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Abstract: A thermodynamically consistent flow model for induced anisotropy in polar ice has been introduced in
[8, 11]. The so-called Continuum-mechanical, Anisotropic Flow model based on an anisotropic Flow Enhancement
factor (CAFFE-model for short) is based on a generalization of the isotropic Glen’s flow law. A scalar enhancement
factor which takes the ice’s anisotropy into account generalizes Glen’s flow law for anisotropic materials. In
this contribution, the CAFFE-model is applied to the EPICA ice core at Kohnen Station, Dronning Maud Land,
Antarctica. Numerical results are presented and discussed.
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1 Introduction
Antarctica is the Earth’s southernmost continent and
about 98 % of its surface are covered by thick ice
masses. It is by far the largest single ice body on Earth
and posseses a total ice volume of29.5 ·106 km3. Fur-
ther, approximately0.58 · 106 km3 ice of ice shelves
are attached to Antarctica.

Although usually natural ice is typically regarded
as isotropic, this is not the case for thick ice masses
[1, 4]. It consists of a vast number of small individual
hexagonal crystallites (’ice Ih’). Whereas the distribu-
tion of the crystallographic axes is mainly random at
the surface, deeper into the ice, the fabrics with pre-
ferred directions develop (cf. [6]). Moreover, one is
dealing with two different length scales: the diameter
of crystal which is usually of the unit millimeters to
centimeters and the size of the ice masses which can
be up to thousands of kilometers.

In the literature, there exist different models ca-
pable of describing the anisotropy of polar ice. On
the one hand, some of those account for anisotropy
via introducing an enhancement factor as a multiplier
of the isotropic ice fluidity. These models are rather
simple, however, the ad hoc introduction of the mul-
tiplier is physically questionable. On the other hand,
there exist very complex full-field models which take
many physical details into account. Yet, the increased
complexity leads to a large increase in computational
time. Therefore, the later approaches can usually not
be included in a macroscopic ice flow model.

One model which is capable of modeling
anisotropic ice flow and leads to a reasonable com-

putational time is the macroscopic CAFFE model.
Moreover, the CAFFE model fulfills all fundamental
principles of classical continuum mechanics [7].
Here, the CAFFE model is applied to EPICA deep
ice drilling site near Kohnen Station, Dronning Maud
Land, Antarctica - referred to as the EDML core.
EPICA, the European Project for Ice Coring in
Antarctica, runs two deep ice core drilling sites in
Antarctica. The EDML core was drilled between Jan-
uary 2002 and the beginning of 2006. A drilling depth
of 2774.15 m was reached and the ice core stores in-
formation about the climatic changes during the last
150 000 years.
First, we reiterate the underlying ideas of the CAFFE
model and its mathematical formulation. For a de-
tailed introduction, the reader is referred to [8, 11].
Four different recrystallization effects are explained
and incorporated in the model. Next, the anisotropic
generalization of Glen’s flow law is introduced in Sec-
tion 2.2. Then, in order to demonstrate its perfor-
mance, the CAFFE model is applied to the EDML
deep drilling site in Antarctica. The underlying as-
sumptions and conditions at EDML are stated and
explained. Finally, numerical results are presented
and compared to the data which is available for the
EDML. In the end, we summarize the main findings.

2 The CAFFE model

The CAFFE model is a continuum mechanical theory
which contains more information of the underlying
microstructure that influences the macroscopic mate-
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rial behavior. However, the microscopic level is not
resolved and the information enters the macroscopic
governing equations indirectly.

In order to take the microstructure into account
a field quantity called orientation mass densityρ∗ is
introduced. In addition to the dependence on the po-
sition x and timet, the orientation mass densityρ∗

depends on the orientationn of the grain. The orien-
tationn is the normal unit vector parallel to the crys-
tal’s c-axis in the unit sphereS2. In the following, all
quantities which additionally depend on the orienta-
tion n are denoted with “*”.
The orientation mass densityρ∗ is governed by the
orientation mass balance

∂ρ∗

∂t
+ div(ρ∗v) + divS2(ρ∗u∗) = ρ∗Γ∗. (1)

Here, v(x, t) is the classical velocity and
u∗(x, t,n) = ṅ the orientation change velocity
rate which describes the transition of mass with one
orientation to another (neighboring) orientation on
the unit sphereS2. Furthermore, the orientation
production rate is denoted byΓ∗(x, t,n).

