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Chapter 1 

Simple Genetic Algorithm with αααα-Selection, 

Uniform Crossover and Bitwise Mutation 

A. Neubauer 

Information Processing Systems Lab 
Department of Electrical Engineering and Computer Science 
Münster University of Applied Sciences 
Stegerwaldstraße 39, D-48565 Steinfurt, Germany 
E-mail: andre.neubauer@fh-muenster.de 

Abstract. Genetic algorithms are random heuristic search                   
algorithms which mimic biological evolution and molecular                
genetics in simplified form. These algorithms can be theoretically                 
described by an infinite population model with the help of a              
deterministic dynamical system by which the stochastic population               
trajectory is characterized using a deterministic heuristic function 
and its fixed points. For practical problem sizes the determination of 
the fixed points is unfeasible even for the simple genetic algorithm 
with fitness-proportional selection, crossover and bitwise mutation. 
The simple genetic algorithm with α-selection allows the analytical 
calculation of the unique fixed point of the corresponding intrinsic 
system model. In this paper, an overview of the theory of the simple 
genetic algorithm with α-selection, uniform crossover and bitwise 
mutation is given and experimental results are presented showing a 
close agreement to the theoretical predictions. 

Keywords. Simple genetic algorithm, α-selection, random heuristic 
search, dynamical system model, intrinsic system model 
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1.1 Introduction 

As specific instances of random heuristic search (RHS), genetic algorithms 
mimic biological evolution and molecular genetics in simplified form 
[2,10]. These evolutionary algorithms have been successfully applied in a 
large variety of applications [1,3,8,9,11]. Genetic algorithms (GA) process 
populations of individuals which evolve according to selection and genetic 
operators like crossover and mutation. The algorithm’s stochastic               
dynamics can be described with the help of a dynamical system model            
introduced by VOSE et al. [10,13,14]. The population trajectory is attracted 
by the fixed points of an underlying deterministic heuristic function which 
also yields the expected next population. However, even for moderate 
problem sizes the calculation of the fixed points is difficult. 
The simple genetic algorithm (SGA) with α-selection recently               

introduced in [4–7] allows to explicitly derive the fixed points of the               
heuristic function. In this selection scheme, the best or α-individual is 
mated with individuals randomly chosen from the current population with                 
uniform probability. For the simple genetic algorithm with α-selection it is 
further possible to formulate an intrinsic system model which is                    
compatible with the equivalence relation imposed by schemata. The intrin-
sic system model provides a means to analyze the genetic algorithm’s            
exploitation and exploration of the search space due to the mixing              
operation caused by crossover and mutation irrespective of the fitness 
function. 
This paper gives an overview of the theoretical results for the simple 

genetic algorithm with α-selection and its intrinsic system model. In               
addition to the theoretical analysis experimental results are presented. The 
paper is organized as follows. The simple genetic algorithm with             
α-selection is described as a specific instance of random heuristic search in 
Sect. 2 based on the notion of the best individual randomly mating with 
other individuals in the current population. In Sect. 3 the corresponding 
dynamical system model is derived based on which the intrinsic system 
model of the simple genetic algorithm with α-selection is formulated in 
Sect. 4. Simulation results for the simple genetic algorithm with                       
α-selection, uniform crossover and bitwise mutation are presented in Sect. 
5 showing a close agreement between theory and experiment. A brief             
conclusion is given in Sect. 6. 
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1.2 Simple Genetic Algorithm with αααα-Selection 

In this section the simple genetic algorithm with α-selection, uniform 
crossover and bitwise mutation is described following the notation and 
definition of the simple genetic algorithm (SGA) in [13]. It is assumed that 
the genetic algorithm is used for the maximization of a fitness function f  

which is defined over the search space ℓ}1,0{=Ω  consisting of binary           

tuples ),,,( 110 −ℓ… aaa . 

