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Abstract: - This paper presents some approaches on the new applications in fault estimation, detection and 
diagnosis emerged from three powerful concepts: theory of distributed parameter systems, applied to large and 
complex physical processes, artificial intelligence, with its tool adaptive-network-based fuzzy inference and 
the intelligent wireless ad-hoc sensor networks. Sensor networks have large and successful applications in the 
real world. They may be placed in the areas of distributed parameter systems, to be seen as a “distributed 
measuring sensor” for the physical variables. Using sensor networks multivariable estimation techniques may 
be applied in distributed parameter systems. Fault detection and diagnosis in distributed parameter systems 
become more easily and more performing using these concepts. The paper presents some applications in fault 
detection and diagnosis based on the adaptive-network-based fuzzy inference, allows treatment of large and 
complex systems with many variables by learning and extrapolation. 
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1   Introduction 
The supervision, fault detection and fault diagnosis 
are important to improve reliability, safety and 
efficiency in maintenance of industrial processes, 
seen like lump parameter systems. In the last 
decades these methods were applied with success in 
electrical drives, power plants, aircrafts or chemical 
plants. The classical approaches in the field of fault 
detection and diagnosis are using analytical methods 
[1] of system identification based on linear models 
as: parameter estimation, state space observers and 
parity equations. For non-linear systems 
identification usage of the artificial intelligence 
concepts as fuzzy logic, neural networks and the 
adaptive-network-based fuzzy inference [2] 
represents powerful tools in system identification. 
The distributed parameter systems are in practice 
more complex processes, described using partial 
differential equations, such as the propagation of 
sound or heat, electrostatic phenomena, fluid flows, 
elasticity. Processes considered with variables 
distributed in space may be watched using modern 
wireless intelligent sensor networks [3, 4]. The 
commercial sensor networks have sensors for all 

kind of variables from physical distributed 
parameters systems as: temperature, pressure, 
radiation, light intensity, acceleration and other. 
Some classical methods are developed for 
identification of the general distributed parameter 
system identification [5, 6]. Recent approaches in 
the above field are reported in [7, 8]. The author has 
developed and published several theories related of 
using multivariable estimation techniques based on 
artificial intelligence for the identification of 
distributed parameter systems [9, 10, 11], in the new 
context of intelligent sensor networks as a 
“distributed sensor”. As a distributed tool they may 
be used to measure time variables in the complex 
distributed parameter systems. In this application, 
with a large field of interest in science and 
engineering, all the above topics contribute, 
converging to the same objective – identification, 
detection and diagnosis of fault in distributed 
parameter systems. The paper presents a general 
theory, with 2 estimation algorithms and a general 
method for fault detection and diagnosis based on 
those estimation algorithms. 
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2   Mathematical Models 
A distributed parameter system has a general 
mathematical model in continuous time as a partial 
differential equation, as an example for a parabolic 
case, as: 
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with variables θ(ζ, t), depending on time t and on 
space ζ, where ζ is x for one axis, (x, y) for two axis 
or (x, y, z) for three axis. 
     In the practical application case studies limits 
and initial conditions of the equation (1) are 
imposed: 
 

 
     Boundary conditions for the equation (2) are: 
when the variable value the boundary is specified 
we are speaking about Dirichlet conditions and 
when the variable flux and transfer coefficient are 
specified there are Neumann conditions. 
     A system with finite differences may be 
associated to the equation (1). For this purpose the 
space S is divided into small pieces of dimension lp: 
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     In each small piece Spi, i=1,…,n of the space S 
the variable θ could be measured at each moment tk, 
using a sensor from the sensor network, in a 
characteristic point Pi(ζi), of coordinate ζi. Let it be 
θi

k the variable value in the point Pi(ζi) at the 
moment tk. It is a general known method to 
approximate the derivatives of a variable with small 
variations. In the equation with partial derivatives 
there are derivatives of first order, in time, and 
derivatives of first and second order in space. So, 
theoretically, we may approximate the variable 
derivative in time with a small variation in time, 
with the following relation: 
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     The first and the second derivatives in space may 
be approximated with small variations in space to 
obtain the following relations: 
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     We may consider the variable is measured as 
samples at equal time intervals with the value: 
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called sample period, in a sampling procedure, with 
a digital equipment. Combining the equations (4, 5, 
6) in the equation (1) a system with differences 
results: 
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     Taking account of equation (7) is obvious that 
two estimation algorithms may be developed as 
follows. We may use several estimation algorithms 
based on discrete models of the partial derivative 
equation. 
     Estimation algorithm 1. It estimates the value of 
the variable 1+θki  at the moment tk+1, measuring the 
values of the variables k