2.1 Recrystallization effects
Via the orientation mass balance four different recrys-
tallization effects are incorporated: (i) local rigid body
rotation, (ii) grain rotation, (iii) rotation recrystalliza-
tion and (iv) grain boundary migration. The later ex-
presses that the fraction of grains with a certain ori-
entation changes due to the fact that the boundary be-
tween two grains moves in favor of the better orien-
tated grain and is modeled via the orientation produc-
tion rateΓ∗(x, t, n)

Γ∗ = Γc
A(T ′)

A(−10◦C)
[A∗ −A] , (2)

following [8], and depends on the deformabilityA of
the polycrystalline ice

A =

∫

S2

A∗ (n)
ρ∗(x, t, n)

ρ(x, t)
d2n (3)

and the deformability

A∗ =
[

[S · n]2 − [n · S · n]2
]

/tr
(

S2
)

(4)

of a single crystal. For a detailed physical explanation
on the definition of the deformabilities, the reader is
referred to [11].S is the deviatoric part of the Cauchy
stress. The remaining symbols in Eq. (2) represent
the constant material parameterΓc and the rate factor
A(T ′) which is given by the Arrhenius law

A(T ′) = A0 exp(−
Q

RT ′
). (5)

Here,A0 is the pre-exponential constant,Q denotes
the activation energy andR is the universal gas con-
stant. Moreover, the rate factorA(T ′) depends on
the temperature relative to pressure meltingT ′ =
T + βp, whereT is the absolute temperature and
β = 9.8 · 10−2 K/MPa being the Clausius–Clapeyron
constant for ice [6]. In general, the melting point of
ice is lowered by approximately1 K per kilometer of
ice thickness.

The local rigid body rotation (rbr), grain rota-
tion (gr) and rotation recrystallization (rc) effects are
mapped via the the orientation change velocity rate

u∗(x, t, n) = u∗
rbr + u∗

gr + u∗
rc

=W·n+ι[[n ·D ·n]n−D · n]+
q∗

ρ∗
,(6)

with W andD being the strain rate and the spin ten-
sor, respectively. The first term describes the contri-
bution of the polycrystal’s local rigid body rotation to
the orientation transition rate. The second termu∗

gr
maps the physical effect of grain rotation with the help
of the shape factorι. Last but not least, the effect
of rotation recrystallization is described by the orien-
tation flux q∗. It refers to the process that subgrain
boundaries develop due to formations of dislocations
in heterogeneous loading cases [5, 9]. Some grains
are better orientated for dislocation slip than others.
During the deformation process grains can break apart
at these subgrain boundaries and the emerging new
grains will have slightly different orientations. Con-
sequently, it is a diffusive process and is described by
Fick’s law of diffusion

q∗ = −λ∇∗ρ∗, (7)

with λ being the diffusivity.

2.2 Non-classical, anisotropic Glen’s flow
law

As usual, we approximate ice as an incompressible
and extremely viscous non-Newtonian fluid. Orig-
inally, Glen’s flow law has been formulated for the
isotropic case. Due to the induced anisotropy in thick
ice masses, it must be enhanced. The anisotropic gen-
eralization of Glen’s flow law reads

D = A(T ′)Ê(A)

[

√

[

tr(S2)
]

/2

]n−1

S, (8)

following [8, 11]. Here,n is the same stress exponent
as in the case of the classical flow law by Glen. Exper-
iments, e.g. [2], show that the scalar anisotropic en-
hancement factor̂E(A) depends on the square of the
deformabilityA in the interval[1, 2.5]. Furthermore,
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we require that the enhancement factorÊ is a strictly
monotonically increasing function of the deformabil-
ity A and continuously differentiable and, therefore,
propose:

Ê(A)=



































Emin + [1 − Emin]A
8

21

Emax−1

1−Emin ,

if 0 ≤ A ≤ 1,

4A2[Emax−1]+25−4Emax
21 ,

if 1 ≤ A ≤ 2.5

(9)

The two parametersEmin andEmax are known from
experiments. In this contribution, we use the values
Emax = 10 andEmin = 0 for the maximum softening
and hardening parameters, respectively.

3 Application to Antarctica’s deep
drilling site EDML

Following Seddik et al. [11], we apply a coordinate
system whose origin lies in the center of the drilling
site. The x-axis points in direction of the ice divine
(260-west-southwest direction) and the y-axis in170-
south-southeast direction. Consequently, the z-axis
points vertically downwards. Moreover, due to this
choice, we obtain the following approximation for the
gradient of the free surface elevationh

∂h

∂x
= −9 · 10−4 ± 10%,

∂h

∂y
= 0. (10)