Each binary tuple 110110 ),,,( −− =
ℓℓ

…… aaaaaa  will be identified with 

the integer 0
1

2
1

1
0 222 ⋅++⋅+⋅= −

−−
ℓ

ℓℓ
… aaaa  leading to the search 

space }1,,1,0{ −=Ω n…  with cardinality ℓ2==Ω n . The fitness values 

are given by ( ) afaf = . Based on the binary number representation the 

bitwise modulo-2 addition ba⊕ , bitwise modulo-2 multiplication ba⊗  
and bitwise binary complement a  are defined. Vice versa, the integer 

Ω∈a  is viewed as a column vector Taaa ),,,( 110 −ℓ… . The all-one tuple 

1  corresponds to the integer 121 −=− ℓn . The indicator function is              
defined by 1][ == ji  if ji = and 0 if ji ≠ . 

1.2.1 Algorithm 

The simple genetic algorithm with α-selection works over populations 
)(tP  defined as multisets of r  individual binary tuples Ω∈)(ta . For the 

creation of offspring individuals in each generation t  genetic operators 
like crossover Ωχ  and mutation Ωµ  are applied to parental individuals 
(see Fig. 1.1). 
 

 

 

 

 

 

 

0:=t ; 
initialize population )0(P ; 
while end of adaptation ≠  true do 
    select α-individual )(tb  as first parent; 

    for the creation of r  offspring do 
            select second parent )(tc  randomly; 

            apply crossover Ωχ  and mutation Ωµ  

                )))(),(((:)1( tctbta ΩΩ=+ χµ ; 

    end 

    increment 1: += tt ; 
end 

 
Fig. 1.1. Simple genetic algorithm with α-selection [4–7] 
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1.2.2 αααα-Selection 

For the α-selection scheme let 

{ }( ) argmax : ( )ib t f i P t= ∈  (1.1) 

be the best individual or α-individual in the current population ( )P t . In 

the simple genetic algorithm with α-selection the α-individual ( )b t  is 

mated with individuals randomly chosen from the current population ( )P t  

with uniform probability 1r− . 

1.2.3 Mixing 

The crossover operator :χΩ Ω → Ω  randomly generates an offspring          

tuple ),,,( 110 −ℓ… aaa  according to ( , )a b cχΩ=  with crossover                  

probability χ  from two parental tuples 0 1 1( , , , )b b b −ℓ… and 

0 1 1( , , , )c c c −ℓ… . With the crossover mask m∈Ω  the tuples 

a b m m c= ⊗ ⊕ ⊗  (1.2) 

or 

a b m m c= ⊗ ⊕ ⊗  (1.3) 

are generated one of which is chosen as offspring a  with equal probability 
12− . For uniform crossover the crossover mask m  is randomly chosen 

from Ω  according to the probability distribution vector 

0 1 1( , , , )Tχ χ χ −=χ
ℓ

…  with [13]  

1 2 , 0

2 , 0
m

m

m

χ χ
χ

χ

−

−

 − + ⋅ =
= 

⋅ >

ℓ

ℓ
. 

(1.4) 

The bitwise mutation operator :µΩ Ω → Ω , which randomly flips each 

bit of the tuple ),,,( 110 −ℓ… aaa  with mutation probability µ , is defined 
with the help of the mutation mask m∈Ω  according to ( )a a mµΩ = ⊕ . 

The mutation mask m  is randomly chosen from Ω  according to the prob-

ability distribution vector 0 1 1( , , , )Tµ µ µ −=µ
ℓ

…  with [13]  
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(1 )
T Tm m

mµ µ µ −= ⋅ −1 1ℓ . (1.5) 

A typical value of the mutation probability is 
1

µ ∝
ℓ
. 

1.3 Dynamical System Model 

In the dynamical system model [13] the dynamics of the simple genetic            
algorithm is compactly formulated by defining the population vector 

0 1 1( , , , )Tp p p −=p
ℓ

… . Each component 

1
[ ]i

j P

p j i
r ∈

= =∑  
(1.6) 

gives the proportion of the element i∈Ω  in the current population P . 
The population vector p  is an element of the simplex 

: 0 1
∈Ω

 
Λ = ∈ ≥ ∧ = 

 
∑ℝ

n

i i

i

p pp . 
(1.7) 

For a population of size r  the number of possible population vectors is 

given by 
1n r

r

+ − 
 
 

. 

