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Abstract: A case study of the multidimensional dependence of average output laser power on basic input laser 
parameters in UV Cu+ Ne-CuBr laser is presented. A nonparametric statistical analysis of large amount of 
experimental data is carry out by multuvariate adaptive regression splines (MARS) technique. The obtained results are 
in good agreement with practical issues. It is shown that the constructed best MARS models can be applied in 
estimation and prediction of current and future experiments in order to improve the laser generation.    
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1   Introduction 
Development of copper halide lasers continues to be 
topical [1]. That is due to the fact that in the visible 
range ( 1 510.6nmλ = , 2 578.2nmλ = ), as well as in the 
ultraviolet range ( 1 248.6nmλ = , 2 252.9nmλ = , 

3 260.0nmλ =  and 4 270.3nmλ = ), these lasers operate 
at highest output power. In particular, because of these 
and other specific capabilities DUV Cu+ Ne-CuBr laser 
found wide application in a number of fields [1-3].  The 
latest theoretical and experimental results on this laser 
are published in [1, 4-7]. Recently new approach for 
studying copper halide lasers, based on statistical 
analysis of the available experimental data was 
developed. In [8-10] multivariate techniques as factor, 
regression and cluster analyses for investigating 
dependences between parameters of copper bromide 
laser were applied. 
     In this paper we deal with data of UV Cu+ Ne-CuBr 
laser. Using the methodology of MARS, the following 
problems are solved: investigation on the mutual 
influence of basic input parameters on the output laser 
power; establishment of the best MARS models of the 
0th, 1st and 2nd order for this dependence; comparison 
between the models constructed and interpretation of the 

results; cross-validation of the models; implementation 
of the models for prediction of future experiments.  
     Experimental results obtained in the Metal Vapour 
Lasers Laboratory, at the Georgi Nadjakov Institute of 
Solid State Physics, Bulgarian Academy of Sciences are 
used for basis of the statistical study. This laboratory is 
leader in the DUV Cu+ laser development [1-7]. 
 
2    Data description 
We will consider the available experimental data of UV 
Cu+ Ne-CuBr laser. The construction of the laser tube is 
shown in Figure 1. 
     We will examine data of nine input basic variables 
which determine the laser operation. They are: D (mm) – 
inside diameter of the laser tube, L (cm) – electrode 
separation (length of the active area), PIN (W) – input 
electrical power, PRF (KHz) – pulse repetition 
frequency, PNE (Torr) - neon gas pressure, PH2 (Torr) – 
hydrogen gas pressure, PL (W/cm) - specific electrical 
power per unit length, TR (K) – temperature of the 
reservoir, pd (Torr.cm). The dependent variable is Pout 
(mW) – multiline average output laser power.  
     The data is of historical type. It consists of 237 
experiments. Here we have to mention the complexity, 
long duration and high cost of each conducted 
experiment.  
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The data of consideration are not normally distributed, 
which was checked by applying a nonparametric 
Kolmogorov-Smirnov test. This is why the well known 

parametric regression methods as multiple linear 
regression, do not give satisfactory results for our data. 

 
Zr oxide fibrous insulation 

 
Fig. 1. Construction of the UV Cu+ Ne-CuBr laser tube. 

 
 
3   Construction of the best MARS models  
 
3.1   Brief description of MARS method 
The mathematical basis for MARS was developed by 
Friedman in 1991 [11]. The created algorithms and their 
first working program versions have been integrated in 
the currently existing MARS software product. The 
product has gained popularity and has been applied with 
increasing success in the last few years [12]. 
     In essence MARS generates flexible adaptive models 
through partially linear regressions, i.e. data 
nonlinearities are approximated using separate sloped 
intercepts in different subintervals of the set defined for 
each predictor variable. A broken line is used, instead of 
looking for one common regression curve approximating 
the data. The slope of the regression line varies from one 
interval to another at the so called nodes. The node 
shows where the behavior of the function changes. In the 
classic spline, nodes are given in advance, while with 
MARS, the most suitable place for them is determined 
using a fast algorithm when certain suitable optimization 
conditions are met (for example a SSE minimum – the 
sum of the squares of the errors). 
     The other basic element of MARS is the basis 
function (BF) for transformation of predictors. The basis 
function is called a “hockey stick” and has the form:  
 
     max (0, )X c−  or ma    x (0, )c X−
 
where c is a constant (value of the node). The regression 
spline is constructed as a linear or nonlinear combination 
of basic functions. An example of univariate MARS 
model of the dependence between PIN and Pout with 
three basis functions is shown in Figure 2.  
     Within this study only the best MARS models are 
presented. They are calculated by using the upper nine 
independent laser variables D, L, PIN, PRF, PNE, PH2, 

TR, pd and PL as predictors and Pout as a response 
variable. The best models are selected so as to allow no 
overfitting of the model, as well as by using the 
algorithm for applying the least squares method with a 
GCV (generalized cross validation measure) criterion 
[11-13].  
     In this study we set a limit of no more than 20 basic 
functions. Models of 0th, 1st and 2nd order of interactions 
between predictors were obtained. Below are a part of 
the derived models.  
     The main statistics of the constructed models are 
summarized in Table 1.  
 
