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Abstract: - This paper aims at development of non linear dynamic model for Magnetic Levitation System and 
proposed linear and nonlinear state space controllers. The linear controller was designed by linearizing the model 
around equilibrium point, while nonlinear controller was based on feedback linearization where a nonlinear state-space 
transformation is used to linearize the system exactly.  Relative degree of the system was determined and conditions 
were found that ensure relative degree be well defined. Magnetic Levitation system considered in this study is taken as 
a ferromagnetic ball suspended in a voltage controlled magnetic field. Dynamic behaviour of the system was modeled 
by the study of electromagnetic and mechanical subsystems. State space model was derived from the system equations. 
Linear full state feedback controller along with linear observer was designed and was compared with nonlinear full 
state feedback with nonlinear observer. Both linear and nonlinear controllers were simulated using matlab and results 
are presented. 
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1   Introduction 
A lot of research effort in control system field has been 
focused on the control of a Magnetic Levitation System 
(MLS).  They are widely used in various fields such as 
frictionless bearings, high-speed Maglev passenger 
trains, levitation of wind tunnel models etc. MLS are 
generally highly nonlinear and open loop unstable 
systems. This unstable aspect of MLS and its inherent 
nonlinearities make the modeling and control problems 
very challenging. Several dynamic models of magnetic 
force have been proposed over the past years and with 
these models various control strategies have been used 
comparing their performance. Both the linear and non-
linear techniques have been used. Linear system model 
only works well over a small region of operating point 
[1]. 

Wong obtained an approximate linear model, with 
an open-loop pole in the right-half plane. A phase-lead 
(linear) compensator was used to stabilize the system for 
step responses of 1.5 mm around the operating point [2]. 

Guess and Alciatore examined the differences 
between the conventional magnetic levitation system 
model and actual system. Effects of un-modeled 
dynamics on the stability of a simulated system were 
also studied. PID controller proved to be effective for set 
point regulation and for tracking a changing input [3]. 
Valer and Lia build a nonlinear model for magnetic 
levitation system and proposes systems linearization 
principle (the expansion in Fourier series and the 
preservation of the first order terms) in order to linearize 
the acquired nonlinear model [4].  

Ying-Shing Shiao, (2001) employed system 
linearization and phase-lead compensation with virtual 
pole cancellation to design the controller of unstable 
nonlinear system to maintain better stability in a 
levitated ball. Such magnetic levitation systems (MLS) 
with small operating ranges have been proposed by the 
various researchers [5].  

 [6] presented a nonlinear model for the magnetic 
force of magnetic levitation device and model was then 
used to propose a control technique for position control 
of a magnetically levitated permanent magnet. A 
Lyapunov based stability analysis was performed to 
prove the stability of the control technique. It was 
reported that the proposed controller performed a precise 
positioning operation over an operation range of 30 mm, 
which is an improvement over available control 
strategies in the literature for large gap magnetic 
levitation systems.  

In [7] the author carried out a comparative study of 
linear and nonlinear controllers for Maglev system and 
stated that, feed-back linearization controller has 
provided significantly better trajectory tracking. 

 
 

2 Magnetic Levitation System 
 
Magnetic levitation system considered in the current 

analysis is consisting of a ferromagnetic ball suspended 
in a voltage-controlled magnetic field. Fig. 1 shows the 
schematic diagram of magnetic levitation system. 
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Figure 1: Schematic Diagram of Magnetic Levitation 
System 
 

Coil acts as electromagnetic actuator, while an opto-
electronic sensor determines the position of the 
ferromagnetic ball. By regulating the electric current in 
the circuit through a controller, the electromagnetic 
force can be adjusted to be equal to the weight of the 
steel ball, thus the ball will levitate in an equilibrium 
state. But it is a nonlinear, open loop, unstable system 
that demands a good dynamic model and a stabilized 
controller.  
 

3 System Dynamics and Modeling  
Dynamic behaviuor of magnetic levitation system can be 
modeled by the study of electromagnetic and mechanical 
sub systems. 
 
3.1 Electromagnetic Dynamics Modeling 
Electromagnetic force produced by current is given by 
the kirchoff’s voltage law; 
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Where,  
u : applied voltage,  
i :  current in the coil of electromagnet,  
R : coil’s resistance and  
L : coil’s inductance. 