i
k
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moment tk: 
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     This is a multivariable estimation algorithm, 
based on the adjacent nodes [9]. 
     Estimation algorithm 2. It estimates the value of 
the variable 1+θki  at the moment tk+1, measuring the 
values of the same variable 321 --- θ,θ,θ,θ k
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four anterior moments tk, tk-1, tk-2 and tk-3. 
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     This is an autoregressive algorithm. 
     Estimator model. The estimator is a non-linear 
one, described by the function y=f(u1, u2, u3, u4), 
using the adaptive-network-based fuzzy inference 
[2, 10]. Its general structure is presented in Fig. 1. 
     It has four inputs u1, u2, u3 and u4 and one output 
y. The ANFIS procedure may use a hybrid learning 
algorithm to identify the membership function 
parameters of single-output, Sugeno type fuzzy 
inference system. A combination of least-squares 
and backpropagation gradient descent methods may 
be used for training membership function 
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parameters, modeling a given set of input/output 
data. 
 

 
In the inference method and may be implemented 
with product or minimum, or with maximum or 
summation, implication with product or minimum 
and aggregation with maximum or arithmetic media. 
The first layer is the input layer. The second layer 
represents the input membership or fuzzification 
layer. The neurons represent fuzzy sets used in the 
antecedents of fuzzy rules determine the 
membership degree of the input. The activation 
function represents the membership functions. The 
3rd layer represents the fuzzy rule base layer. Each 
neuron corresponds to a single fuzzy rule from the 
rule base. The inference is in this case the sum-prod 
inference method, the conjunction of the rule 
antecedents being made with product. The weights 
of the 3rd and 4th layers are the normalized degree of 
confidence of the corresponding fuzzy rules. These 
weights are obtained by training in the learning 
process. The 4th layer represents the output 
membership function. The activation function is the 
output membership function. The 5th layer 
represents the defuzzification layer, with single 
output, and the defuzzification method may be the 
centre of gravity. 
 
 
3   Sensor network capabilities 
A Crossbow sensor network was used in practice. It 
has the following components: a starter kit, a 
MICA2 2,4 GHz wireless module, and an MTS320 
sensor board. Their nodes are 2 MICAz 2,4 GHz 
modules, with 2 sensors MTS400, which are 
measuring temperature, humidity, pressure, ambient 
light intensity; 1 MICAz 2,4 GHz with 2 sensors 
MTS310 and 1 module MICAz 2,4 GHz working as 
a central node when it is connected through the UB 
port. A gateway MIB520 for node programming and 
a data acquisition board MDA320 with 8 analogue 
channels are provided. The network has the 
following software: MoteView for history sensor 
network monitorization and real time graphics and 

MoteWorks for nod programming in MesC 
language. The user interface allows some facilities, 
as: administration, searching, connections options 
and so on. 
     This modern wireless sensor network has 
multiple measuring capabilities. So, it can measure 
temperature, humidity, light intensity or acceleration 
on 2 axes. For these kind of physical variables the 
mathematical models are as follows. 
     For temperature: 
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where Q is the time variable source of 
heating,positioned in space and θ is the temperature. 
     For light intensity: 
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where I is the luminous intensity of the light source, 
at the distance x and high h, as a measure of the 
source intensity as seen by the eye, E is the 
luminance at the specific point, defined as a ratio, 
with ∆Φ representing the flux that strikes a tiny area 
∆S, calculated considering a spherical surface of 
radius r, with ∆α representing the solid angle. 
     For acceleration: 
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where the above notations represents the 
acceleration ax, ay, the speed vx, vy and the space x, y 
on two axis for an object of the mass m, under a 
force F. Some characteristics measured for the 
sensor network are presented in Fig. 2. 
 

