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ABSTRACT

In this paper, various speech processing

techniques in time, time-frequency and time-

scale domains for the purposes of recognition

and compression are displayed. The exami-

nation of these representations in a variety of

work that have been accomplished in that di-

rection is included. In particular, we empha-

size the advantages of Wavelet Transforms in

recognizing and compressing speech signals.
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1 INTRODUCTION

Speech signals are processed for various applica-
tions such as recognition, compression, pitch detec-
tion and speaker identification to name a few. Each
processing task is presented with different sets of chal-
lenges and limitations due to the very complex nature
of speech. In the recognition problem, the complexity
of a system is proportional to the size of the speech
set and the speaker dependency required such as sin-
gle speaker, multi speaker or speaker independent [29]
[31].
For compression purposes, one would like to represent
a given speech signal with the least possible number
of data bits while maintaining acceptable audible re-
constructed signal. In this direction, wavelet analy-
sis plays a superior role since it concentrates speech
information such as energy and perception into a few
neighboring coefficients. This translates into retaining
a small number of coefficients to represent a given seg-
ment of speech and ignoring the other majority of the
coefficients [3] [6]. Threshold takes place at every cho-

sen decomposition level of wavelet analysis [33]. After
the segmentation and analysis of the signal, a thresh-
old is applied to the coefficients of each of the levels.
This is a lossy algorithm since one retains only those
coefficients that contribute the highest energy [21].
Regardless of the task at hand, an initial segmentation
procedure of the signal takes place and analysis is con-
ducted on the resulting spetrally stable segments of
speech known as subwords. This is particularly useful
in the cases of speech recognition and speech compres-
sion paradigms, relying on Time-Frequency or Time-
Scale analysis.

2 SPEECH REPRESENTATIONS

In order to digitally process a signal x(t), it has to
be sampled at a certain rate. 20000 Hz is a standard
sampling frequency for the Digits and the English al-
phabets in [24] and [25]. To make the distinction in the
representation with the digitized signals, the latter is
referred to as x(m). Most speech processing schemes
assume slow changes in the properties of speech with
time, usually every 10-30 milliseconds. This assump-
tion influenced the creation of short time processing,
which suggests the processing of speech in short but
periodic segments called analysis frames or just frames
[31]. Each frame is then represented by one or a set of
numbers, and the speech signal has then a new time-
dependent representation. In many speech recogni-
tion systems like the ones introduced in [1] and [27],
frames of size 200 samples and a sampling rate of 8000
Hz (i.e., 200 ∗ 1000/8000 = 25 milliseconds) are con-
sidered. This segmentation is not error free since it
creates blocking effects that makes a rough transition
in the representation (or measurements) of two con-
secutive frames. To remedy this rough transition, a
window is usually applied to data of twice the size of
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the frame and overlapping 50% the consecutive anal-
ysis window. This multiplication of the frame data by
a window favors the samples near the center of the
window over those at the ends resulting into a smooth
representation. If the window length is not too long,
the signal properties inside it remains constant. Tak-
ing the Fourier Transform of the data samples in the
window after adjusting their length to a power of 2,
so one can apply the Fast Fourier Transform [4], re-
sults in time-dependent Fourier transform which re-
veals the frequency domain properties of the signal
[26]. The spectrogram is the plot estimate of the short-
term frequency content of the signals in which a three-
dimensional representation of the speech intensity, in
different frequency bands, over time is portrayed [29].
The vertical dimension corresponds to frequency and
the horizontal dimension to time. The darkness of
the pattern is proportional to the energy of the signal.
The resonance frequencies of the vocal tract appear as
dark bands in the spectrogram [26]. Mathematically,
the spectrogram of a speech signal is the magnitude
square of the Short Time Fourier Transform of that
signal [2]. In the literature one can find many dif-
ferent windows that can be applied to the frames of
speech signals for a short-term frequency analysis.