 
3.2   Zero order MARS model 
Firstly we present the MARS model of the 0th order 
without interaction between predictors. It includes the 
following fifteen piecewise linear basic functions: 
 
     BF1 = max (0, PIN - 1440); 
     BF2 = max (0, 1440 - PIN); 
     BF3 = max (0, PNE - 19.34);   
     BF4 = max (0, 19.34 - PNE); 
     BF5 = max (0, PH2 - 0.04); 
     BF6 = max (0, 0.04 - PH2); 
     BF7 = max (0, D - 8); 
     BF9 = max (0, PNE - 21.88);                               (1) 
     BF11 = max (0, PNE - 18.5); 
     BF13 = max (0, PNE - 20); 
     BF15 = max (0, PIN - 1400); 
     BF17 = max (0, PD - 10.75); 
     BF18 = max (0, 10.75 - PD); 
     BF19 = max (0, L - 86); 
     BF20 = max (0, 86 - L); 
 
     The basis functions include six predictors. Sorted by 
their decreasing importance in the model, they are: PIN, 

quartz 
tube 

window protectors 
quartz window 

ceramic tube insert 

quartz reservoir  heater CuBrporous copper 
electrode 

active 
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PNE, PH2, pd, D and L. Their graphs are similar of the 
example in Figure 2.  

              + 18.7600 BF20 
 

     The model is       With the help of MARS model (1)-(2) it is easy to 
calculate the estimate of Pout when predictor values are 
known. For example, a maximum laser output power 
Pout = 1300 mW has been measured at D=5.7 mm, 
PIN=1900 W, PNE=19.3 Torr, PH2=0 Torr, TR=560 K, 
PL=5.52 W/cm, L=86 cm, pd=11.04 and PRF=25 KHz 
[6]. After substituting the latter in (1)-(2) we find the 
approximate estimate 

 
Pout =  941.5008 + 4.7347 BF1 - 1.1363 BF2       

              -  751.6722 BF3 - 52.3815 BF4  
              - 13445.6182 BF5 - 8704.9668 BF6 
              + 40.5457 BF7 + 78.3509 BF9                    (2) 
              + 300.3305 BF11 + 373.0804 BF13 

Pout = 1113 mW.               - 3.7940 BF15 - 46.5438 BF17 
              - 100.3301 BF18 + 267.5647 BF19  

 

 
 

Fig. 2. Data of Pout vs PIN with the best MARS model, using 3 basic functions with two nodes: 1400 and 1440.  
 

 
3.3   Second order MARS model  In (3) the predictors are: PIN, PNE, PH2, D, PL and pd. 

The equation to calculate the estimates of Pout is: ndThe 2  order best MARS model uses the following 
basics functions  Pout = 264.4585 + 2.1350 BF1 - 0.86218 BF2       
               - 181.8927 BF3 + 150.007 BF4  
     BF1 = max (0, PIN - 1440);               + 0.6079 BF5 - 1.4871 BF6  
     BF2 = max (0, 1440 - PIN);               - 5020.7812 BF7 - 3753.4465 BF8                (4) 
     BF3 = max (0, PNE - 19.34);               - 3.4747 BF9 - 1.4942 BF12 - 3.0753 BF13 
     BF4 = max (0, 19.34 - PNE);               + 1.1135 BF15 + 1.1723 BF18 
     BF5 = max (0, PNE - 19.3) BF1;               + 0.6320 BF19 + 0.2412 BF20; 
     BF6 = max (0, 19.3 - PNE) BF1;  
     BF7 = max (0, PH2 - 0.04) BF4; In particular, the predicted value for Pout=1300 mW by 

the model (3)-(4) is approximately      BF8 = max (0, 0.04 - PH2) BF4; Pout = 1246 mW.      BF9 = max (0, D - 8) BF4;                                     (3) 
      BF12 = max (0, 10.55- pd) BF2; 
3.4  Notes on the constructed models       BF13 = max (0, PIN - 1600) BF3; 
We will briefly discuss the obtained results in this 
section. From Table 1 it can be seen that the 2

     BF15 = max (0, PNE - 21.57) BF2; nd order 
models have the best statistical indexes. However, the 
models of higher order of interaction between predictors 
do not show further improvement of the basic statistics. 

