
Adaptive Refactoring Using a Core-Based Clustering Approach

GABRIELA CZIBULA

Babeş-Bolyai University

Department of Computer Science

1, M. Kogălniceanu Street, Cluj-Napoca

ROMANIA

gabis@cs.ubbcluj.ro

ISTVAN GERGELY CZIBULA

Babeş-Bolyai University

Department of Computer Science

1, M. Kogălniceanu Street, Cluj-Napoca

ROMANIA

istvanc@cs.ubbcluj.ro

Abstract: Improving the software systems design through refactoring is the most important issue during the evo-

lution of object oriented software systems. Refactoring aims at changing a software system in such a way that it

does not alter the external behavior of the code, but improves its internal structure. We have previously intoduced

an original approach, named CARD (Clustering Approach for Refactorings Determination) that uses clustering for

improving the class structure of a software system. In this paper we extend our approach and propose an adaptive

method to cope with the evolving structure of any object oriented application. Namely, we handle here the case

when new application classes are added to the software system and the current restructuring scheme must be ac-

cordingly adapted. We provide an example illustrating the efficiency of the proposed approach.

Key–Words: Restructuring, refactoring, clustering

1 Introduction

The software systems, during their life cycle, are

faced with new requirements. These new require-

ments imply updates in the software systems struc-

ture, that have to be done quickly, due to tight sched-

ules which appear in real life software development

process. That is why continuous restructurings of the

code are needed, otherwise the system becomes diffi-

cult to understand and change, and therefore it is of-

ten costly to maintain. Refactoring [3] is the process

of improving the design of software systems, aiming

at changing a software system in such a way that it

does not alter the external behavior of the code, but

improves its internal structure.

We have developed in [1] a clustering based

approach, named CARD (Clustering Approach for

Refactorings Determination) that uses clustering for

improving the class structure of a software system. In

this direction, a partitional clustering algoritm, kRED

(k-means for REfactorings Determination), was de-

veloped. The algorithm suggests the refactorings

needed in order to improve the structure of the soft-

ware system. The main idea is that clustering is

used in order to obtain a better design, suggesting the

needed refactorings.

Real applications evolve in time, and new ap-

plication classes are added in order to met new re-

quirements. Consequently, restructuring of the mod-

ified system is nedeed to keep the software structure

clean and easy to maintain. Obviously, for obtaining

the restructuring that fits the new applications classes,

the original restructuring scheme can be applied from

scratch on the whole extended system. However, this

process can be inefficient, particularly for large soft-

ware systems. That is why we propose an adaptive

method to cope with the evolving application classes

set. The proposed method extends our original ap-

proach previously introduced in [1].

The rest of the paper is structured as follows. The

clustering based approach for adaptive refactorings

identification previously introduced in [1] is described

in Section 2. For the adaptive process, a Core Based

Adaptive Refactoring algorithm (CBAR) is proposed.

Section 3 indicates several existing approaches in the

direction of automatic refactorings identification. An

example illustrating how our approach works is pro-

vided in Section 4. Some conclusions of the paper

and further research directions are outlined in Section

5.

2 Our approach

2.1 kRED Clustering Algorithm for Refac-

torings Identification. Background

In the following we briefly describe CARD approach

that we have introduced in [1] for identifying refactor-

ings that would improve the class structure of a soft-

ware system. First, the existing software system is

analyzed in order to extract from it the relevant enti-

ties: classes, methods, attributes and the existing re-

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 133 ISBN: 978-960-474-156-4



lationships between them: inheritance relations, ag-

gregation relations, dependencies between the entities

from the software system. After data was collected,

the set of entities extracted at the previous step are re-

grouped in clusters using a clustering algorithm. The

goal of this step is to obtain an improved structure of

the existing software system. The last step is to extract

the refactorings which transform the original structure

into an improved one, by comparing the newly ob-

tained software structure with the original one.

