
Software Development and Testing: A System Dynamics Simulation

and Modeling Approach

KUMAR SAURABH

IBM India Pvt. Ltd.

SA-2, Bannerghatta Road, Bangalore. Pin- 560078

INDIA.

Email: ksaurab5@in.ibm.com, kumar.davv@gmail.com

Abstract: - Software-development and testing is a complex activity that often shows signs of contradicting instinctive activities,

in that outcomes can vary drastically with deliberate consequences. Software-development and testing has many complexities,

including dynamic behavior and feedback mechanisms, as well as various interacting factors. System dynamics is a modeling

methodology that is well suited to explaining the root causes of contradicting instinctive activities — through its focus on

building a simulation model that reflects causal relationships, feedback and delays. The production of a high quality

software product requires application of both defect prevention and defect detection techniques. A common defect

detection strategy is to subject the product to several phases of testing such as unit, integration, and system. These testing

phases consume significant project resources and cycle time. As software companies continue to search for ways for

reducing cycle time and development costs while increasing quality, software testing processes emerge as a prime target for

investigation. This paper presents a system dynamics model of software development, better understanding testing processes.

Motivation for modeling testing processes is presented along with a an executable model of the unit test phase. It

motivates the importance of software cycle time reduction. The objective of the research is to provide decision makers

with a model that will enable the prediction of the impact a set of process improvements will have on their software

development cycle time.

Key-Words: - Cycle Time Reduction, Stocks, Simulation, Unit Testing.

1 Introduction
Measurement of both the product and development

processes has long been recognized as a critical activity

for successful software development. Good

measurement practices and data enable realistic project

planning, timely monitoring of project progress and

status, identification of project risks, and effective

process improvement. Appropriate measures and

indicators of software artifacts such as requirements,

designs, and source code can be analyzed to diagnose

problems and identify solutions during project execution

and reduce flaws, revision (effort, resources, etc.), and

cycle time. These practices enable organizations to

achieve higher quality products and reflect more mature

processes, as delineated by the CMMI. Unfortunately,

useful measurements related to the development of

products coded to meet the requirements of secure

software are in their infancy, and no consensus exists as

to what measures constitute best practices. A review of

the existing technical literature reveals the scarcity of

any publicly reported, validated security measurements

related to the software development life cycle.

Nonetheless, there are some measures and practices used

in software development that can be fruitfully extended

to address security requirements.

2 System dynamics introduction
System Dynamics (SD) is a methodology whereby

complex, dynamics and nonlinear interactions in social

systems can be understood and analyzed, and new

structures and policies can be designed to improve the

system behavior. Similarly we can say, System

Dynamics (SD) is a complex scientific and

technological activity, for which is epistemological and

methodological analysis could suggest some new and

interesting perspectives both to practitioners and

theorists of system dynamics (SD)[1]. The System

models to have the most realistic representational

content possible. There is a great different between

purely Correlation or Statistical models and System

Dynamics (SD. The System Dynamics (SD) models also

try to offer explanation and understanding, not only

forecasting and control.

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 67 ISBN: 978-960-474-156-4

2.1 Stocks and Level
These represent the accumulation of basic variables or

quantities that change in example in a population model

one stock may represent the population of a country.

2.2 Flow Variables

These variables represent the instantaneous flow rates.

Unlike in physical systems where the rate variables

mostly follow the laws of nature, in industrial and in

many social and socio-economic systems, which are

man – managed, rate variables often reflect overall

policies governing individual decisions[2].

Fig 1 A simple model created in the graphical modeling
language of Powersim Studio.

2.3 Connectors
A flow represents a physical link between stocks.

However there are also information or dependency links.

Fig 2 Information links connects various variables

3 Cycle time reduction model

development

In order to illustrate the feasibility and usefulness of

system dynamics modeling for process improvement

assessment, we applied our approach to the software

assessment process. For the purpose of our

demonstration, we focus mainly on the question of cycle

time reduction. We initially developed a base model

corresponding to a typical organization’s waterfall

software development process. The software assessment

model enables manipulation of a number of variables

connected to the assessment process in order to

understand their impact on software development cycle

time.

Fig 3, however, does not reveal how time and manpower

are allocated to perform each step in the assessment

process, in order to keep the diagram and ideas

presented simple. Each rate in Fig 3 requires that

manpower be consumed in order to move work products

from one step to the next. Fig 4 shows an incomplete,

but representative implementation of the interface

between the base model of the software development

process and the process improvement model. Fig 4

represents the modeling of faults in the base process

model of software development and illustrates the

impact assessments have on fault production and fault

notice in the base process model.