     BF17 = max (0, D - 8) BF2; 
     BF18 = max (0, 8 - D) BF2; 
     BF19 = max (0, PL - 3.78) BF17; 
     BF20 = max (0, 3.7 - PL) BF17; 

     As an example, the contribution of the interaction 
between PNE and PH2 to Pout is shown in Figure 3. A 
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maximum for PNE in the interval [1.9, 2] is observed. 
This is also seen in the basic functions BF4, BF5, BF7 
and BF8 in (3). 
     It can be noted that six of the nine predictors show 
influence over laser generation. Variables PRF, L and 
TR are not included in the models. The statistical tests 
of all three models are very good - in particular, the 

coefficient of determination  for the 22 0.966R ≈ nd 
order model. This indicates that model (3)-(4) explains 
96.6% of the data sample. In general, equation (4) 
presents nonlinearities in the studied dependence by 
piecewise polynomials up to third degree in different 
subregions.  
     It can be concluded that the models fit our data well. 

 

  
Fig 3. The contribution of the predictors PNE and PH2 on Pout in model (3)-(4). 

 
 
4   Cross-validation of the models and 
prediction of future experiment 
 
 
4.1 Cross-validation 
To check validity of the MARS models for our data the 
usual split sampling technique was carried out (see [14-
15]). In this method the observed data are divided 
randomly into two sub-samples, for instance in 
proportion 70-30%. The 70% subset is called “training” 
sub-sample and is used to estimate the model. 
Subsequently the obtained model is applied to predict 

the dependent variable for the remaining data or 
“validation” sub-sample. 
     Here we present the data from applying this 
technique to the model (3)-(4). The obtained results for 
our training and validation samples are given in the 
right four columns of Table 1. The results for the test 
sub-sample of 70% are derived using the same model 
setup with up to 20 basic functions with 2nd order 
interactions. The validation of the 30% sub-sample 
describes 95.8% of the corresponding sample of 
experimental data, which is a very good result. We can 
conclude that the model (3)-(4) is valid and possesses 
good prediction power.  
 

Table 1. Basic statistics of constructed MARS models, 2nd order MARS model from a random training 70% 
sub-sample and its 30% validation sub-sample. 

 

MARS model 0th  order 1st order 2nd order  
0th order 
70% training 
sub-sample 

1st order 2nd order 30% validation 
sub-sample 70% training 

sub-sample 
70% training 
sub-sample 

2R 0.9322 0.9635 0.9657 0.9311 0.9660 0.9702 0.9576  
2R 0.9276 0.9609 0.9581 0.9254 0.9622 0.9669 0.9570  adjusted 

GCV 0.9077 0.9464 0.9438 0.9009 0.9370 0.9448 - 
Direct predictors 6 6 6 6 6 6 - 
Terms in model 15 16 15 13 17 17 - 
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4.2 Prediction of future experiment  
The obtained MARS models can be used for prediction 
of new experiments. To this end we apply model (3)-(4) 
at following fixed laser parameters: D=5.7 mm, 
PH2=0.04 Torr. Dependance of average output power 
Pout on Ne buffer-gas pressure at different values of 
input power PIN is shown in Figure 4: the solid line is 
the experimental data from [6], the triangles are the 
values estimated by the MARS model (3)-(4) at 
PIN=1900 W; the two other lines are predictions of 
future experiments by means of (3)-(4) at PIN=2000 W 
and 2100 W, respectively.   
     We can add here that in principle MARS models 
give averaged local behavior of the dependent variable, 
as it was demonstrated in Figure 2.  
 

 
Fig. 4. Comparison of experimental data of laser power 

Pout (solid line) against estimates (triangles) at 
PIN=1900; the two other lines are predictions via 

MARS model (3)-(4) at PIN=2000 W and 
PIN=2100 W, respectively.  

 
 
5   Conclusion 
In this article we presented the main results of statistical 
modeling of multiline average output power in a UV C+ 
Ne-CuBr laser by means of the flexible nonparametric 

MARS method. The models demonstrate good 
prediction ability in estimation and prediction existing 
and future experiments. This methodology could be 
successfully applied in other areas of laser technology.  
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