2.1 TIME-FREQUENCY REPRESEN-
TATIONS

Broadly speaking, there are two classes of time-
frequency representations, linear and non-linear. The
Wigner Distribution is an example of the non-linear
class. It was first introduced by Wigner in quantum
physics [32]. Gabor introduced the Short Time Fourier
Transform (STFT) in 1946 to analyze finite duration
signals [11]. The STFT of a signal x(m) as defined in
[29] is:

Xn(ejω) =

∞∑
m=−∞

x(m)w(n −m)e−jωm. (1)

where w(n − m) is a real window sequence which
determines the portion of the input signal that re-
ceives emphasis at the particular discrete time index
m. The frequency ω is a normalized frequency with
value 2πm/Fs with Fs representing the sampling fre-
quency of the signal. The properties of the STFT
include: homogeneity, linearity, time shift variant and
has an inverse. Proofs of these properties can be found
in [26] and [31] along with many applications of the
STFT in estimating and extracting speech parameters
such as pitch and formants. This time-frequency rep-
resentation allows the determination of the frequency

content of a signal over a short period of time by tak-
ing the FT of the windowed signal. It also has the
ability to capture the slowly varying spectral proper-
ties of an analyzed signal. The signal is assumed to
be quasi-stationary within the analysis window [31].
Thus the width of the analyzing window has to be
carefully chosen. In this time-frequency analysis there
are two conflicting requirements. Since the frequency
resolution is directly proportional to the width of the
analyzing window, good frequency resolution requires
a long window and good time resolution, needs a short
time length window. This is an immediate disadvan-
tage of the STFT analysis since the window length is
kept constant. Hence, there is a time-frequency reso-
lution trade off. This is captured in the uncertainty
principal [2] which states that for the pair of functions
x(t) and its Fourier Transform X(w) one has:
∆t∆w ≥ 1/2, Where ∆2

t and ∆2
w are measures of vari-

ations of spread of x(t) and X(w). If one start analyz-
ing with a window of size 20 ms and needed to shorten
its size to 10 ms for rapid variation detection, then
there will be a loss of frequency resolution. This also
increases the computational complexity of the STFT.
Another interpretation of Equation 4, is that it can
be viewed as the convolution of the modulated sig-
nal x(m)e−jωm with the analysis filter w(m). Based
on this interpretation, the STFT can be implemented
by the filter bank approach where the signal is passed
through a bank of filters of constant bandwidth since
the length of the window is fixed. Thus, the tempo-
ral and spectral resolutions are fixed. Filter banks are
popular analysis methods of speech signals [28] [29].
In this spectral analysis approach, a digitized speech
signal x(m) is passed through a bank of P bandpass
filters (or channels) that covers a frequency range of
interest (e.g., P = 20 channels covering 78 Hz to 5000
Hz [15]). In a filter bank, each filter processes the
signal independently to produce a short-time spectral
representation Xm(ejω) at time m through a filter i
that has ωi as its center of frequency. The center fre-
quency and bandwidth of each filter are normally de-
termined based on a scale model that mimics the way
the human auditory system perceives sounds.

2.2 TIME-SCALE
REPRESENTATIONS

Another two dimensional signal processing tool that
remedies problems arising from time frequency do-
main methods such as trade off in time frequency res-
olutions and limitations in analyzing non-stationary
signals is the time-scale representation. The Wavelet
Transform (WT) accomplishes such representation. It
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partitions the time-frequency plane in a non-uniform
fashion and shows finer frequency resolution than time
resolution at low frequencies and finer time resolution
than frequency resolution at higher frequencies. This
type of transform decomposes the signal into different
frequency components, and then analyzes each com-
ponent with a resolution that matches its scale [14].
The Continuous Wavelet Transform (CWT) [5] of a
signal x(t), is given by :

CWT(a,b)(x(t)) =
1
√
a

∫ ∞

−∞

x(t)ψ

(
t− b

a

)
dt (2)

Where a and b are the real numbers that represent the
scale and the translation parameter of the transform
respectively. The function ψ(t) is called the mother
wavelet and has to have the following two properties:

(1)
∫ ∞

−∞
|ψ(t)|2dt < ∞. This is equivalent to having

ψ(t) ∈ L2(<) the space of finite energy functions.

(2)
∫ ∞

−∞
ψ(t)dt = 0. This is equivalent to having the

Fourier Transform of ψ(t) null at zero (i.e., ψ(t)
has no dc components).

One can interpret the integral operation of Equation
5 in two ways [2]:

(1) It evaluates the inner product or the cross cor-
relation of x(t) with the ψ(t/a)/

√
a at shift b/a.