Fig 3. System Dynamics Model of Assessment Process

Fig 4 System Dynamics Model of the influence of
Assessment Process on faults

3.1 Example model output

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 68 ISBN: 978-960-474-156-4

Fig 5. Assessment simulation Graph

Output from the simulator comes in two forms: numeric

displays and graphs. Numeric displays show the current

value of a simulation variable. Man-Days and Work

Products Concluded are two examples of numeric

displays. Graphs, on the other hand, display the value of

simulation variables versus time. Each output curve is

labeled with a number for ease of reading. There may be

multiple units of measure on the vertical axis, each

matched to the number of the curve it is representing.

The unit of measure on the horizontal axis is days. The

five output curves represent: 1) currently perceived job

size in terms of work products, 2)_cumulative work

products developed, 3) cumulative work products tested,

4) total size of workforce and 5) planned completion

date.

A demonstration of the use of the system dynamic

models for predicting the cycle time reduction due to a

process improvement is in order. Using the integrated

model of the baseline waterfall growth life cycle and the

software assessment process improvement, it will be

shown how this modeling technique can be used for

evaluating the impact that a proposed process

improvement would have on growth cycle time.

The following demonstration is a simulation of a

hypothetical software team employing the simple

assessment model presented in this paper. The project

being developed is estimated to be 64,000 lines of code

requiring a total workforce of eight developers at the

height of growth. Two scenarios of the project growth

are simulated holding all variables fixed, except for the

size of the assessment team and the percent of faults

found during assessment.

Fig 6 is the output generated by executing the model

with an assessment team size of six developers

discovering 40 percent of the faults during assessment.

When interpreting the graphical output, the story of the

project is revealed. From Fig 6, the following story

emerges. Curve 1, the currently perceived job size in

work products, reveals that the project size was initially

underestimated. As growth progressed, the true size of

the project was revealed. Curve 5, the planned

completion date, was not adjusted even as it became

apparent that the project had grown in size. Instead,

curve 4, the total size of workforce, indicates that the

workforce was increased in size. In addition, though not

shown on this graph, the workforce worked longer hours

to bring the project back on e. Curve 2, cumulative work

products developed, reveals that the project appeared to

be back on plan, because there were no visible delays in

growth of work products. It was not until system testing

that problems in growth were discovered.

Curve 3, cumulative work products tested, reveals that

system testing did not go as smoothly as expected. The

poor performance of the assessment team pushed the

notice of faults back to system testing. During system

testing it was revealed that there was a good amount of

revision to be done and as a result, the planned

completion date, curve 5, was once again pushed back.

Fig 6. Software Assessment Graph 1

Fig 7 is the output generated by executing the model

with an assessment team size of three developers

discovering 90 percent of the faults during assessment.

The story is much the same as that shown in Fig 5.

The big difference between Figs 6 and 7 is shown by

curve 3, cumulative work products tested. Using more

effective software assessments, this project was able to

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 69 ISBN: 978-960-474-156-4

discover faults early in the life cycle and correct them

for much less cost than if they had been found in system

test.

In addition, there were no major surprises in system

testing as to the quality of the product developed.

Therefore, with no major amount of revision to be

performed in system test, the project was able to finish

close to its revised planned.

Fig 7. Software Assessment Graph 2

4 Modeling unit test phase
The controversy in the unit test phase revolves around

the amount of unit testing that is performed.

Although rigorous unit testing is recommended by

many development standards, individual projects have

been completed with various levels of unit testing

dependent upon the other quality assurance tasks

performed and the difficulty of creating a unit test

environment. To investigate the impact of these various

degrees of unit testing on software development

cycle time, we developed a model of the unit test phase.

This model assumes that the unit test phase begins after

clean compilation and completes when the unit test

criteria have been met and all defects have been fixed.

It is important to note that we view the unit test phase as

including both defect detection and repair. Repair

consists of amending the code to remove the detected

errors and retesting the code to verify the errors were

removed. In order to model the impact of various unit

test strategies, we also include a defect seepage cost in

our model which addresses the cost of repairing defects

missed by the unit test phase.

