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Abstract: - This paper presents a modified Oesophageal Single Channel Speech Enhancement using Ephraim-
Malah Filter for Robust Speech Recognition. An Oesophageal voice is due to the laryngectomy undergone by 
those persons with larynx cancer and it has extremely low intelligibility. This work was already proposed with a 
method of Kalman Filtering technique to improve the Speech Quality. A Novel Approach to Enhance the Speech 
Quality with Ephraim-Malah filter for Robust Speech Recognition is presented in this paper where we present a 
speech-to-text system using isolated word recognition with voice samples in English (for the words Eight and 
Nine) and statistical modeling (Hidden Markov Model - HMM) for machine Speech Recognition.  
 
Key-Words: - Oesophageal Voice, Pulse Code Modulation, Robust Speech Recognition, Speech Enhancement, 
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1 Introduction 
Patients who have undergone a laryngectomy as a 
result of larynx cancer have exceptionally low 
intelligibility [1]. This is due to the removal of their 
vocal folds, which forces them to use the air flowing 
through the oesophagus, known as oesophageal 
speech. Low intelligibility is the main problem in 
both oral and telephone communications with other 
people [2]. In addition, the noise of this kind of 
speech signal is especially high. 
 Single channel Speech Enhancement 
Algorithms process a noisy, monaural speech signal 
and estimate of what the signal would have been in a 
less noisy environment. Because signal processing 
cannot create information, the output signal cannot 
contain more information about what was said than 
existed in the noisy input. It can only have less noise. 
For human perception, the goals are to make the 
speech more intelligible and to improve the perceived 
quality of the speech. These two goals are often 
conflicting, because as more noise is removed more 
speech is often removed as well. For Automatic 
Speech Recognition, the main goal is increased 
recognition accuracy. 

In the training phase, the uttered digits are recorded 
using 8-bit Pulse Code Modulation (PCM) with a 
sampling rate of 8 KHz and saved as a wave file 
using sound recorder software. One hundred different 
voice samples are considered. The system performs 
speech analysis using the Linear Predictive Coding 
(LPC) method of degree. From the LPC coefficients, 
the weighted cepstral coefficients and cepstral time 
derivatives are derived. From these variables the 
feature vector for a frame is arrived. Then, the system 
performs Vector Quantization (VQ) utilizing a vector 
codebook which result vectors form of the 
observation sequence. For the given word, the system 
builds an HMM model and trains the model during 
the training phase. The proposed Robust Speech 
Recognition System is shown in Figure 1. 
 

 

 
Fig.1 Proposed Robust Speech Recognition System 

 

 

2 Overview of Speech Enhancement 
Speech Enhancement in the past decades has focused 
on the suppression of additive background noise. 
From a signal processing point of view additive noise 
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is easier to deal with than convolutive noise or 
nonlinear disturbances. Moreover, due to the bursty 
nature of speech, it is possible to observe the noise by 
itself during speech pauses, which can be of great 
value.  
 
���� � ���� � ����                                   (1) 

 
Speech Enhancement aims to improve speech 

quality by using various algorithms. By the word 
quality, it can be at least 

• clarity and intelligibility 
• pleasantness 
• compatibility with some other method in 

speech processing and The goal of speech 
enhancement is to find an optimal estimate 
(i.e., preferred by a human listener)ŝ(t), given 
a noisy measurement  

 
 

3 Methodology 
The general idea of the algorithm presented in this 
work is to filter the noisy speech signal to obtain a 
less noisily corrupted one.  
 
3.1 Kalman Filter 
The Kalman Filter (KF) is an efficient recursive filter 
that estimates the state of a linear dynamic system 
from a series of noisy measurements. The Kalman 
Filter is a recursive estimator. This means that only 
the estimated state from the previous time step and 
the current measurement are needed to compute the 
estimate for the current state. In contrast to batch 
estimation techniques, no history of observations 
and/or estimates is required. The state of the filter is 
represented by two variables: 

• The a posteriori state estimate at time k given 
observations up to and including at time k 

• The a posteriori error covariance matrix (a 
measure of the estimated accuracy of the 
state estimate). 