 
Fig. 2. Temperature am humidity transient 

characteristics measured with the sensor network 

 
Fig. 1. The estimator input-output general structure 
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     A sensor network is made by hhundred or 
thousands of ad-hoc tiny sensor nodes spread across 
the space S. Sensor nodes collaborate among 
themselves, and the sensor network provides 
information anytime, by collecting, processing, 
analysing and disseminating temperature measured 
data. Sensor network is working as a distributed 
sensor. The constructive and functional 
representation of a sensor network is presented in 
Fig. 3. 
 

 
Fig. 3. A sensor network with mobile access 

 
     The sensor networks have different structures, as 
the star networks (point-to-point), which are 
networks in which all sensors are transmitting 
directly with a central data collection point. New 
nodes automatically are detected and incorporated. 
The number and the place point of the de sensor 
nodes may be discussed according to the desired 
accuracy of estimation [10, 11] using different 
identification methods. 
 
 
4   Estimation and Detection Structure 
The present paper considers two multivariable 
estimation models, one as regressive (8) and the 
second as an autoregressive (9), both based on 
nonlinear ANFIS estimator, which can efficiently 
approximate the time evolution in space of the 
measured values provided by each and every sensor 
within the coverage area. An estimation model 
describes the evolution of a variable measured over 
the same sample period as a non-linear function of 
past evolutions. This kind of systems evolves due to 
its “non-linear memory", generating internal 
dynamics. The estimation model definition is: 
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where u(t) is a vector of the series under 
investigation (in our case is the series of values 
measured by the sensors from the network): 
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and f is the non-linear estimation function of non-
linear regression, n is the order of the regression. By 
convention all the components u1(t),…,un(t) of the 
multivariable time series u(t) are assumed to be zero 
mean. The function f may be estimated in case that 
the time series u(t), u(t-1),…, u(t-n) is known 
(recursive parameter estimation), either predict 
future value in case that the function f and past 
values u(t-1),…, u(t-n) are known (AR prediction). 
The method uses the time series of measured data 
provided by each sensor and relies on an (auto)-
regressive multivariable predictor placed in base 
stations as it is presented in Fig. 4. 
 

 

Fig. 4. Estimation and detection structure 

 
     The principle is the following: the sensor nodes 
will be identified by comparing their output values 
θ(t) with the values y(t) predicted using past/present 
values provided by the same sensors or adjacent 
sensors (adj). After this initialization, at every 
instant time t the estimated values are computed 
relying only on past values θA(t-1), …, θA(0) and 
both parameter estimation and prediction are used as 
in the following steps. First the parameters of the 
function f are estimated using training from 
measured values with a training algorithm as 
backpropagation for example. After that, the present 
values )(θ tA  measured by the sensor nodes may be 
compared with their estimated values y(t) by 
computing the errors: 
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     If these errors are higher than the thresholds Aε  
at the sensor measuring point a fault occurs. Here, 
based on a database containing the known models, 
on a knowledge-based system we may see the case 
as a multi-agent system, which can do critics, 
learning and changes, taking decision based on node 
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analysis from network topology. Two parameters 
can influence the decision: the type of data 
measured by sensors and the computing limitations. 
Because both of them are a priori known an off-line 
methodology is proposed. Realistic values are 
between 3 and 6.We are choosing 4 as in equations 
(8) and (9). So, the method for fault detection and 
diagnosis provided by this paper may be synthesised 
as follows: 
     The method recommended for fault detection and 
diagnosis based on identification, sensor network 
and ANFIS. -Placing a sensor network in the field of 
the distributed parameter system. -Acquiring data, in 
time, from the sensor nodes, for the system 
variables. -Using measured data to determine an 
estimation model based on ANFIS. -Using 
measured data to estimate the future values of the 
system variables. -Imposing an error threshold for 
the system variables. -Comparing the measured data 
with the estimated values. -If the determined error is 
greater then the threshold a default occurs. -
Diagnosing the default, based on estimated data, 
determining its place in the sensor network and in 
the distribute parameter system field. 
 