The basic inputs to our model are described below:

Variable

Name

Description

Test volume the volume of the unit test

activity measured in lines of code to

test

Test care the care of the testing activity

defined as the percentage of

defects detected by the testing

Excellency

of code

defined as the number of defects per

KLOC which are detectable by

the unit testing

Daily work

force

the number of developers available

for performing unit testing activities

Amendment

efficiency

the number of errors fixed per

developer-day

Cost to fix

later

the number of developer-days needed in a

later test phase to fix an error

missed by unit testing

Table 1. Model Input Variables Description on Unit Test

The model outputs consist of:

Variable Name Description

total time for unit

test

defined as the total number of days needed

to complete the unit test phase

total cost for unit

test

defined as the total number of developer-

days needed to complete the unit

test phase

seepage consequence defined as the number of developer-days

needed to repair the defects not

detected during unit testing

Table 2. Model Output Variables Description on Unit
Test

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 70 ISBN: 978-960-474-156-4

Fig 8 System Dynamics Model for Error Detection and
Correction for Unit Test

Fig 9 System Dynamics cost Model of Unit Test

A simplified view of our system dynamics model is

presented in Fig 8 utilizing POWERSIM VISUAL

STUDIO-2005. The model illustrates code errors being

detected based on an error detection rate which is

dependent upon the testing rate, the excellency of the

code and the care of the testing. The care of the testing

in turn affects the time needed to perform the testing.

The model also illustrates the rate that detected errors

are fixed which is dependent upon the percentage of

developer time available for defect repairs, the

number of available developers and the amendment

efficiency. Defect seepage is also modeled along with

the increased cost of repairing in later phases defects

which were not detected by unit testing. To illustrate

the kind of information which can be produced by

this model, we extracted unit test data from an

engineering organization. Three scenarios were

executed with various levels of unit test care.

The levels of test care were:

Level

Description

0.1 corresponding to very minimal

unit testing

0.7 corresponding to a level of

test care in which 70% of

detectable defects were

detected

1.0 corresponding to an

idealized level of care in

which all defects were

detected.

Table 3 Levels Of Test Care On Unit Test

The results for each of the scenarios are presented in

Table 4. To interpret the cost effectiveness of the

unit test activity it is necessary to combine the

columns for Total Cost for Unit Test and Seepage

Consequence. For this particular organization's project

scenario, the results indicate the benefit of reducing the

unit testing effort.

1. test volume : 174,000 assembly equivalent lines of

code

2. excellency of code: 0.39 defects per KLOC

3. daily work force: 5 developers available for

performing unit testing activities

4. amendment efficiency : 8 errors fixed per

developer-day

5. cost to fix later: 0.36 developer-days needed to fix

an error missed by unit testing in a later test phase

The results for each of the scenarios are presented in

Table 4. To interpret the cost effectiveness of the

unit test activity it is necessary to combine the

columns for Total Cost for Unit Test and Seepage

Consequence. For this particular organization's project

scenario, the results indicate the benefit of reducing the

unit testing effort.

This can be explained by the low cost to fix a defect not

detected during unit testing as determined by the metrics

input to the model. Obviously these results will not

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 71 ISBN: 978-960-474-156-4

apply to all projects since variations of the input

parameters will significantly alter the Total Cost for

Unit Test and Seepage Consequence. For instance,

when the cost to fix a defect not detected during unit

testing is 1.0 errors per developer-day a test.

This can be explained by the low cost to fix a defect not

detected during unit testing as determined by the metrics

input to the model. Obviously these results will not

apply to all projects since variations of the input

parameters will significantly alter the Total Cost for

Unit Test and Seepage Consequence. For instance,

when the cost to fix a defect not detected during unit

testing is 1.0 errors per developer-day a test care

goal of 0.7 results in a lower overall cost.

 Test
 Care

Total
Time

For Unit
Test

Total
Cost For
Unit Test

Seepage
Consequenc

e

0.1 8.5 42.5 22.3

0.7 12.2 61.2 7.3

1.0 50.0 250.0 0.0

Table 4 Results of varying test care on Unit Test

5 Conclusion
This paper demonstrates to evaluate the effectiveness of

process improvements. At this point in our work it gives

developed a base model of the waterfall development

life cycle and a process improvement model of software

assessments. It can be enhanced for developing a base

model of the incremental development process and

creating a library of process improvement models. The

model provides a framework for interpreting testing

metrics and analyzing areas for optimizing testing

processes. We are currently in the process of

calibrating our testing model with actual industry

metrics in order to provide projects with guidance on

selecting their testing strategy.

References:

[1] Ashish Chand (2004), “ Evolving ITES

Capabilities”, Business Process Outsourcing”, Vol II

An Indian Perspective ICFAI press Hyderabad, pp 91-

97.

[2] Forrester, J W. 1985. "The" model versus a modeling

"process". System Dynamics Review. 1(1&2): pp 133-

134.

[3] J.P. Martino, “Technology Forecasting for Decision

making” (2nd Edition)- American Elsevier, pp 43-47.

[4] Meade, N., "The use of growth curves in forecasting

market development: A Review and Appraisal"/ of

Forecasting 3,4 (Oct.-Dec. 1984), 429-451.

RECENT ADVANCES in SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS

ISSN: 1790-5117 72 ISBN: 978-960-474-156-4