In the limit of infinite populations with r→ ∞  the population vectors 
are dense in the simplex Λ . For simplicity we will take the simplex Λ  as 
the defining region of the population vector p  which is strictly valid only 

for large populations with 1≫r  in the sense of an infinite population 
model. 
The simple genetic algorithm is now described as an instance of RHS 
:τ Λ → Λ  according to ( 1) ( ( ))t tτ+ =p p  with τ  depending on the        

random selection and genetic operators. As outlined in [13] τ  can be 
equivalently represented by a suitable heuristic function :Λ → ΛG  

which for a given population vector  p  yields the probability distribution 

( )pG . This probability distribution 

{ }( ) Pr individual  is sampled from i i= ΩpG  (1.8) 
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is used to generate the next population as illustrated in Fig. 1.2. The             
transition probabilities of the RHS τ  are given by the formula [13]  

{ } ( )
Pr ( ) !

( )!

irq

i

i i

r
rq

τ
∈Ω

= = ∏
p

p q
G

. 
(1.9) 

 

 

Fig. 1.2. Simple genetic algorithm as RHS τ  with heuristic function G  [13] 

The trajectory 2, ( ), ( ),τ τp p p …  approximately follows the trajectory 
2, ( ), ( ),p p p …G G  of the deterministic dynamical system with 

{ }E ( ) ( )τ =p pG . (1.10) 

Because of the corresponding mean quadratic deviation 

{ } ( )2 21
E ( ) ( ) 1- ( )

r
τ − = ⋅p p pG G  

(1.11) 

the RHS τ  behaves like the deterministic dynamical system model in the 
limit of infinite populations with r→ ∞ . As illustrated by experimental 
evidence the RHS τ  shows punctuated equilibria, i.e. phases of relative 
stability nearby a fixed point ( )=ω ωG  of the heuristic function G          
disrupted by sudden transitions to another dynamical equilibrium near             
another fixed point. We call this the fixed point hypothesis of genetic           
algorithms. 

1.3.1 Heuristic 

In the simple genetic algorithm with α-selection the α-individual  

{ }argmax : 0i ib f i p= ∈Ω∧ >  (1.12) 
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is selected as the first parent for creation of a new offspring, whereas the 
second parent is chosen uniformly at random from the current population 
according to the probability distribution jp  over Ω  with j∈Ω . The 

heuristic function ( )pG  follows to 

{ }( ) Pr ( ( , ))i j

j

p b j iµ χΩ Ω
∈Ω

= ⋅ =∑pG . (1.13) 

The probability distributions for crossover χΩ  and mutation µΩ  lead to 

{ }
,

Pr ( ( , )) [ ]
2

u u
v

u v

b j i b u u j i v
χ χ

µ χ µΩ Ω
∈Ω

+
= = ⋅ ⋅ ⊗ ⊕ ⊗ = ⊕∑ . 

(1.14) 

By defining the n n×  mixing matrix [13]  

,
,

[ ]
2

u u
i j v

u v

M i u u j v
χ χ

µ
∈Ω

+
= ⋅ ⋅ ⊗ ⊕ ⊗ =∑  

(1.15) 

this yields { } ,Pr ( ( , )) i b i jb j i Mµ χΩ Ω ⊕ ⊕= =  and finally 

,( )i j i b i j

j

p M ⊕ ⊕
∈Ω

= ⋅∑pG . (1.16) 

With the permutation matrix ,( ) [ ]b i j i j bσ = ⊕ =  and the twist 
*

, ,( )i j i j iM M ⊕=  of the symmetric mixing matrix TM M=  the new 

population vector is given by 

*( ) b bMσ σ= = ⋅q p pG . (1.17) 

This dynamical system model is illustrated in Fig. 1.3. 
 

 

Fig. 1.3. Dynamical system model of the simple genetic algorithm with                       
α-selection [5]  
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1.3.2 Mixing Matrix 

The calculation of the mixing matrix M  can be carried out efficiently 
with the help of the WALSH transform [12]. For a matrix M  the WALSH 

transform is M̂ W M W= ⋅ ⋅  with the n n×  WALSH matrix 
1/ 2

, ( 1)
Ti j

i jW n−= ⋅ − . The WALSH matrix W  is symmetric and orthogonal, 

i.e. 1 TW W W− = = . The WALSH transform of a vector v  yields 

ˆ M= ⋅v v . In Fig. 1.4 the WALSH matrix W is illustrated for 62 64n = = . 