For re-grouping entities from the software sys-

tem, a vector space model based clustering algo-

rithm, named kRED (k-means for REfactorings De-

termination), was introduced in [1]. In the pro-

posed approach, the objects to be clustered are the

elements from the considered software system, i.e.,

S = {e1, e2, . . . , en}, where ei, 1 ≤ i ≤ n can be

an application class, a method from a class or an at-

tribute from a class. In the following, we will re-

fer an element ei ∈ S as an entity. Using a vec-

tor space model based clustering [5], we have con-

sidered the attribute set characterizing the entities as

the set of application classes from the software sys-

tem S, A = {C1, C2, . . . , Cl}. For each entity ei from

the software system S, a l dimensional vector was de-

fined, ei = (ei1, ei2, . . . , eil) [1], where eij expresses

the dissimilarity degree between the entity ei and the

application class Cj . Finally, the distance d(ei, ej)
between two entities ei and ej from the software sys-

tem S was computed as a measure of dissimilarity be-

tween their corresponding vectors, using the Euclid-

ian distance.

The main idea of the kRED algorithm introduced

in [1] in order to group entities from a software system

is the following:

(i) The initial number of clusters is the number l of

application classes from the software system S.

(ii) The initial centroids are chosen as the application

classes from S.

(iii) As in the classical k-means approach, the clusters

(centroids) are recalculated, i.e., each object is

assigned to the closest cluster (centroid).

(iv) Step (iii) is repeatedly performed until two con-

secutive iterations remain unchanged, or the per-

formed number of steps exceeds the maximum

allowed number of iterations.

More details about kRED algorithm can be

found in [1].

We mention that the partition obtained by kRED

algorithm represents a new (improved) structure of it,

which indicates the refactorings needed to restructure

the system.

2.2 Our proposal for adaptive refactoring

Let us consider a software system S. As presented in

Section 2.1, the kRED algorithm provides a restruc-

turing scheme that gives the refactorings needed in S
in order to improve its structure.

During the evolution and maintenance of S, new

application classes are added to it in order to met new

functional requirements. Let us denote by S ′ the soft-

ware system S after extension. Consequently, restruc-

turing of S ′ is nedeed to keep its structure clean and

easy to maintain. Obviously, for obtaining the restruc-

turing that fits the new applications classes, the origi-

nal restructuring scheme can be applied from scratch,

i.e., kRED algorithm should be applied considering all

entities from the modified software system S ′. How-

ever, this process can be inefficient, particularly for

large software systems.

That is why we extend the approach from [1]

and we propose an adaptive method to cope with the

evolving application classes set. Namely, we han-

dle here the case when new application classes are

added to the software system and the current restruc-

turing scheme must be accordingly adapted. The main

idea is that instead of applying kRED algorithm from

scratch on the modified system S ′, we adapt the parti-

tion obtained by kRED algorithm for the initial system

S, considering the newly added application classes.

Using the adaptive process, we aim at reducing the

time needed for obtaining the results, without altering

the accuracy of the restructuring process.

In this section we will introduce our approach for

adaptive refactoring, starting from the approach intro-

duced in [1].

2.3 Theoretical model

Let S = {e1, e2, . . . , en} be the set of entities

from the software system. Each entity is mea-

sured with respect to a set of l attributes, A =
{C1, C2, . . . , Cl} (the application classes from S) and

is therefore described by a l-dimensional vector: ei =
(ei1, ei2, . . . , eil), eik ∈ ℜ, 1 ≤ i ≤ n, 1 ≤ k ≤ l. By

l we denote the number of application classes from S.

Let K = {K1, K2, . . . , Kl} be the partition (set

of clusters) discovered by applying kRED algorithm

on the software system S. Each cluster from the par-

tition is a set of entities, Kj = {ej
1, e

j
2, . . . , e

j
nj
}, 1 ≤

j ≤ l. The centroid (cluster mean) of the cluster Kj

is denoted by fj , where fj =









nj
∑

k=1

e
j

k1

nj
, . . . ,

nj
∑

k=1

e
j

kl

nj









.

The measure used for discriminating two entities

from S is the Euclidian distance between their corre-

sponding l dimensional vectors, denoted by d.

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 134 ISBN: 978-960-474-156-4



Let us consider that the software system S is ex-

tended by adding s (s ≥ 1) new application classes,

Cl+1, Cl+2, . . . , Cl+s. Consequently, the set of at-

tributes will be extended with s new attributes, corre-

sponding to the newly added application classes. Af-

ter extension, the modified software system becomes

S ′ = {e′1, e
′
2, . . . , e

′
n, e′n+1, e

′
n+2, . . . , e

′
n+m}, where

• e′i, 1 ≤ i ≤ n is the entity ei ∈ S after extension.