The Kalman Filter has two distinct phases:  
 

3.1.1 Predict 
The predict phase uses the state estimate from the 
previous time step to produce an estimate of the state 
at the current time step. This predicted state estimate 
is also known as the a priori state estimate because, 

although it is an estimate of the state at the current 
time step, it does not include observation information 
from the current time step.  
 
3.1.2 Update 
In the update phase, the current a priori prediction is 
combined with current observation information to 
refine the state estimate. This improved estimate is 
termed the a posteriori state estimate.  

Given the past and present observations, 
Kalman Filtering is able to obtain the optimum 
estimate of the state, due to its recursive method. 
When using the KF, speech and noise are usually 
modeled as an Autoregressive (AR) approach. 
 
3.2 Autoregressive Model  
Voice must be characterized in order to obtain the 
speech parameters. This fundamental task is 
performed with the help of the autoregressive model 
approach. This model is used to obtain the 
parameters of both signals, that is, the speech and 
additional noise. The model equation is given below 
where v(t) is a unit-variance zero-mean colored 
noise, the system poles ai and the zero b: 
            
���� �  ∑ �� . ��� � ���

���  �  � . ����, � � 0 (2)              
  
 

3.3 Voice Activity Detection 
An improved Voice Activity Detection (VAD) 
algorithm employing long-term signal processing and 
maximum spectral component tracking. It improves 
the speech/non-speech discriminability and speech 
recognition performance in noisy environments. Two 
problems are solved using VAD. The first one is 
performance of VAD in low noise condition and the 
second is with noisy environment. 
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Fig.2 Block Diagram of Subband Order Statistics Filter (OSF) 
based VAD 
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The subband based VAD uses two order statistics 
filters for the multi-band quantile (MBQ) SNR 
estimation [3]. The implementation of both OSF is 
based on a sequence of 2N+1 log-energy values 
{E(m − N,k), . . . , E(m,k), . . . , E(m + N,k)}  around 
the frame to be analyzed. The block diagram of the 
subband based VAD is shown in the Figure 2. This 
algorithm operates on the subband log-energies. 
Noise reduction is performed first and the VAD 
decision is formulated on the de-noised signal. The 
noisy speech signal is decomposed into 25-ms frames 
with a 10-ms window shift. Let X(m,l) be the 
spectrum magnitude for the mth band at frame l .The 
design of the noise reduction block is based on 
Wiener Filter (WF) theory whereby the attenuation is 
a function of the signal-to-noise ratio (SNR) of the 
input signal. The VAD decision is formulated in 
terms of the de-noised signal, being the subband log-
energies processed by means of order statistics 
filters. 
 
The noise reduction block consists of four stages. 
i) Spectrum smoothing: The power spectrum is 
averaged over two consecutive frames and two 
adjacent spectral bands. 
ii) Noise estimation: The noise spectrum Ne(m,l) is 
updated by means of a 1st order IIR filter on the 
smoothed spectrum Xs(m,l), 
  
Ne(m,l)=λ Ne(m,l-1)+(1-λ) Xs(m,l)             (3)       
 
where λ=0.99  and  m=0,1,…,NFFT/2 
iii) Wiener Filter design: First, the clean signal S(m,l) 
is estimated by combining smoothing and spectral 
subtraction 
 
S(m,l)=γS’(m,l-1)+(1-γ)max(Xs(m,l-Ne(m,l),0) (4) 
where γ=0.98  
 
Then, the Wiener Filter H(m,l) is designed as 
              

            H �m, l� � η �%,&�
�'η �%,&�               (5)                                                                                  

 

Where η �m, l� � max  * + �%,&�
,- �%,&�  , ηmin    0          (6) 