 

Fig. 1.4. Illustration of the WALSH matrix W  for 62 64n = =   

For crossover and bitwise mutation the WALSH transform of the mixing 
matrix M  is given by [13]  

( )
( )

,

(1 2 )ˆ [ 0]
2

T

i j

i j

i j k i k j

k

M i j
µ

χ χ
⊗

⊕

⊕ ⊕
∈Ω

−
= ⊗ = ⋅ +∑

1

 
(1.18) 

with 

{ }: 0k i i kΩ = ∈Ω ⊗ = . (1.19) 

Due to the factor [ 0]i j⊗ =  the components ,
ˆ
i jM  are nonzero only if 

0i j⊗ =  or
i

j∈Ω , respectively. The WALSH transform of the twist of 

the mixing matrix can be calculated from 

*^
, ,

ˆ( )i j i j jM M ⊕= . (1.20) 
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1.4 Intrinsic System Model 

The matrix *
b bMσ σ  of the dynamical system model of the simple genetic 

algorithm with α-selection in Eq. (1.17) depends on the mixing matrix M  
and the α-individual b . Because of 1

b bσ σ− =  this yields the equivalent 
formulation 

*
b bMσ σ= ⋅q p . (1.21) 

The permuted population vector bσ p  develops according to the matrix 
*M  which is independent of the α-individual b . The matrix *M  defines 

the intrinsic system model of the genetic algorithm with α-selection [5]. 
Because 0σ  is equal to the identity matrix the intrinsic system model of 

the simple genetic algorithm with α-selection corresponds to the                  
underlying dynamical system model for the best or α-individual 0b = . 
The fixed points of the intrinsic system model are obtained from the            

eigenvectors of *M  to eigenvalue 1λ = , i.e.  

*M= ⋅ω ω . (1.22) 

The fixed points of the heuristic function G  of the dynamical system 

model follow from the permutation bσ ω  for a given α-individual b . For 
the fixed point analysis of the dynamical system model it therefore suffices 
to analyze the intrinsic system model shown in Fig. 1.5. To this end the 
WALSH transform of both sides of the equation *M= ⋅q p  is taken               

yielding * *^ˆ ˆW W M W W M= ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅q q p p . For an eigenvector v  with 

eigenvalue λ  it follows *M λ⋅ = ⋅v v  and equivalently *^ ˆ ˆM λ⋅ = ⋅v v , i.e. 

the matrix *M  and its WALSH transform *^M  have the same eigenvalues 
with eigenvectors which are also related by the WALSH transform.  
 

 

Fig. 1.5. Intrinsic system model of the genetic algorithm with α-selection [5] 

For crossover and mutation the WALSH transform of the mixing matrix 

fulfills ,
ˆ [ 0]i jM i j∝ ⊗ = , i.e. M̂  is separative. *^ ^**M M=  is a lower 
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triangular matrix the spectrum of which is given by the first column of M̂   

[13]. Since the spectrum of *M  and its WALSH transform *^M  are the 
same this yields the eigenvalues 

*^
, 0,

ˆ( )i i i iM Mλ = = . (1.23) 

For crossover and bitwise mutation the eigenvalues are given by 

( )(1 2 )

2

T

i

i

i k k i

k

µ
λ χ χ ⊕

∈Ω

−
= +∑

1

. 
(1.24) 

Because of 0 1λ =  and 0 1 2 1 2iλ µ≤ ≤ − <  for 1 1i n≤ ≤ −  there     

exists a single eigenvector ω  which is a unique fixed point of the intrinsic 
system model. For uniform crossover the eigenvalues are obtained from 

1
(1 2 ) 2

2

T Ti i

i

χ
λ µ χ − − = − ⋅ ⋅ + 

 
1 1  

(1.25) 

for 1 1i n≤ ≤ − . The fixed points of the heuristic function G  of the             

simple genetic algorithm with α-selection are obtained from the                 
permutation  bσ ω  for a given α-individual b . According to the fixed 

point hypothesis the population will stay near this fixed point bσ ω  and 

converge to a new fixed point if a better α-individual b  is found. 
The unique fixed point ω  of the intrinsic system model can be                

determined explicitly with the help of the WALSH transform. Due to the       
relation *^ˆ ˆM= ⋅ω ω  and the lower triangular matrix *^M  the WALSH 
transform of the fixed point can be recursively calculated according to 
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,
00,
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ω ω
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⊕
=
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for 1 1i n≤ ≤ −  starting with 1/ 2
0ˆ nω −=  which ensures 1ii

ω
∈Ω

=∑ . The 

unique fixed point ω  is then obtained via the inverse WALSH transform 
ˆW= ⋅ω ω . 