 
3.2 Mechanical Modeling 
Free body diagram of ferromagnetic ball suspended by 
balancing the electromagnetic force fem(x,i) and  
gravitational force fg is shown in Fig. 2.  
 
Net force fnet acting on the ball is given by Newton’s 3rd 
law of motion while neglecting friction, drag force of the 
air etc. [2] 
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Where  
m: mass of ball,  
x: position of the ball,  
g: gravitational constant and  
C: magnetic force constant. 
 

 
Figure 2. Free Body diagram of Magnetic levitation 
system. 
 
 
3.3 Non Linear Model 
 
On the basis of electro-mechanical modeling nonlinear 
model of magnetic levitation system can be described in 
terms of following set of differential equations; 
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Equation (2) indicates that L(x) is a nonlinear function 
of balls position x [2], [8].  Various approximations have 
been used for determination of inductance for a 
magnetic levitation system. If we take the approximation 
that inductance varies with the inverse of ball’s position, 
that is 
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Electromagnet 

fem=C.(i/x)2 

fg=mg 

x 

ball of mass 
‘m’ 
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Where L is the constant inductance of the coil in the 
absence of ball, Lo is the additional inductance 
contributed by the presence of the ball, x0 is the 
equilibrium position. Substituting (4) into (2) results in  
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Substituting CxL 200 =  [9], we get 
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3.4 Vector format 
 
Taking x=x1, v=x2, i=x3, Equations (1), (3) and (5) can 
be expressed in vector format where position of ball is 
taken as output as under; 
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3.5 Linear Model 
The system was linearized around a point x1=x01, which 
results in state vector as; 

[ ]TxxxX 3210 000=  

At equilibrium, time rate derivative of x must be equal 
to zero i.e. x02=0. Also equilibrium current can be 
evaluated from Equation (3) and it must satisfy the 
following condition; 

C

gm
xx 13 00 =  

Thus we can write the linearized model in state space 
form as under; 
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3.6 Exact Feedback Linearizing Controller 
 
Relative degree of the system 

 
In order to determine relative degree of the system the 
following definition was used [10]; 
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Using the definition  
For i=0 
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At equilibrium point the term 0)(2 ≠xhLL fg  means 

that degree of the system is 3. In order to assure that the 
relative degree of the system is well defined, x1 and x3 
should be greater than zero. This is quiet acceptable as 
x1≤0 means that the levitated object touches the 
magnetic coil or exists inside the coil while x3<0 would 
result in negative current. 
 
Diffeomorphism and Feed back Transformation 

 
Considering the nonlinear change in coordinates 
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In order to ensure transformation is invertible the system 
state is restricted to the region x1>0 and x3>0. In new 
coordinates, system equation becomes; 
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Where 
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Using state feedback 
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Linear state space representation can be written as 
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As the above system is in control canonical form, it is 
simple to choose the feedback gains to place the closed 
loop poles on the left half plane. 
 
 

4 Simulation Results 
 
 
In order to verify the proposed linear and nonlinear 
controller, the system was simulated using MATLAB 
and parameter values are presented in Table 1. 
 
Table 1: Physical parameters of Magnetic 

Levitation system 

Parameter Unit Value 
m Kg 0.05 
g m/s2 9.8 
R ohms (Ω) 1 
L H  0.01 
C ------ 0.0001 
x01 m 0.012 
x02 m/s 0 
x03 A 0.84 

 
 
In state space form we can write the linear model as 
under 
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The response of the linear system with step input and 
sinusoidal input is given in Fig 3 and 4 respectively. 

 

 
Figure 3: Unit step input response of the linear system 
 

 
Figure 4: States of the linear system with sinusoidal 
input 
 
For nonlinear system there are two loops in the control 
system in which inner loop linearized the input-sate 
relation, and the outer loop stabilize the closed loop 
dynamics and in shown in Fig 5. 
 

 
Figure 5: Feedback Linearization 
 

 

5 Conclusions 
 
While developing a model for Megnetic Levitation 
system, various approximations for coil inductance can 
be made. Model developed in this paper is based on the 
assumption that the inductance varies with the inverse of 
ball’s position and is given in (4), however, in literature 
various approximations are presented. Thus one can 
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particularize the dynamic model of the levitation system 
for each mode of calculating the inductivity.  
The results of exact feedback Linearization controller 
are valid in a large region, however it is not global. The 
control law is not well defined at x1=0, thus if initial 
states are at singularity points, the controller can not 
bring the system to equilibrium point. 
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