• e′i,∀n + 1 ≤ i ≤ n + m are the entities (classes,

methods and attributes) from the newly added ap-

plication classes Cl+1, Cl+2, . . . , Cl+s.

We mention than each entity from the extended

software system is characterized by a l+s dimensional

vector, i.e. e′i = (ei1, . . . , eil, ei,l+1, . . . , ei,l+s), ∀1 ≤
i ≤ n + m.

We want to analyze the problem of grouping the

entities from S ′ into clusters, after the software sys-

tem’s extension and starting from the partition K ob-

tained by applying kRED algorithm on the software

system S (before application class extension). We aim

to obtain a performance gain with respect to the parti-

tioning from scratch process.

The partition K′ of the extended software system

S ′ corresponds to its improved structure. Following

the idea from [1], the number of clusters from K′

should be the number of application classes from S ′,

i.e. l+s.

We start from the fact that, at the end of the ini-

tial kRED clustering process, all entities from S are

closer to the centroid of their cluster than to any other

centroid. So, for any cluster Kj ∈ K and any entity

e
j
i ∈ Kj , inequality below holds.

d(ej
i , fj) ≤ d(ej

i , fr),∀j, r, 1 ≤ j, r ≤ l, r 6= j.
(1)

We denote by K ′
j , 1 ≤ j ≤ l, the set contain-

ing the same entities as Kj , after the extension. By

f ′
j , 1 ≤ j ≤ l, we denote the mean (center) of the

set K ′
j . These sets K ′

j , 1 ≤ j ≤ l, will not necessar-

ily represent clusters after the attribute set extension.

The newly arrived attributes (application classes) can

change the entities’ arrangement into clusters, formed

so that the intra-cluster similarity to be high and inter-

cluster similarity to be low. But there is a considerable

chance, when adding one or few attributes to entities,

that the old arrangement in clusters to be close to the

actual one. The actual clusters could be obtained by

applying the kRED clustering algorithm on the set of

extended entities. But we try to avoid this process and

replace it with one less expensive but not less accurate.

With these being said, we agree, however, to continue

to refer the sets K ′
j as clusters.

The partition K′ should also contain clusters cor-

responding to the newly added application classes.

The initial centroids of these clusters are considered

to be the newly added application classes themselves,

i.e. f ′
j = Cj ,∀l + 1 ≤ j ≤ l + s.

We therefore take as starting point the previous

partitioning into clusters (as explained above) and

study in which conditions an extended object e
j′
i is

still correctly placed into its cluster K ′
j . For that, we

express the distance of e
j′
i to the center of its cluster,

f ′
j , compared to the distance to the center f ′

r of any

other cluster K ′
r.

Theorem 1 When inequalities (2) and (3) hold for an

extended entity e
j′
i (1 ≤ j ≤ l)

e
j
iv ≥

nj
∑

k=1
e
j
kv

nj

,∀ v ∈ {l + 1, l + 2, . . . , l + s} (2)

and

d(ej′
i , f ′

j) ≤ d(ej′
i , Cv),∀ v ∈ {l + 1, l + 2, . . . , l + s}

(3)

then the entity e
j′
i is closer to the center f ′

j than to any

other center f ′
r, 1 ≤ j, r ≤ l + s, r 6= j.

From lack of space, we will not give the proof of

Theorem 1. We have to notice that the inequality in

(2) imposes only intra-cluster conditions. An entity is

compared against its own cluster in order to decide its

new affiliation to that cluster.

2.4 The Core Based Adaptive Refactoring Al-

gorithm

We will use the property enounced in the previous

subsection in order to identify inside each cluster

K ′
j , 1 ≤ j ≤ l, those entities that have a consider-

able chance to remain stable in their cluster, and not

to move into another cluster as a result of the software

system’s class (attribute set) extension. In our view,

these entities form the core of their cluster. In the fol-

lowing definition we will consider that 1 ≤ j ≤ l.

