the service name package includes the 

scenario name packages, and the scenario name 

package includes the CIODDs. 

The scenario named "NormalFlow1" in Fig.7 

specifies the flow that the shipping address of a 

customer changes "Fukasaku Minuma-ku 

Saitama-city Saitama pref." into "Kumagaya-city 

Saitama pref.". In "ObjectDiagram1", there is the 

customer data before changing the shipping address. 

On the other hand, in "ObjectDiagram2", there is the 

customer data after changing the shipping address. 

About the resultant instance specifications of the 

CIODDs in a scenario, these can be categorized 

automatically as the following Table 1. 

 

Table 1 The Categorization of the Instance 

Specification on a Scenario 

Categories of instance 

specification 

Kinds of CIODD on the scenario 

Prepared 

data 

Predicted 

data 

Object nodes 

of  scenario 

steps 

Input/output data on 

UI only 
DA DA A 

Created system data DA A NR 

Remaining system 

data 
A A NR 

Updated system data A A* NR 

Deleted system data A DA NR 

A = Appeared, DA = DisAppeared, NR = NoRelated, 

A* = Appeared (For an instance specification, the 

object name and type remained, but the slots are 

updated) 

 

 

4 The Scenario-based Prototype 

Generation 
In our approach, the scenario-based prototype can be 

generated automatically from the RA model defined 

until former steps. Originally, in our approach, the 

prototype can be generated at each stage adding a kind 

of diagram [11]. In this paper, the scenario-based 

prototype only is explained. Fig.9 shows the sample of 

a Web UI prototype which is generated from the RA 

model. 

In spite of the non-functional prototype, the 

prototype which is generated from the RA model that 

includes the scenario can represent the change of 

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 156 ISBN: 978-960-474-156-4



output data as if the prototype had a function. Then, 

using such scenario-based prototype, the developers 

can validate the RA model which meets the customers' 

requirements by discussing with the customers.  

 

 
Fig.9 A part of Scenario-based Prototype of the 

NormalFlow1 Scenario of "Change Shipping 

Address" 

 

 

5 The Definition process of the Test 

Case for the Integration Test Stage 
Until former steps, the UML-based scenarios have 

been defined for every normal or alternative or 

exceptional flow and have specified concrete 

input/output data for each object node of the scenario 

steps and for the prepared and predicted data. Thus, 

these scenarios are similar to test cases exceedingly in 

the viewpoint of not only specifying the concrete flow 

path but also containing the concrete data. 

Furthermore, these scenarios are expected to be 

validated by the customers and developers using the 

generated prototype in the validation process. Since 

such validated scenario must be achieved by the 

system correctly and completely, the system must be 

tested according to the validated scenarios. Therefore, 

it is important for the developer and tester to create the 

test cases which correspond to the validated scenarios 

without any inference in the definition process of them. 

In this paper, we have attempted to create 

methodologically the test cases for the integration test 

stage using the RA model. 

According to [16], the test case is documentation 

specifying inputs, predicted results, and a set of 

execution conditions for a test item. Therefore, we 

make the UML-based scenario correspond to the test 

case as follows. 

(1) The Inputs correspond to the action sequence 

of a user in an IAD along a specified normal or 

exceptional flow path. Furthermore, the concrete data 

input by the user are assumed as the instance 

specifications which are categorized into the 

"input/output data on UI only" in Table 1. 

(2) The Predicted Results correspond to two 

kinds of the resultant object in the RA. One is the 

generated prototype so that the tester can confirm 

whether predicted data is represented on the UI by 

executing the scenario. The other is a set of the 

difference data which is expected to be changed (such 

as created or updated or deleted) by the system 

operation and user manipulation and which is 

discovered as the result of comparing the predicted 

data with the prepared data so that the tester can 

confirm what is changed among the internal system 

data by executing the scenario. Also, the predicted 

results must satisfy the post-condition in the service if 

the flow type of test case is normal flow. 

(3) The set of Execution Conditions correspond 

to the prepared data of the UML-based scenario which 

enumerates the required data to execute the scenario. 

Also, the set of execution conditions must satisfy the 

pre-condition in the service. 

There is an important thing to define the test cases. 

That is, the defined test cases are whether they cover 

testing for exhaustive flows. In our approach, in 

related to above (1), the test cases covering exhaustive 

flow can be defined methodologically since the IAD 

defines exhaustive flows every service. Fig.10 

represents an example of the test case corresponding 

to the UML-based scenario in Fig.7. 

 

 
Fig.10 The Test Case corresponding to the 

NormalFlow1 Scenario 

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 157 ISBN: 978-960-474-156-4



We have defined manually the test case in Fig.10. 

However, almost of the elements can be defined 

methodologically. The content of the "Test Case" 

equals the scenario name of the UML-based scenario. 

The content of the "Flow Type" becomes "Normal" 

because the flow path of the scenario has no control 

flow fulfilling the (8) of the list in section 3.1. In the 

contents of the "Execution Conditions", the 

"pre-condition" equals the pre-condition of the IAD. 

And, the set of "Initial Data" is defined according to 

the prepared data of the scenario every instance 

specification. The contents of "Inputs" enumerate the 

action sequence of the user in the IAD according to the 

flow path of the scenario. About the part of "<concrete 

data> as", the concrete data is defined according to the 

instance specifications which are categorized into 

"input/output data on UI only" and which are in 

adequate position for the actions. In the content of the 

"Predicted Result", the "post-condition" equals the 

post-condition of the IAD. And, the set of 

"[<change>]" (<change> := "created" | "updated" | 

"deleted") is defined according to the difference data 

discovered by comparing the predicted data with the 

prepared data in the scenario every instance 

specification. 