Thus it evaluates the components of x(t) that are
common to those of ψ(t/a)/

√
a. Thus it measures

the similarities between x(t) and ψ(t/a)/
√
a.

(2) It is the output of a bandpass filter of impulse
response ψ(−t/a)/

√
a at b/a of the input signal

x(t). This is a convolution of the signal x(t), with
an analysis window 1√

a
ψ(t/a) that is shifted in

time by b and dilated by a scale parameter a.

The second interpretation can be realized with a set
of filters whose bandwidth is changing with frequency.
The bandwidth of the filters is inversely proportional
to the scale a which is inversely proportional to fre-
quency. Thus, for low frequency we obtain high spec-
tral resolution and low (poor) temporal resolution.
Conversely, (This is where this type of representation
is most useful) for high frequencies we obtain high
temporal resolution that permits the wavelet trans-
form to zoom in on singularities and detect abrupt
changes in the signal [14]. This leads to a poor high
frequency spectral resolution. The Discrete Wavelet
Transform and the Fourier Transform are modified
versions of the Continuous Wavelet Transform. They
can be derived from the CWT for specified values of

a and b. For example, if the mother wavelet ψ(t) is
the exponential function e−it and a = 1

w
and b=0

then, the CWT is reduced to the traditional Fourier
Transform with the scale representing the inverse of
the frequency [34]. The advantages that this new rep-
resentation has over the STFT can be noticed in its
efficiency in representing physical signals since it iso-
lates transient information in a fewer number of co-
efficients and also in overcoming the time frequency
trade off induced by STFT [14]. The properties of
the CWT for real signals include: linearity, scale in-
variant, translation invariant, real and has an inverse.
For a detailed discussion about the properties of the
CWT and their proofs, refer to [5]. Some of the ap-
plications of the CWT in speech processing include:
Analysis, synthesis and processing of speech and mu-
sic sound in [20], Analysis of sound patterns in [22],
Formant tracking in [13], Speech compression in [33]
and Speech recognition in [7] [8][9][15] and [23] almost
all of which base their work on one of the following
databases [24] and [25].

3 WAVELETS COMPRESSION

The goal of using wavelets to compress speech
signal is to represent a signal using the smallest num-
ber of data bits commensurate with acceptable re-
construction and smaller delay. Wavelets concentrate
speech information (energy and perception) into a few
neighboring coefficients, this means a small number of
coefficients (at a suitably chosen level) will remain and
the other coefficients will be truncated [?]. These co-
efficients will be used to reconstruct the original signal
by putting zeros instead of the truncated ones.

3.1 Thresholding techniques

Thresholding is a procedure which takes place
after decomposing a signal at a certain decomposition
level. After decomposing this signal a threshold is ap-
plied to coefficients for each level from 1 to N (last
decomposition level). This algorithm is a lossy algo-
rithm since the original signal cannot be reconstructed
exactly [21]. By applying a hard threshold the coef-
ficients below this threshold level are zeroed, and the
output after a hard threshold is applied and defined
by this equation :-

yhard(t) =

{
x(t), |x(t)| > δ

0, |x(t)| ≤ δ
(3)

where x(t) is the input speech signal and δ is the
threshold. An alternative is soft thresholding at level
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δ which is chosen for compression performance and
defined by this equation :-

ysoft(t) =

{
sign(x(t))(|x(t)| − δ), |x(t)| > δ

0, |x(t)| ≤ δ
(4)

where equation 3 represents the hard thresholding and
equation 4 represents the soft thresholding.

4 Thresholding methods used in

Wavelets Compression

In this section two thresholding algorithms will
be introduced and later used in compressing speech
signals. These two methods are, Global thresholding
and Level dependent thresholding.

4.1 Global Thresholding

Global thresholding works by retaining the
wavelet transform coefficients which have the largest
absolute value. This algorithm starts by dividing the
speech signal into frames of equal size F . The wavelet
transform of a frame has a length T (larger than F ).
These coefficients are sorted in a ascending order and
the largest L coefficients are retained. In any appli-
cation these coefficients along with their positions in
the wavelet transform vector must be stored or trans-
mitted. That is, 2.5L coefficients are used instead of
the original F samples, 8 bits for the amplitude and
12 bits for the position which gives 2.5 bytes [?] . The
compression ratio C is therefore:

C =
F

2.5L
or L =

F

2.5C
(5)

Each frame is reconstructed by replacing the missing
coefficients by zeros.