Definition 2

a) We denote by StrongCorej = {ej′
i |e

j′
i ∈ K ′

j , e
j′
i

satisfies the set of inequalities (2) and (3)} the

set of all objects in K ′
j satisfying inequalities (2)

and (3) for each new attribute (class) v, l + 1 ≤
v ≤ l + s.

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 135 ISBN: 978-960-474-156-4



b) Let sat(ej′
i ) be the set of all new attributes v, l+

1 ≤ v ≤ l + s, for which object e
j′
i satisfy in-

equalities (2) and (3).

We denote by WeakCorej = {ej′
i |e

j′
i ∈

K ′
j , |sat(ej′

i )| ≥

nj
∑

k=1

|sat(ej′

k
)|

nj
} the set of all enti-

ties in K ′
j satisfying inequalities (2) and (3) for at

least the average number of attributes for which

(2) and (3) hold.

c) Corej = StrongCorej iif StrongCorej 6= ∅;

otherwise, Corej = WeakCorej .

We mention that the initial number of centroids

(clusters) in the adaptive clustering algorithm is the

number of application classes after the extension of

S, i.e., l+s.

In the following we will present our idea in choos-

ing the first l initial centroids and initial clusters from

the partition that will be adapted. We will assume in

the following that 1 ≤ j ≤ l. For each new appli-

cation class (attribute) Cv, l + 1 ≤ v ≤ l + s, and

each cluster K ′
j there is at least one entity that sat-

isfies the inequality (2) with respect to the attribute

Cv. Namely, the entity that has the greatest value for

attribute Cv between all entities in K ′
j certainly sat-

isfies inequality (2) (the maximum value in a set is

greater or equal than the mean of the values in the

set). But it is not sure that there is in cluster K ′
j

any entity that satisfies relations (2) and (3) for all

new application classes (attributes) Cl+1, . . . , Cl+s.

If there are such entities (StrongCorej 6= ∅), we

know that, according to Theorem 1, they are closer

to the cluster center f ′
j than to any other cluster cen-

ter f ′
r, 1 ≤ r ≤ l + s, r 6= j. Then, Corej will

be taken to be equal to StrongCorej and will be the

seed for cluster j in the adaptive algorithm. But if

StrongCorej = ∅, then we will choose as seed for

cluster j other entities, the most stable ones between

all entities in K ′
j . These entities (WeakCorej) can be

less stable than would be the entites in StrongCorej .

This is not, however, a certain fact: the entities in the

“weaker” set WeakCorej can be as good as those is

StrongCorej . This comes from the fact that Theo-

rem 1 enounces a sufficient condition for the entities

in K ′
j to be closer to f ′

j than to any other f ′
r, but not a

necessary condition, too.

The cluster cores, chosen as we described, will

serve as seed in the adaptive clustering process. All

entities in Corej will surely remain together in the

same group if clusters do not change. This will not be

the case for all core entities, but for most of them.

We have presented above the idea for choosing

the initial l centroids and clusters. Considering that

s new application classes are added to the software

system S, the next s centroids are chosen as the newly

added classes, i.e., f ′
j = Cj ,∀l + 1 ≤ j ≤ l + s.

The adaptive algorithm starts by calculating the

clusters’ cores. The cores will be the new initial clus-

ters from which the adaptive process begins. Next, the

algorithm proceeds in the same manner as the classi-

cal k-means method does.

We mention that the algorithm stops when the

clusters from two consecutive iterations remain un-

changed or the number of steps performed exceeds a

maximum allowed number of iterations.

Remark 3 We mention two main characteristics of

CBAR algorithm: (a) the time complexity for cal-

culating the cores in the clustering process does not

grow the complexity of the global calculus; (b) the

method for calculating the core of a cluster C (us-

ing inequality (2)) depends only on the current cluster

(does not depend on other clusters).

3 Related Work

There are various approaches in the literature in the

field of refactoring. But, only very limited support

exists in the literature for detecting refactorings.

Deursen et al. have approached the problem of

refactoring in [10]. The authors illustrate the dif-

ference between refactoring test code and refactoring

production code, and they describe a set of bad smells

that indicate trouble in test code, and a collection of

test refactorings to remove these smells.

Xing and Stroulia present in [11] an approach for

detecting refactorings by analyzing the system evolu-

tion at the design level.