Under the assumption of the fixed point hypothesis for the intrinsic               
system model the permuted population vector bσ p  will stay near this fixed 

point ω . The population is therefore approximately sampled from the 
search space Ω  according to the probability distribution bσ ω  with              

time-independent fixed point ω  and α-individual b . 
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1.5 Experimental Results 

In this section the ONEMAX problem with fitness function 

T

if i= 1  (1.27) 

is considered, i.e. if  denotes the number of 1’s in the binary                      

representation of i∈Ω . A simple genetic algorithm with α-selection               
using uniform crossover, bitwise mutation and random initial population is 
used with the strategy parameters listed in Tab. 1.1. 

Table 1.1. Strategy parameters for the simple genetic algorithm with α-selection  

ℓ  2n = ℓ  χ  µ  r  

10 1024 1.0 0.1  100 

 
The intrinsic system model of the simple genetic algorithm with                        

α-selection is defined by the twist of the mixing matrix *M  which leads to 
the unique fixed point ω  shown in Fig. 1.6. The largest fraction of the 
population according to the largest component iω  of the fixed point ω  

occurs at the individual 0i = . This is in line with the observation that the 
intrinsic system model of the simple genetic algorithm with α-selection 
corresponds to the underlying dynamical system model for the best or              
α-individual 0b = . 
According to the fixed point hypothesis the permuted population vector 

( ) ( )b t tσ p  will stay near this fixed point ω . The corresponding distance      

between the permuted population vector ( ) ( )b t tσ p  in generation t  to the 

fixed point ω  can be measured by the EUCLIDean distance which is               
defined by 

( )( )2( ) ( )( ) ( )b t b t ii
i

t tσ σ ω
∈Ω

− = −∑p ω p . 
(1.28) 

In Fig. 1.7 the EUCLIDean distance ( ) ( )b t tσ −p ω  is shown for one                     

simulation run of the simple genetic algorithm with α-selection and                
strategy parameters as in Tab. 1.1 for 100 generations. The permuted 
population vector ( ) ( )b t tσ p  stays close to the unique fixed point ω  of the 

intrinsic system model of the simple genetic algorithm with α-selection. 
There is a close match between the theoretical prediction and the                       
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experimental result, thereby confirming the fixed point hypothesis.  
 

 

Fig. 1.6. Fixed point ω  of the intrinsic system model of the simple genetic             
algorithm with α-selection 
 

 

Fig. 1.7. EUCLIDean distance ( ) ( )b t tσ −p ω  over generation t  for the simple 

genetic algorithm with α-selection 

1.6 Conclusion 

The intrinsic system model for the simple genetic algorithm with                 
α-selection simplifies the analysis of the dynamical system model of              
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genetic algorithms. It is defined by the mixing matrix M  and enables the 
explicit derivation of the unique fixed point ω . The simplifications are 
gained because the fitness function f  is hidden from the mathematical 

formulation by making use of the α-individual b . Since b  enters the             
dynamical system model via a permutation bσ  according to the system 

matrix *
b bMσ σ  the intrinsic system model can be formulated with the 

help of the twist of the mixing matrix *M . It has to be observed, however, 
that the permutation bσ  depends on the α-individual b  and therefore on 
the population vector p . 
The intrinsic system model provides a means to analyze the genetic            

algorithm’s exploitation and exploration of the search space Ω                   
irrespective of the fitness function f . This model is compatible with the 

equivalence relation imposed by schemata as shown in [5] by explicitly        
deriving the coarse-grained system model for a given schemata family. 
Experimental results for the simple genetic algorithm with α-selection, 
uniform crossover and bitwise mutation presented in this paper show a 
close agreement to the theoretical predictions obtained from the intrinsic 
system model. 
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Abstract. Using a 2D decision support system based on a recent analytical 

model, this paper is the first to demonstrate that bridge specific characteris-

tics require a detailed analysis to determine the collapse load. Because of 

the complexity of finite element modeling and the computation time               

requirements of 3D finite elements models for a large number of load               

positions, it is regularly assumed that collapse positions are situated at the 

crown of the arc. Empirical testing in this paper clearly demonstrates that 

this is not the case. The here developed approach allows for a quick scan of 

any type of masonry bridge, thus providing the necessary information on 

the critical range of load positions to be analyzed in more detail by a 3D 

modeling approach. 