Thus, the only non-vanishing shear-stress component
Sxz reads

Sxz = ρgz
∂h

∂x
, (11)

whereg is the acceleration due to gravity and the mass
density of ice readsρ = 910 kg m−3. Combina-
tion with thex-z-component of the anisotropic Glen’s
flow law (8) and subsequent integration over thez-
component yields the anisotropic horizontal velocity

vx = −2ρg
∂h

∂x

∫ H

z

Ê(A)A(T ′)σn−1 z̄ dz̄, (12)

whereH is the ice thickness. The slip vanishes at
the ice base, thusvx(H) = 0. Moreover,vy vanishes
per definition of the coordinate system and the verti-
cal velocityvz results from integrating the prescribed
vertical strain rateDzz. The latter is constant from the
free surface down to two thirds of the ice thickness.
Below, Dzz is linearly decreasing in such a way that
the the downward vertical velocityvz equals the ac-
cumulation rate at the surface. A similar distribution

is employed for the temperatureT ′: at the top, we
setT ′ = 228.55 K for z = 0, . . . , 2/3 × depth. Fur-
ther downwards, the temperatureT ′ decreases linearly
such thatT ′(bottom) = 273.15 K.

Horizontal extension is parameterized by

Dxx =
∂vx

∂x
= −aDzz,

Dyy =
∂vy

∂y
= −[1 − a]Dzz. (13)

In case of isotropic extension, the parametera ∈
[−1, 1] is equal to1/2 and equal to unity for exten-
sion in thex-direction only (pure shear). The hori-
zontal shear rateγ := ∂vx/∂z results from Eq. (12)
and depends on the deformabilityA,

γ = 2ρg
∂h

∂x
Ê(A)A(T ′)σn−1 z. (14)

As mentioned above, the surface is isotropic because
the ice crystallites are randomly distributed at the top.
Therefore, we setAsurface= 1.

4 Numerical procedure
Our main interest is to simulate the ice flow, especially
the development of the anisotropic fabrics. Therefore,
the distribution of the orientations is of particular in-
terest. As a governing equation, we discretize the ori-
entation mass balance, i.e. Eq. (1). Since the total time
period for Antarctic ice is very large, it is reasonable
to assume that the orientation mass densityρ∗ is time-
independent. Moreover, the drilling site has a diam-
eter of10 cm. Consequently,ρ∗ depends neither on
the x nor on they coordinate. This leaves us with
ρ∗ = ρ∗(z,n):

∂ρ∗

∂z
vz + divS2(ρ∗u∗) = ρ∗Γ∗. (15)

In [11] only two out of the four recrystallization ef-
fects, namely local rigid body rotation and grain rota-
tion are implemented in the numerical scheme. In this
contribution, we account for all four effects. How-
ever, the data gained at the EDML drilling site shows
that the formation of subgrain boundaries and, thus,
polygonization play an important role in ice-sheet de-
formation and may not be neglected [13].

Eq. (15) is discretized with a finite volume
method, where we introduce spherical coordinates.
The polar angleθ and the azimuth angleϕ both have
a uniform resolution of∆θ = ∆ϕ = 5◦. In the
z direction, the resolution is refined with depth via
zi+1 = zi + (vz)i∆t , wherez(0) = 0 at the sur-
face, (vz )i is the vertical velocity at depthzi and we
choose∆t = 1 day.
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5 Computational modeling

5.1 Material parameters
An experimental determination of the diffusivityλ
and the material parameterΓc is rather difficult. The
relevant time scales are too large and the strain rates
are too low in order to be easily reproduced in the lab-
oratory. However, it is known that at the EDML site
the vertical strain rateDzz is of magnitude order10−5

per year (see e.g. [14]). Thus, the diffusivity should
be approximately of order10−14 s−1. In particular,
we choose one order less:λ = 1.0 · 10−15 s−1 for the
orientation diffusivity. Moreover, the constitutive pa-
rameterΓc should be of approximately the same order.
We therefore setΓc = 1.0 · 10−15 s−1. [11] achieve a
best fit for a shape factorι = 0.6 which we henceforth
adopt. Thus, the local rigid body rotation contribution
predominates over the the grain rotation.

The stress exponentn = 3 is given in e.g.
[6, 12] for the isotropic version of Glen’s flow law.
As mentioned above, the maximum enhancement fac-
tor Emax = 10 and the minimum enhancement fac-
tor Emin = 0, see the experiments of e.g. [10].
As usual, the universal gas constant readsR =
8.314 J mol−1K−1 and the gravity acceleration isg =
9.81 m s−1. Last but not least, the melting tempera-
ture at zero pressure is of courseT0 = 273.16 K.

From experimental data (e.g. [3, 14]) we conclude
that the horizontal strain field shows extension lateral
to the flow direction and smaller compression in lon-
gitudinal direction. Thus, we choosea = −0.3 such
thatDxx = 0.3 Dzz andDyy = −1.3 Dzz and the in-
compressibility conditionDxx + Dyy + Dzz = 0 is
fulfilled.