A search based approach for refactoring software

systems structure is proposed in [7]. The authors use

an evolutionary algorithm for identifying refactorings

that improve the system structure.

An approach for restructuring programs written

in Java starting from a catalog of bad smells is intro-

duced in [2].

Based on some elementary metrics, the approach

in [9] aids the user in deciding what kind of refactor-

ing should be applied.

The paper [8] describes a software vizualization

tool which offers support to the developers in judging

which refactoring to apply.

Clustering techniques have already been applied

for program restructuring. A clustering based ap-

proach for program restructuring at the functional

level is presented in [12]. This approach focuses on

automated support for identifying ill-structured or low

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 136 ISBN: 978-960-474-156-4



cohesive functions. The paper [6] presents a quantita-

tive approach based on clustering techniques for soft-

ware architecture restructuring and reengineering as

well for software architecture recovery. It focuses on

system decomposition into subsystems.

A clustering based approach for identifying the

most appropriate refactorings in a software system is

introduced in [1].

To our kowledge, there are no existing approaches

in the literature in the direction of adaptive refactoring

as we approach in this paper.

4 Experimental Evaluation

In this section we present an experimental evaluation

of CBAR algorithm on a simple case study. We aim to

provide the reader with an easy to follow example of

adaptive refactorings extraction. Let us consider the

software system S consisting of the Java code exam-

ple shown below.

public class Class_A {

public static int attributeA1;

public static int attributeA2;

public static void methodA1(){

attributeA1 = 0;

methodA2();

}

public static void methodA2(){

attributeA2 = 0;

attributeA1 = 0;

}

public static void methodA3(){

attributeA2 = 0;

attributeA1 = 0;

methodA1();

methodA2();

}

}

public class Class_B {

private static int attributeB1;

private static int attributeB2;

public static void methodB1(){

Class_A.attributeA1=0;

Class_A.attributeA2=0;

Class_A.methodA1();

}

public static void methodB2(){

attributeB1=0;

attributeB2=0;

}

public static void methodB3(){

attributeB1=0;

methodB1();

methodB2();

}

}

Analyzing the code presented above, it is obvious

that the method methodB1() has to belong to class A,

because it uses features of class A only. Thus, the

refactoring Move Method should be applied to this

method.

We have applied kRED algorithm, and the

Move Method refactoring for methodB1() was deter-

mined. A partition K = {K1, K2} was obtained,

where K1 = {Class A, methodA1(), methodA2(),

methodA3(), methodB1(), attributeA1, attributeA2}
and K2 = {Class B, methodB2(), methodB3(), at-

tributeB1, attributeB2}.

Cluster K1 corresponds to application class

Class A and cluster K2 corresponds to application

class Class B in the new structure of the system.

Consequently, kRED proposes the refactoring Move

Method methodB1() from Class B to Class A.

Let us consider that the system is now extended

with another class, Class C. Let us denote by S ′ the

extended software system.

public class Class_C {

private static int attributeC1;

private static int attributeC2;

public static void methodC1(){

Class_A.attributeA1=0;

Class_A.methodA2();

}

public static void methodC2(){

attributeC1=0;

attributeC2=0;

}

public static void methodC3(){

attributeC1=0;

methodC1();

methodC2();

}

}

Analyzing the newly added application class, it is

obvious that the method methodC1() has to belong to

class A, because it uses features of class A only. Thus,

the refactoring Move Method should be applied to this

method.

Consequently, a partition K′ = {K ′
1, K

′
2, K

′
3} of

the extended system has to be obtained, with clus-

ters K ′
1, K ′

2 and K ′
3 corresponding to the restruc-

tured classes class A, class B and class C respec-

tively, i.e., K ′
1 = {Class A, methodA1(), methodA2(),

methodA3(), methodB1(), methodC1(), attributeA1, at-

tributeA2}, K ′
2 = {Class B, methodB2(), methodB3(),

attributeB1, attributeB2} and K ′
3 = {Class C,

methodC2(), methodC3(), attributeC1, attributeC2}.

There are two possibilities to obtain the restruc-

tured partition K′ of the extended system S ′.

1. To apply kRED algorithm from scratch on the

extended system containing all the entities from

application classes class A, class B and class C.