Keywords. arches, collapse load, equilibrium, safety 

2.1   Introduction 

The analysis of load-bearing unreinforced masonry structures such as 

arches, vaults and buttresses has become the subject of renewed academic 
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interest. The growing interest in the preservation of historical buildings 

and structures gives researchers the incentive, financially as well as                

socially, to develop methods of analysis for these structures. Moreover, 

arch bridges, which were designed in the days of horses and carriages are 

also required to function under the 21
st
 century loadings. Nowadays, these 

structures are subject to heavy freight transport which they were originally 

not constructed for. The latter remark justifies the approach of studying the 

collapse behavior of these historical structures as accurately as possible. 

An extensive literature review on the topic is provided by Boothby [1]. 

The rigid block theory is the basic model for understanding the                

fundamental behavior of masonry arches [2, 3, 4]. This theory simplifies 

the masonry arch structure as a collection of rigid blocks and calculates its 

stability using the principle of virtual work, which is an alternative way of 

expressing the equations of motion and equilibrium. This principle is often 

used in mechanics of structures and is also the basis of FEM-models [5]. 

Eventually the rigid-block methodology gives rise to an upper bound for 

the collapse load for a given load position and thus offers a first quick               

insight into the arch behavior. The collapse load is an objective measure to 

determine the bearing capacity of a structure. 

A more recent research technique uses finite element analysis. The 

models range from 1-dimensional [6, 7], over 2-dimensional [8, 9], up to 

fully 3-dimensional models [10, 11] for understanding three-dimensional 

effects. These 3D-models do require a precise knowledge of parameters 

which are usually not well-known in practice. Moreover, finite element 

programs are often computationally expensive and require a high level of 

modeling expertise. 

A major shortcoming of both the rudimental rigid block method and the 

more accurate 3-dimensional finite element analysis is their inability to 

carry out detailed sensitivity analysis. Software based on these models can 

only assess an arch bridge for specific load conditions and parameter              

settings. Neither the influence of material properties, nor the influence of 

different loadings can be evaluated easily. Especially for determining the 

bearing load on arch bridges, such a parameter analysis might prove to be 

very important. 

To alleviate these modeling shortcomings, this paper embeds an                   

analytical model for determining the collapse load for a single loading             

position in a decision support tool. The resulting software is capable of 

identifying the specific position (of the load) which allows the smallest 

collapse load, thus governing the safety of the arch. 
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2.2 An analytical model for the bearing capacity of an 
arch bridge 

To determine the bearing capacity of an arch bridge, we first determine the                 

collapse load for all possible load positions on the bridge using an                    

analytical model. 

The analytical model is based on the three fundamental equilibrium 

equations: horizontal equilibrium, vertical equilibrium and equilibrium of 

moments. The              geometry of an arch is defined by an angle θ, a              

radius r(θ) and a height b(θ) as shown in Fig.1. 

 

 
Fig 1. Definition of the geometric parameters of an arch in function of θ 

 

All these geometrical parameters are function of the angle µ, capable of                

modeling any shape of arch barrel. Audenaert et al. [13] show how the 

equilibrium equations can be transformed to a set of ordinary differential 

equations (1), (2) and (3) to calculate normal forces N(θ), shear forces V 

(θ) and bending moments M(θ). 
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In equations (1), (2) and (3) a prime denotes the derivative with respect 

to θ; pr = the radial distributed force; pθ = the tangential distributed force; 

αi = the position of the vertical point load Pi ; αj = the position of the              

horizontal point load Hj ; γ = the specific weight of the arch and η = b/r. 

The general solution of this set of differential equations includes three                  

constants. To find the unique solution for the internal forces and the                   

internal moments, additional constraints need to be imposed. Boundary 

conditions on the horizontal u, vertical v and angular deflections φ at the 

abutments were introduced, based on the so-called Bresse equations [12]. 