ηmin is selected so that the filter yields a 20 dB 
maximum attenuation. S’(m,l), the spectrum of the 
cleaned speech signal, is assumed to be zero at the 
beginning of the process and is used for designing the 
Wiener Filter through Equation 3  to Equation 5. It is 
given by 

S’(m,l)=H(m,l)X(m,l)   (7) 
 
The filter H(m,l) is smoothed in order to eliminate 
rapid changes between neighbor frequencies that may 
often cause musical noise. Thus, the variance of the 
residual noise is reduced and consequently, the 
robustness when detecting non-speech is enhanced. 
The smoothing is performed by truncating the 
impulse response of the corresponding causal FIR 
filter to 17 taps using a Hanning window. With this 
operation performed in the time domain, the 
frequency response of the Wiener filter is smoothed 
and the performance of the VAD is improved. 
iv) Frequency domain filtering: The smoothed filter 
is applied in the frequency domain to obtain the 
denoised spectrum  
Y(m,l)=Hs(m,l)X(m,l)           (8) 
 

3.4  Minimum Mean Square Error Approach 

To Speech Enhancement 
In these systems the Short Time Spectral Amplitude 
(STSA) of the speech signal is estimated, and 
combined with the short-time phase of the degraded 
speech, for constructing the enhanced signal [4]. To 
derive the MMSE STSA estimator, a priori 
information of the speech and noise spectrum is 
needed. Since in practice they are unknown, one can 
think of measuring each probability distribution or, 
alternatively, assume a reasonable statistical model. 
The MMSE STSA estimator depends on the 
parameters of the statistical model it is based on and 
consists of two parts namely, the Decision-Directed 
method estimating the a priori speech spectrum, and 
the MMSE Short-Time Spectral Amplitude (STSA) 
estimator. 

 

 

4 Hidden Markov Model Approach  
As mentioned above the technique used to implement 
speech recognition is Hidden Markov Model 
(HMM). The HMM [5] is used to represent the 
utterance of the word and to calculate the probability 
of that the model which created the sequence of 
vectors. There are some fundamental problems in 
designing of HMM for the analysis of speech signal. 
The present hidden Markov Model is represented by 
 
λ = (π, A, B)                             (9) 
π = initial state distribution vector. 
A= State transition probability matrix. 

RECENT ADVANCES in NETWORKING, VLSI and SIGNAL PROCESSING

ISSN: 1790-5117 131 ISBN: 978-960-474-162-5



B=continuous observation probability density 
function matrix. 
 
Given appropriate values of A, B and π, the HMM 
can be used as a generator to give an observation 
sequence 
O=O1 O2 …….OT   (10)  
 
Where each observation Ot is one of the symbols 
from the observation symbol V and T is the number 
of observation in the sequence as follows: 
(i)Choose an initial state q1=Si according to the initial 
state distributionπ. 
(ii) Set t=1  
(iii)Choose Ot=vk according to the symbol probability 
distribution in state Si. 
(iv)Transit to a new state qt+1=Sj according to the 
state transition probability distribution for state Si. 
(v)Set t=t+1(return to step3) if t<T; otherwise 
terminate the procedure. 
The above procedure can be used as both a generator 
of observations, and as a model for how a given 
observation sequence was generated by an 
appropriate HMM. 
After re-estimating the parameters, the model is 
represented with the following denotation  
                   
λ = (A, µ, Σ)                (11) 
 
The model is saved to represent that specific 
observation sequences, i.e. an isolated word. The 
basic theoretical strength of the HMM is that it 
combines modeling of stationary stochastic processes 
and the temporal relationship among the processes 
together in a well-defined probability space. This 
allows us to study these two separate aspects of 
modeling a dynamic process using one consistent 
framework. Also, HMM is relatively easy and 
straightforward to train a model from a given set of 
labeled training data. 
  