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 137 ISBN: 978-960-474-156-4



2. To adapt, using CBAR algorithm, the partition

K obtained after applying kRED algorithm be-

fore the system’s extension.

We comparatively present in Table 1 the results ob-

tained after applying kRED and CBAR algorithms

for restructuring the extended system S ′. We mention

that both algorithms have identified the partition K′

corresponding to the improved structure of S ′.

Table 1: The results

No (l) of classes from S 2

No of entities from S 12

No (s) of newly added classes 1

No (l+s) of classes from S ′ 3

No of entities from S ′ 18

No of kRED iterations for (l+s) attributes 3

No of CBAR iterations for (l+s) attributes 2

From Table 1 we observe that CBAR algorithm

finds the solution in a smaller number of iterations

than kRED algorithm. This confirms that the time

needed by CBAR to obtain the results is reduced, and

this leads to an increased efficiency of the adaptive

process. For larger software systems, it is very likely

that the number of iterations performed by CBAR
will be significantly reduced in comparison with the

number of iterations performed by kRED.

5 Conclusions and Future Work

We have proposed in this paper a new method for

adapting a restructuring scheme of a software system

when new application classes are added to the sys-

tem. The considered experiment proves that the result

is reached more efficiently using CBAR method than

running kRED again from the scratch on the extended

software system.

Further work will be done in order to isolate con-

ditions to decide when it is more effective to adapt

(using CBAR) the partitioning of the extended soft-

ware system than to recalculate it from scratch using

kRED algorithm. We also aim at applying the adap-

tive algorithm on open source case studies and real

software systems.

Acknowledgements: This work was supported by

the research project ID 2286, No. 477/2008, spon-

sored by the Romanian National University Research

Council (CNCSIS).

References:

[1] I.G. Czibula and G. Serban. Improving sys-

tems design using a clustering approach. IJC-

SNS International Journal of Computer Science

and Network Security, 6(12):40–49, 2006.

[2] T. Dudzikan and J. Wlodka. Tool-supported di-

covery and refactoring of structural weakness.

Master’s thesis, TU Berlin, Germany, 2002.

[3] M. Fowler. Refactoring: Improving the Design

of Existing Code. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1999.

[4] E. Gamma. JHotDraw Project.

http://sourceforge.net/projects/jhotdraw.

[5] A. Jain and R. Dubes. Algorithms for Clustering

Data. Prentice Hall, New Jersey, 1998.

[6] Chung-Horng Lung. Software architecture re-

covery and restructuring through clustering tech-

niques. In ISAW ’98: Proceedings of the third in-

ternational workshop on Software architecture,

pages 101–104, New York, NY, USA, 1998.

ACM Press.

[7] Olaf Seng, Johannes Stammel, and David

Burkhart. Search-based determination of refac-

torings for improving the class structure of

object-oriented systems. In GECCO ’06, pages

1909–1916, New York, NY, USA, 2006. ACM

Press.

[8] Frank Simon, Frank Steinbruckner, and Claus

Lewerentz. Metrics based refactoring. In CSMR

’01: Proceedings of the Fifth European Confer-

ence on Software Maintenance and Reengineer-

ing, pages 30–38, Washington, DC, USA, 2001.

IEEE Computer Society.

[9] Ladan Tahvildari and Kostas Kontogiannis. A

metric-based approach to enhance design quality

through meta-pattern transformations. In CSMR

’03: Proceedings of the Seventh European Con-

ference on Software Maintenance and Reengi-

neering, pages 183–192, Washington, DC, USA,

2003. IEEE Computer Society.

[10] A. van Deursen, L. Moonen, A. van den Bergh,

and G. Kok. Refactoring test code. pages 92–95,

2001.

[11] Zhenchang Xing and Eleni Stroulia. Refactor-

ing detection based on UMLDiff change-facts

queries. WCRE, pages 263–274, 2006.

[12] Xia Xu, Chung-Horng Lung, Marzia Zaman,

and Anand Srinivasan. Program restructuring

through clustering techniques. In SCAM ’04:

Proceedings of the Source Code Analysis and

Manipulation, Fourth IEEE International Work-

shop on (SCAM’04), pages 75–84, Washington,

DC, USA, 2004. IEEE Computer Society.

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 138 ISBN: 978-960-474-156-4