 
5   Case Study 
In this paper a case study consisting in a heat 
distribution flux through a plane square surface of 
dimensions l=1, with Dirichlet boundary conditions 
as constant temperature on three margins: 
 

rh =θθ  (16) 
 
with r=0, and a Neuman boundary condition as a 
flux temperature from a source 
 

gqnk =θ+θ∇  (17) 
 
where q is the heat transfer coefficient q=0, g=0, 
hθ=1. 
     The heat equation, of a parabolic type, is: 
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where ρ is the density of the medium, C is the 
thermal (heat) capacity, k is the thermal 
conductivity, coefficient of heat conduction, Q is the 
heat source, hθ is the convective heat transfer 
coefficient, θext is the external temperature. Relative 
values are chosen for the equation parameters: 
ρC=1, Q=10, k=1. 

     With the above conditions the equation may be 
solved using the finite element method. The 
optimize mean meshes and nodes are presenting in 
Fig. 5. 
 

 
Fig. 5. The optimize meshes and nodes 

 
     The temperature represented height 3D over the 
surface analyzed is presented in Fig. 6. 
 

 
Fig. 6. The temperature over the plane 

 
 In practice we are using a reduced number of 
sensors, which is equivalent to a number reduced of 
nodes and meshes, for example a sensor network 
with only 13 nodes, placed like in Fig. 7. 
 

 
Fig. 7. Sensor network position in the field 
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     For this case the solution with the finite element 
method is represented in Fig. 8. 
 

 
Fig. 8. Solution for 13 nodes 

 
     The repartition of temperature on isotherms in 
plane is presented in Fig. 9. 
 

 
Fig. 9. Temperature in plane 

 
     In the application we are choosing the nodes 8, 
13, 12 5 and 11 from the Fig. 7 to apply the 
estimation method. The transient characteristics of 
the temperature are presented in Fig. 10 for 101 
samples. 
 

 
Fig.10. Temperature transient characteristics 

The time period was 1 and the sampling period was 
0,01. In Fig. 10 the temperature for nodes 13 and 12 
are the same, because they are on the same 
isotherm. 
     We are chosen as an example the node 5 to be 
the node with the estimated temperature, based on 
the first recursive algorithm: 
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     And also for the node 5 we will apply the second 
algorithm, auto-recursive: 
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     The fuzzy inference system structure is presented 
in Fig. 11. 
 

 
Fig. 11. FIS structure 

 
     The comparison transient characteristics for 
training and testing output data are presented in Fig. 
12. 
 

 
Fig. 12. Comparison between training and testing 

output 
 
     The average testing error is 2,017.10-5. Number 
of training epochs is 3. 
 For the second algorithm the training error was 
of 0,007, number of epochs 3 and the testing error 
0,007. 
     The FIS general structure is the same, but with 
different parameter values. 
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     The estimated output for the second algorithm is 
presented in Fig. 13. 
 

 
Fig. 13. The estimated output for the second 

algorithm 
 
 Comparing the two algorithms the first one had a 
better testing error. 
     If a default appears at the sensor 5 an error 
occurs in estimation, like in Fig. 14. 
 

 
Fig. 14. Error at the fifth node for a fault in the 

network 
 
     Detection of this error is equivalent to a default 
at sensor 5, from other point of view in the place of 
the senor 5 in the space of the distributed parameter 
systems and in heat flow around the sensor 5. 
 
 
6   Conclusion 
The paper presents two algorithms and a method for 
fault detection and diagnosis of distributed 
parameter systems, with the adaptive network based 
fuzzy inference systems and the intelligent wireless 
sensor networks. The sensor network is seen as a 
distributed sensor. The algorithms are one based on 
regression using the values provided by the adjacent 
nodes of the sensor network and the second is an 
autoregressive one based on the values from anterior 
time moments of the same node. The method 
described the way how to use all these concepts for 
fault detection and diagnosis in distributed 

parameter systems, using the measured values 
provide by the sensor and the estimated values 
computed by the ANFIS estimator, calculating an 
error and detecting the fault based on a decision 
taken after a threshold comparison. Estimations 
methods may be applied in the case of discovery of 
malicious nodes in wireless sensor networks. A case 
study for the both algorithms is presented for heat 
transfer in plane. A comparison between the two 
algorithms is made. Good approximations were 
obtained. Developing of the algorithms and the 
method are taken in consideration in the future, in 
other applications, considering all the capabilities of 
the sensor nodes to measure physical variables. This 
approach allows treatment of large and complex 
systems with many variables by learning and 
extrapolation. 
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