4.1 Linear Predictive Coding Analysis 
One way to obtain observation vectors O from 
speech samples is to perform a front end spectral 
analysis. The type of spectral analysis that is often 
used is linear predictive coding [6].The steps in the 
processing as shown in Figure 3 are as follows: 
(i) Pre-emphasis: The digitized speech signal is 
processed by a first-order digital network in order to 
spectrally flatten the signal. 

(ii) Block into Frames: Sections of NA consecutive 
speech samples are used as a single frame. 
Consecutive frames are spaced MA samples apart. 
(iii) Frame Windowing: Each frame multiplied by an 
NA sample window(Hamming Window) w(n) so as to 
minimize the adverse effects of chopping an NA 
samples section out of the running speech signal. 
(iv) Auto Correlation Analysis: Each windowed set 
of speech sample is auto-correlated to give a set of 
(p+1) coefficient, where p is order of the desired LPC 
analysis. 
(v) LPC / Cepstral Analysis: A Vector of LPC 
coefficients is computed from the autocorrelation 
vector using a Levinson or a Durbin recursion 
method. An LPC derived cepstral vector is then 
computed up to the Qth component. 
(vi) Cepstral Weighting: The Q-coefficient cepstral 
vector ct(m) at time frame l is weighted by a window 
Wc(m)[6,7]. 
               
Wc(m)=1+[(Q/2)(sin(πm/Q))],n1≤m≤Q       (12) 
 
To give ĉl(m)=cl(m).Wc(m)                           (13) 
(vii) Delta Cepstrum: The time derivative of the 
sequence of weighted cepstral vectors is 
approximated by a first-order orthogonal polynomial 
over a finite length window of frames centered 
around the current vector [8]. 
 
∆ĉl(m)=[∑ 12

3�42  ĉl-k(m)].G                         (14) 
 
Where G is the gain term to make the variance of 
ĉl(m) and ∆ĉl(m) equal. 
 
Ql(m)= {ĉl(m), ∆ĉl(m)}                                  (15) 

S(n)           ŝ(n)           Xl(n)         X6l(m)           Rl(m)         
                                                                                      

   

      Wc(m) 

7ĉ9�:�
79    

ĉl(m)                                         cl(m) 

Fig.3 Linear Predictive Coding 
 

Analysis: 

ŝ(n)=s(n)-αs(n-1)         (16) 
Xl(n)= ŝ(ml+n),  o≤ n ≤ N-1 ;   0≤ l ≤ L-1     (17) 
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;< l(n)=xl(n).w(n),  0≤ n ≤ N-1                        (18) 
Rl(m)=∑ ;<=4>

��? l(n);< l(n+m), 0≤ m ≤ p          (19) 
al(m)=Lpc Coefficients, 0≤ m ≤ p                 (20) 
cl(m)=Cepstral Coefficient, 1 ≤ m ≤ Q          (21) 
ĉl(m)=cl(m).wc(m), 1 ≤ m ≤ Q                       (22) 
∆ĉl(m)=@ĉl(m)/Al ,  1 ≤ m ≤ Q                      (23) 
 

4.2 Vector Quantization  
To use HMM with discrete observation symbol 
density, a Vector Quantizer (VQ) is required to map 
each continuous observation vector in to a discrete 
code book index [9]. The procedure basically 
partitions the training vector in to M disjoin sets. The 
distortion steadily decreases as M increases. Hence 
HMM with codebook size of from M=32 to 256 
vectors has been used in speech recognition 
experiments using HMMs.  
 

During the training phase the system trains 
the HMM for each digit in the vocabulary. The same 
weighted cepstrum matrices for various samples and 
digits are compared with the code book and their 
corresponding nearest codebook vector indices is 
sent to the Baum-Welch algorithm to train a model 
for the input index sequence. After training we have 
three models for each digit that corresponds to the 
three samples in our vocabulary set. Then we find the 
average of A, B and π matrices over the samples to 
generalize the models.   
 