4.2 Level Dependent thresholding

This compression technique is derived from the
Birge-Massart strategy [17]. This strategy is working
by the following wavelet coefficients selection rule :
Let J0 be the decomposition level, m the length of the
coarsest approximation coefficients over 2, and α be a
real greater than 1 so :

1. At level J0+1 (and coarser levels), everything is
kept.

2. For level J from 1 to J0, the KJ larger coefficients
in absolute value are kept using this formula :-

KJ =
m

(J0 + 1 − J)α
(6)

The suggested value for α is 1 and was used in
[17] [18] [19].

4.3 Interpretation of the two algorithms

These algorithms are used to compress speech
signals and compare the quality of the reconstructed
signal with the original. In this section, outlines the
steps followed in implementing these algorithms.

4.4 Compression using the Global
Thresholding

The following procedure is usually followed to im-
plement the global thresholding to compress speech
signals.

1. Divide the speech signal into frames of equal size.
In this thesis different frame sizes are tested to see
how the frame size will affect the performance of
the reconstructed signal. Three different frame
sizes are examined since wavelet analysis is not
affected by the stationarity problem. Expanding
the frame length will speed up the processing time
which reduces the processing delay.

2. Apply the discrete wavelet transform to each one
of these frames separately at the five decomposi-
tion levels. This level is chosen since the best per-
formance of the reconstructed signal is obtained
at this level.

3. Sort the wavelet coefficients in a ascending order.

4. Apply the global thresholding to these coefficients
by choosing the compression ratio and using equa-
tion 5 to obtain the non zero coefficients.

5. Keep the retained coefficients and their positions
to reconstruct the signal from them.

6. Reconstruct the compressed frames by using the
non zero coefficients and their positions and re-
placing the missing ones by zeros.

7. Repeat steps 2 to 6 to compress all the frames.

8. Insert these reconstructed frames into their orig-
inal positions to get the reconstructed signal.

4.5 Compression Using Level-dependent
Thresholding

After the speech signal is divided into equal
frame sizes, the following steps are to be followed to
implement the level dependent thresholding.
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1. Apply the wavelet decomposition to each frame
separately.

2. Keep all the coefficients of the last approximation,
and use equation 6 to retain coefficients from each
detail level.

3. Decompose all the frames and apply step 2 to
each one of the frames, then keep the non zero
coefficients and their positions using 2.5 bytes as
in the global thresholding.

4. Reconstruct each decomposed frame using the
non zero coefficients and replace the missing ones
by zeros.

5. Insert these reconstructed frames into their orig-
inal positions to get the reconstructed signal.

5 COMPARATIVE RESULTS

In [16], it was shown that in the case of speech sig-
nals of the digits 0, 1, 2, ..., 9 and the utterance ”oh”,
Time-Scale wavelet representations had an order of
magnitude advantage in time processing and recogni-
tion rate over the Time-Frequency Fourier based rep-
resentation. Also in [15] it was shown that in process-
ing speech for recognition purposes, subword speech
units were sufficient for accurate recognition rates by
using Time-Scale wavelet analysis instead of frame and
windowed speech units in the Time-Frequency Fourier
based representation. This was also the case for subset
of the alphabets containing the letters a, j, k. On the
other hand, in [7][8][9], Favero have proved by accu-
rate statistical analysis of his experiments results that
Time-scale wavelet based representation of the letters
b, c, d, e, g, p, t, v, z produced better recognition rates
than using its rivalry representation. It is worthwhile
mentioning here that in [16], Radial Basis Artificial
Neural Networks were used as the recognition engines
whereas in the work of Favero, Hiddien Markov Model
engines were employed.

6 CONCLUSION

In this paper, the different representations of speech
signals are presented thoroughly. Time domain, time
frequency domain and time scale domain methods are
described. Their advantages and drawbacks are dis-
cussed along with their different applications in speech
processing in general and speech recognition and com-
pression in particular. A discussion about

segmentation and subwording of speech signals was
included along with their role in wavelet-based speech
recognition and compression. Finally, comparative re-
sults were extracted from the literature to show the
advantages of using Wavelet-Based representations of
speech signals over the traditional Time-Frequency
based representation.
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