
Software Verification of a Virtual Development Environment for Embedded

Software

FEBIANSYAH HIDAYAT, HADIPURNAWAN SATRIA, JIN B. KWON

Department of Computer Science and Engineering

Sun Moon University

Tangjeong, Asan, Chungnam, 336-708

REPUBLIC OF KOREA

havban@gmail.com, hadi198@yahoo.com, jbkwon@sunmoon.ac.kr

Abstract: - Virtualization helps developer optimizing potential of their resource. Physical hardware can be represented as

software programs in multi-purpose computer. SID is known as framework providing hardware virtualization based on

components. Virtual Development Environment for Embedded Software (VDEES) wrapped it inside Eclipse Platform,

providing GUI for managing component interactions and creation of custom components. Using VDEES, developers

will be helped to write software on top of new virtual components without waiting for the physical components hardware

being implemented. It cuts the time, cost and risk to the lowest. Furthermore, VDEES is open source, that way we can

enhance and modify as needed.

Key-Words: - Embedded Software, Hardware Simulation, SID, Virtual Component

1 Introduction
VDEES has been developed since 2005, based on open

source platforms. It is build on top of Eclipse platform

and uses SID as the virtual environment. SID is

component based; it means that to build a new kind of

hardware is to build a new component in the SID

framework.

Fig 1. VDEES Architecture

This paper will explain verification steps we have

done using VDEES. There are five target programs used

for testing. Description about the physical environment

and virtual environment will be presented on section 2

and 3. The development and testing of components and

binary image building will be included in section 4 to 6.

Fig.

Our final goal is the binary image will be able to run

on the physical environment (board) and on the SID

framework. The binary image itself may be compiled

using various compilers as long it is targeted for the

specified hardware.

We divided our work into three phases, Physical,

Pre-Development, and Development phases. The

Physical phase is when the program is able to run on

physical environment. We were already on that phase

when this project started. The Physical phase will be our

comparison with the result of this project. The

Pre-Development phase is when we analyze which

custom components are needed to be build, and we also

decided how detail our work will be on the component.

The Development phase realizes our needs from the

previous phase. After all the three phases, we can

evaluate the correctness and performance using five test

programs running on simulated environment..

2 Physical Environment
We used an MBA-2410 board as target board that

consists of ARM920T with 32 MB of RAM. The board is

equipped with LCD screen, touch screen, and keypad. It

has some modes to run as options, using Smart Card or

using internal memory. In this project, the program is

running initially using internal memory, addressed at

0x30000000 since the physical RAM is actually located

at that address.

ARM920T has the same instruction set as the

ARM7TDMI processor that is supported by the SID

framework. The difference is only on the availability of

Memory Management Unit (MMU) sub component that

is needed when an Operating System (OS) is running on

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 115 ISBN: 978-960-474-156-4

the board. In our case, the MMU is not needed since only

one single program, non OS-based, is running. In that

case, existing ARM7TDMI virtual component is

sufficient.

There are many other details of components that we

would skip in the implementation to avoid complexity

and only focus on functionality. The cache and buffering

in processor and video data would be skipped; instead

direct access to memory address will be used.

To communicate among components, the registers

are used with determined address. Changing the value of

a register will change the behavior of component

corresponding to the register. The definitions of

components address are listed in the header file of source

code.

The main IDE used to develop the program is Code

Warrior (CW). It supports many kinds of boards.

Debugging feature is also available using AXD debugger

from CW. CW is recommended by Atmel Inc. and

distributed along with the board with the manual

compliant. Another application used is Spider debugger,

to do debugging.

3 Virtual Environment
We are using VDEES that has SID framework inside it.

The VDEES runs on Eclipse with C/C++ Development

Toolkit (CDT) plug in support. SID framework should

also be installed in the system, it is already included in the

VDEES installation package, for more information, you

can access this link [7].

VDEES provides four plugins, they are

Configuration Builder, Component Builder, System

Monitor, and Image Builder. Those components are built

on top of Eclipse Platform. As we can see in the Fig. 1,

Image Builder and Component Builder are extensions of

CDT in Eclipse.