The input speech sample is preprocessed to 
extract the feature vector. Then, the nearest codebook 
vector index for each frame is sent to the digit 
models. The system chooses the model that has the 
maximum probability of a match. 
 

 

5 Results and Discussion 
 
Table 1 Performance of KF and EM Filter for digit ‘8’ for 
various 0DB noise sources 

Noise KF EM %Improvement

Airport 3 12 75

Babble 1 4 75

Exhibition 1 5 80

Street 1 10 90

Restaurant 1 2 50

Station 0 0 0

Car 1 1 0  

Table 2 Performance of KF and EM Filter for digit ‘9’ for 
various 0DB noise sources 

Noise KF EM %Improvement

Airport 5 19 73.68

Babble 3 3 0

Exhibition 0 0 0

Street 3 33 90.9

Restaurant 1 2 50

Station 3 3 0

Car 3 7 57.14  
 

Table 3 Performance of KF and EM Filter for digit ‘8’ for 
various 5DB noise sources 

Noise KF EM %Improvement

Airport 1 21 95.23

Babble 13 14 7.14

Exhibition 1 4 75

Street 1 1 0

Restaurant 20 26 23.07

Station 1 9 88.8

Car 1 1 0  
 

Table 4 Performance of KF and EM Filter for digit ‘9’ for 
various 5DB noise sources 

Noise KF EM %Improvement

Airport 4 23 82.61

Babble 1 22 95.45
Exhibition 1 14 92.86

Street 1 18 94.44

Restaurant 12 24 50.00
Station 7 24 70.83

Car 15 20 25.00  
 

 
Table 5 Performance of KF and EM Filter for digit ‘8’ for 
various 10DB noise sources 

Noise KF EM %Improvement

Airport 1 21 95.23

Babble 28 37 24.3

Exhibition 6 17 64.7

Street 9 23 60.86

Restaurant 23 42 95.23

Station 5 9 44.4

Car 3 24 87.5  
 
 
 
 
 

RECENT ADVANCES in NETWORKING, VLSI and SIGNAL PROCESSING

ISSN: 1790-5117 133 ISBN: 978-960-474-162-5



Table 6 Performance of KF and EM Filter for digit ‘9’ for 
various 10DB noise sources 

Noise KF EM %Improvement
Airport 9 18 50
Babble 11 27 59.25

Exhibition 4 14 71.42
Street 11 21 45.83

Restaurant 13 24 45.83
Station 12 16 25

Car 13 23 43.47  
 
Table 7 Performance of KF and EM Filter for digit ‘8’ for 
various 15DB noise sources 

Noise KF EM %Improvement

Airport 32 46 30.43

Babble 24 38 36.84

Exhibition 10 33 69.69

Street 1 10 90

Restaurant 24 35 31

Station 23 39 41

Car 2 38 94.7  
 
Table 8 Performance of KF and EM Filter for digit ‘9’ for 
various 15DB noise sources 

Noise KF EM %Improvement

Airport 19 36 47.22

Babble 19 26 26.92

Exhibition 17 33 48.48

Street 2 24 91.66

Restaurant 11 22 50

Station 12 28 57.14

Car 18 24 25  
 

 

6 Conclusion 
From the tabulated results shown in Table [1-8], we 
can easily identify that speech samples of eight and 
nine by Ephraim-Malah filtering yielded 
comparatively better Speech Recognition Accuracy 
in the presence of the noises considered. For 
example, Nine has an accuracy improvement of 
57.14% for 0dB in the presence of car noise. The 
highest speech recognition accuracy improvement of 
95.45% is seen for the digit Nine in the presence of 
5dB Babble noise. No improvement was seen for the 
digits Eight and Nine in the presence of 0dB Station 
noise. Also, it was found that the Ephraim-Malah 
filtering not only results in better noise reduction but 

also increased the signal strength of the speech 
samples compared to Kalman Filtering. 
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