5.2 Numerical results: uniaxial vertical com-
pression

In this paper, we discuss the case of uniaxial vertical
compression. Consequently, the horizontal shear rate
γ = 0 vanishes.

Down to 500 m a uniform orientation distribu-
tion is observed, see Fig. 3. This corresponds to
an isotropic fabric as usually found in the upper re-
gions. A significant preferred crystal elongation direc-
tion cannot be seen. Below 600 m, the ice crystallites
start to orientate themselves in a preferred direction
and a so-called girdle developes, see Fig. 3. Further
down, from 2250 m downwards, a single maximum
fabric along the vertical core axis develops. A strong
single-maximum fabric forms in the near-basal parts
of the core.

Fig. 1 shows the variation of the enhancement fac-
tor Ê(A) (see Eq. (9)) along the ice core. In the be-
ginning it is close to unity which reflects that the fab-

ric is approximately isotropic in that region. Further
down, the fabric develops towards a girdle resulting
in an enhancement factor close to0. Consequently, in
those depths, the fabric produces a significantly differ-
ent mechanical response depending on the girdle’s ori-
entation. Further down, a single maximum develops
with its crystal basal planes orientated in such a way
that large deformations arise. Consequently, the en-
hancement factor increases sharply. The crystal basal
planes are favorably orientated for the now prevailing
simple-shear deformation. Moreover, the ice fluidity
increases in this region.
The evolution of the symmetric orientation tensora2

a2(x, t) :=

∫

S2

f∗(x, t,n)n ⊗ n d2n, (16)

which is calculated in a post-processing step, is illus-
trated in Fig. 2. A large value ofa33 represents a con-
centration of the grains in vertical direction. An ideal
single maximum fabric would result ina33 → 1. a11

anda22 indicate the symmetry with respect to the ver-
tical direction in the sense that ifa11 = a22 the cross
section is symmetric and|a11−a22| represents the de-
gree of anisotropy. The development ofa33 illustrates
the fabric’s evolution from isotropy to an anisotropic
single maximum close to the core bottom.
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Figure 1: Variation of the enhancement factorÊ(A)
along the EDML ice core. An enhancement factor
Ê(A) close to unity represents an isotropic fabric in
that region. Between 1750 m and 2450 m the enhance-
ment factorÊ(A) is close (but not equal) to zero indi-
cating the formation of a girdle.

6 Conclusion
Primarily, the deep drilling site in Antarctica was es-
tablished in order to gain climate information. Dif-
ferent deformation modes affect the different time se-
quences. Therefore, the flow history of the ice is of
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Figure 2: Variation along the EDML ice core of the
three diagonal components of the second-order orien-
tation tensora2.

major significance. In this contribution, the relatively
newly introduced CAFFE model is applied. The pri-
mary goal is the modeling of the ice flow in order to
understand the deformation process the ice sheet has
been exposed to. The underlying microstructure in-
fluences this process and has to be taken into account.
The CAFFE model is a continuum mechanical ap-
proach which considers the microstructure indirectly.

First numerical results for the CAFFE model are
presented in Seddik et al. [11]. However, only two out
of the four recrystallization effects (local rigid body
rotation and grain rotation) are considered. The re-
sults of Seddik et al. [11] show that the CAFFE ap-
proach captures the basic tendency of the ice to first
develop a girdle and, subsequently, a single maxi-
mum. However, without the two remaining recrys-
tallization effects there exist (i) numerical problems
below 2100 m and (ii) the numerical simulations and
the experimental data deviate in some points. Thus, it
is critical to neglect grain boundary rotation and grain
recrystallization, especially in the depth. In this con-
tribution, we account for all four effects. In particu-
lar, migration recrystallization drives the fabric back
towards a vertical single maximum which is most fa-
vorable for bed-parallel simple-shear deformations.

The CAFFE model is capable of modeling
anisotropic ice flow in thick ice masses. Due to
its simple structure and the fact that it takes the
microstructure into account indirectly, computational
time is rather small.
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Figure 3: Schmidt diagram representation of the EDML fabrics (ρ∗/ρ) at depths between 50 m and 2700 m. The
centres of the diagrams coincide with the core axis. The intersection of an orientationn with its unit sphereS2 is
projected onto the centered circular cross section (the horizontalx-y-plane). Consequently, a vertical orientation
is plotted in the center and an orientation lying flat is plotted on the edge. In the beginning (50 m - 500 m) an
isotropic fabric is seen. At approximately 1000 m, a girdle develops. From 2250 m onwards, a single maximum
(representing a complete anisotropic fabric) exists.
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