However, a few points cannot be defined 

methodologically as is. It is to define the concrete data 

into the contents of "Inputs". In an IAD, a user inputs 

for the object node which is reached from the system. 

However, the concrete data should reflect into the 

contents of "Inputs" is defined to the object node 

which is sent to the system. Therefore, the input item 

which is sent to the system should correspond to the 

output item which is reached from the system properly. 

For example, this problem can be resolved by defining 

the correspondence between the input item and the 

output item, using tagged value. 

 

 

6 Related Work 
Several researchers [5, 7-10] have proposed to 

generate specification or code for test stage from 

mainly UML behavioral model such as activity 

diagram and/or sequence diagram and/or state 

machine diagram. Some of these works [5, 9] 

introduce contracts, which are pre-/post-conditions 

related to service execution, into the use cases or the 

messages of a sequence diagram. Then, the contracts 

are defined by the constraint language such as Object 

Constraint Language (OCL) or OCL like languages. 

These works [5, 7-10] have strongly focused on 

measuring the test coverage based on the idea of 

generating test cases from the behavioral model which 

represents exhaustive flows or the sets of scenario 

which consists of normal and exceptional flows. On 

the other hand, in our approach, it is important that the 

UML-based scenarios are satisfactory and adequate 

for the customers. After validating the scenarios 

through generated UI prototype, the test cases are 

semi-automatically defined by the concrete data 

derived from the validated scenarios. Also, from the 

viewpoint of test coverage, an IAD (Interaction 

Activity Diagram) exhaustively defines all flows for 

each service, so that the testers can get all test case 

templates for the service. Furthermore, the works [5, 

7-10] do not specify how to confirm the predicted 

results of the scenario. In our approach, the predicted 

results can be specified via following two ways. The 

scenario-based prototype makes it possible to confirm 

it by the data represented on UI. The CIODD 

(Concrete Input/Output Data Diagram) of the 

UML-based scenario makes it possible to confirm the 

internal system data which would be changed partially 

by the scenario execution. 

 

 

7 Conclusion and Future Work 
In this paper, we have proposed the definition process 

of reliable test cases from the scenarios that have been 

validated by the customers using the prototype system 

which was generated by the RA model. As RA model 

includes the specification of concrete data, the test 

cases can methodologically define concrete inputs 

data and the expected result data. Therefore, the 

developers can hand over the validated scenario 

conforming to the test specification to the tester 

precisely. Moreover, our approach can support 

exhaustive testing for the testers.  

As the future work, to support the integrated 

system testing, we introduce the model which 

represents how to integrate services into the RA model. 

Also, we introduce the order of priority into the flows 

every conditional branch in the IAD to clarify the 

flows which the developers want the testers to test 

preponderantly. 

 

 

References: 

 [1]Mibe, R., Kawai, K., Takeuchi, T., et al., A 

Method for Requirement Acquisition for Web 

Applications by Usecase Driven Prototyping, 

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 158 ISBN: 978-960-474-156-4



Journal of Information Processing, Vol.49, No.4, 

2008, pp.1669-1679. (in Japanese) 

[2]Díaz, J. S., López, O. P. and Fons, J. J., From User 

Requirements to User Interfaces: A 

Methodological Approach, The 13th CAiSE, 

LNCS 2068, 2001, pp.60-75.  

[3]Elkoutbi, M., Khriss, I., Keller, R. K., Automated 

Prototyping of User Interfaces based on UML 

Scenarios, Journal of Automated Software 

Engineering, Vol.13, No.1, 2006, pp.5-40. 

[4]Jakimi, A., Sabraoui, A., Salah, A. and Elkoutbi, 

M., Using UML Scenarios in B2B Systems, Proc. 

of ICCCE’08, 2008, pp.964-968. 

[5]N Raza, A Nadeem and M Z Z Iqbal, An 

Automated Approach to System Testing based on 

Scenarios and Operation Contracts, Proc. of the 

7th QSIC, 2007, pp.256-261. 

[6]Object Management Group: http://www.omg.org/ 

[7]Sarma, M. and Mall, R., System Testing using 

UML Models, Proc. of the 16th IEEE ATS, 2007, 

pp.155-158. 

[8]Sarma, M., kundu, D. and Mall, R., Automatic Test 

Case Generation from UML Sequence Diagrams, 

Proc. of the 15th ADCOM, 2007, pp.60-67.  

[9]Nebut, C., Fleurey, F., Traon, Y. L., et al., 

Automatic Test Generation: A Use Case Driven 

Approach, IEEE Trans. on Software Engineering, 

Vol.32, No.3, 2006, pp.140-155. 

[10]Huang, C. and Chen, H. Y., A Tool to Support 

Automated Testing for Web Application Scenario, 

Proc. of 2006 IEEE ICSMC, 2006, pp.2179-2184. 

[11]Ogata, S. and Matsuura, S., A UML-based 

Requirements Analysis with Automatic Prototype 

System Generation, Communication of SIWN, 

Vol.3, 2008, pp.166-172. 

[12]Ogata, S. and Matsuura, S., Scenario-based 

Automatic Prototype Generation, Proc. of the 32nd 

Annual IEEE International COMPSAC, 2008, 

pp.492-493. 

[13]Onishi, A. and Go, K., Rquirements Engineering, 

Kyoritsu Publishing Company, 2002. (in Japanese) 

[14]Sommerville, I. and Sawyer, P., Requirements 

Engineering: A Good Practice Guide, John Wiley 

& Sons, 1997. 

[15]Astah*: http://www.change-vision.com/ 

[16]IEEE Computer Society, 829-2008 IEEE 

Standard for Software and System Test 

Documentation, 2008. 

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 159 ISBN: 978-960-474-156-4