GNU ARM compiler is needed, and is a separated

element from Eclipse, but included in the VDEES

installation package. Different from regular gcc, the

arm-elf-gcc (GNU C compiler for ARM) will build the

binary to comply with the target machine that may have

different instruction set than the host machine. The

language itself is C as we will explain later on the source

code adaptation about some differences between CW’s

and GNU ARM’s syntax and keywords.

arm-elf-gdb (GNU Debugger for ARM) is used to do

monitoring and debugging of the running application.

The two applications communicate through socket with

defined port. Then, the value will be displayed in the

Eclipse window. VDEES can do monitoring to the level

of virtual component variable status. It should give an

in-depth view of current running program on the virtual

environment.

Unix environment is required to run the SID, since

the source code of it is only compatible with Unix

platform. Fedora Linux 4 and UBuntu Linux 8.4 are the

OS platforms we used in this development, although

Cygwin for windows may be used also to mimic the Unix

environment.

4 Pre-Development
At this phase, we analyzed the pre-existing components

of SID, for example, the ARM CPU, Loader, LCD,

Timer, Interrupt component. From that list, we can

compare it to the real board components which are used

in the test program and decide which need to be built.

We listed the required components of the binary

program by analyzing the source code. We did not want

to implement non existing component in the SID

framework while it is not needed in the program. We just

need to make sure the program will run well on the virtual

environment, by getting the list of registers that will

experience value changes on runtime. The registers

implementation is important, since the MBA-2410 is

accessing components through memory addresses. This

gives many conveniences to the developers as they only

need to refer a component using regular address. Which

register address is accessed shows which component

being used.

The list of components we needed to build were

Analog to Digital Converter (ADC - Handle conversion

data from analog to digital data) , Touch Screen Interface

(using mouse click as event trigger), LCD Controller

(Process the data from the video buffer and update the the

LCD screen), Timer (periodically trigger interrupt),

Clock and Power management (manage the clock speed

given to various components), and Interrupt Controller

(Provide interface to the interrupt queue in the processor).

Some of those components are extension of pre-existing

one.

We also avoided implementing components that their

registers accessed from the test program, yet the behavior

of the program will not be affected in term of

functionality, for example the speed and status indicator.

LED component can be ignored as it only shows

debugging performed in the board. Various clock setting

can be skipped and only provide single fastest clock,

hoping the simulation will run as smooth as possible.

5 Development
We move on to the development phase, where we

implement components, compile the test program source

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 116 ISBN: 978-960-474-156-4

code using arm-elf-gcc, and create configuration files

consisting of components loaded and their connections to

each other. The whole processes are done within the

VDEES IDE features mentioned before.

5.1 Custom Components
VDEES provides wizard to create a custom component,

generating basic template files required to build the

component. Those template files can be modified to our

needs.

C++ editor and builder are available in VDEES as the

extension of CDT plugin from eclipse. For Tcl/Tk code

editing, we use external editor, gedit or vim.

The first component implemented was ADC Controller

and Touch Screen Interface using C++ and Tk. The last

one implemented is Interrupt Controller, since at first we

could actually bypass the code that uses the interrupt

component.

Fig. 2 SID Component Interaction

Some details of hardware are not implemented to

provide faster simulation running and simpler

implementation. As we can see in Fig. 2, the LCD

controller directly accesses the memory from bus, instead

of buffering data first in a video buffer as in the physical

board. For another example is registers implemented in

ADC Controller are not all needed, in this case, we only

implement four registers that actually accessed from the

test program, they are handling the touch event.

5.2 Image Binary Building
As we mentioned before, the physical environment uses

CW to build the binary image of program. CW uses

almost similar syntax of C and Assembly compared to the

GNU ARM compiler. Some keywords are different, so

we modified it referring to the GNU ARM code style.

The basic change is modifying the names to be all

lower case, since Unix is case sensitive. In the C source

code, we changed the interrupt keyword of Interrupt

Request Queue (IRQ) from “__irq” into

“__attribute__((interrupt("IRQ"))))”. And most of other

changes were done in the Assembly code where we

modified it refers to [6].

We removed code blocks for MMU functions handling.

The functions are still not implemented in the existing

virtual ARM component. We also do not need the MMU

itself since the test programs use none of its functions (no

OS).

 Some parameters given while linking should be

considered. We must put “–nostartfiles” to indicate that

we are using different startup files than the host machine.

“-Wl,-Ttext=0x30000000” indicates that the code is

located at 0x30000000, where the physical memory

available in the board.

5.3 Configuration File
In order to be able to run the simulation, configuration

files should be created, defining which components are

loaded and connected and also how they interact. VDEES

provides wizard where we can choose from existing

components of SID and the custom components we have

created.

Fig. 3 Configuration File Wizard

After creation of configuration file from the wizards,

we can still modify and adapt it based on our needs. We

related components manually, since relate is not

supported yet in the wizard. Some direct attribute

modifications were performed too while debugging. At

this current state, we can just run the file using command

“sid <file name>.conf” from the command line and

validate the configuration.

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 117 ISBN: 978-960-474-156-4

5.4 System Monitor and Testing
To run the simulation inside VDEES, we have to setup

the simulation environment. This is done by setting port

number and target address that GDB will be used. The

binary image file and source codes should be provided

accessible from the system. This instruction is available

in the VDEES manual.

In our experiment, the debugging feature failed to run.

It once successfully running in a simple code provided

from another case, yet in a more complex program, the

GDB can only be commanded to start and stop. Pause and

step-by-step code executions are not available.

The problem could lie on the binary program that

includes incompatible debugging information. For this

suspicion, we’ve tried various types of debugging format.

However, the GDB still refuse to run properly. We

assume the problem may lie on the VDEES parameter

given to run the GDB. This is out of our reach to fix and

we haven’t found the good composition also using

manual GDB calling from console.

Inability of GDB to run properly implies on monitoring

feature of components becomes malfunctioning. We

could not view the window of components’ properties.

Fig. 4 shows how the window should look like.

Fig. 4 System Monitoring

6 Performance evaluation
Because of problem with GDB, we tested the component

using print out debugging manually. We check the

validity through analyzing each output in the console, and

so for speed execution calculation.

From five test programs, only one program fails to run

well on the simulation. The program crashed after

showing initial screen and moving for a few steps.

Meanwhile, all the four program runs as it should be.

However, all of them ran very slow. For each touch input

require few seconds for evaluation and 1 second for

display refresh. It is far from real-time execution we

expected. The scheduling factor in SID should be

investigated as it may give unfair execution share among

components. We found out also that the components are

executing sequentially, it will be better if we could make

it parallel. This will probably need modification in the

SID source code.

Between printout through stdio for debugging and

executing current instruction set in the test program, there

is so much lag time. This shows how bad the scheduling

of component execution is done.

Fig. 5 Running Program in Simulation

7 Conclusion
We have developed custom components and verified how

VDEES runs. It helps developer to do faster design and

testing of newly hardware without waiting long for real

implementation of hardware gets available. Debugging

feature was still not functioning well, and it will be our

future work to investigate. But overall, using VDEES will

benefit developer to do simulation before implementing

the real hardware.

References:

[1] Seal, David, ARM Architecture Reference Manual,

Addison-Wesley, 2001.

[2] H. Satria, B. Wibowo, J.B. Kwon, J.B. Lee, Y.S.

Hwang, A Virtual Development Environment for

Embedded Software using Open Source Software,

IEEE Trans. on Consumer Electronics, May 2009.

[3] MBA-2410 User manual, [24 November 2003]

[4] VDEES Homepage,

http://cslab.sunmoon.ac.kr/vdees/ , 2009

[5] Ronetix, ARM cross development with GNU

Toolchain and Eclipse version 1.1, May 2007

[6] ARM Architecture Reference Manual , 2005

[7] SID reference, http://sourceware.org/sid, 2009

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 118 ISBN: 978-960-474-156-4