This procedure yields the deflections at the right fixed support (u2; v2; φ2), 

given their values at the left fixed support (u1; v1; φ1). 

 

 

with φ = the rotation of the elastic line; u = the horizontal deflection; v = 

the vertical deflection; A = the area of the cross-section; I = the rotational 

inertia of the cross-section; E = the modulus of elasticity; x = the                        

horizontal position coordinate; y = the vertical position coordinate; the 

subscripts 1 and 2 denote the left and right side supports of the arch bridge 

respectively, see Fig. 1. 

 

 
Fig 2. Collapse modes 

 

The sign conventions for the horizontal and vertical deflections u and v 

are taken to be the same as for the x-axis and y-axis, the rotation φ is taken 

to be positive for clockwise rotations. Both axes are defined in Fig. 1. If 

the deflections at both supports are specified, these equations can be used 

to calculate the internal forces N(θ), V (θ) and M(θ). 

To calculate the stability of an arch, a failure criterion is added to the 

model. According to [2], an arch bridge can collapse as a result of three 

possible collapse mechanisms: a shear mechanism (Fig. 2(a)), a                 

hinge-mechanism (Fig. 2(b)) and a combined shear-hinge mechanism (Fig. 

2(c)). 
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Experiments by Hendry et al. [15] and by others show that, due to most 

arches being well-buttressed, the hinge-mechanism (Fig. 3) can be              

considered as by far the most likely collapse mechanism for arches.       

Therefore this paper focuses on this mechanism. 
 

 
Fig 3. Collapse of the Bridgemill arch bridge. (Source: 

http://archive.niees.ac.uk/talks/dem/nenad_bicanic.ppt) 

 

The formation of hinges and the complementary propagation of cracks 

needs we assume that the first crack will appear at the position for which a 

defined tensile strength σt is reached. When the compressive strength σd is 

reached, the material behaves perfectly plastic finally resulting in a hinge. 

How these material properties are included into the analytical model is 

thoroughly explained in [12]. Many homoganisation technics exist to              

assess the material behavior of masonry as shown by [17], [18] and [19]. 

The solution of the differential equations can be found in [13]. 

2.3 Quick scan analysis 

Current research predicts arch bridge behavior under a given load.              

However, such studies do not offer information about the bearing capacity 

of an arch bridge. The analytical model from Section 2 allows for an               

efficient sensitivity analysis on loading positions to determine the            

corresponding collapse load. The minimum of these collapse loads deter-

mines the ultimate allowable load for a given bridge geometry. In this              

section we will examine whether the critical load position differs for 

bridges with different geometry. 

Bridges have primarily been built to resist vertical loads. Thus, in the 

case of a vertical concentrated load, the safety assessment of the bridge 
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should be performed for all possible load positions α. The position giving 

rise to the smallest value for the collapse load determines the bearing             

capacity of the arch. Figure 4 visualizes this bearing capacity procedure. 

Hence, we perform a search of the load position and compute the collapse 

load. The advantage of this approach is that it quickly gives the ultimate 

overview of the arch bridge's behavior. 
 

 

 

 

Fig 4. Algorithm to determine the bearing capacity of the arch in function of the 

load position. 

 

To illustrate the necessity and workings of the quick scan methodology,               

consider the following set of semi circular masonry arch bridge features. 

All bridges are assumed to have the same material properties, infill, and 

radius of the outer curve of the arch (extrados re) (see Fig. 5). 
 

 

 
Fig 5. Algorithm to determine the variation in critical load position in function of 

the arch geometry 

 

The bridges with unit width only differ in their radius of the inner curve 

of the arch, the so-called intrados ri. The height of the infill h is 2 meters 

and the specific weight of the infill γ2 is 21600 N/m³ corresponding to a 

traditional sandbased infill. The masonry barrel is assumed to have a              
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specific weight of 21000 N/m³, an elasticity coefficient of 5 GPa,                

compressive strength of -8 MPa and tensile strength of zero reflecting the 

masonry's inability to resist tensile. The radius of the intrados ri varies              

between 1.4 and 1.7 meters implying a variation in barrel thickness in the 

range of [0.5-0.2] given the fixed radius of the extrados re = 1:9m. The           

position of the point load P varies from -1 = -57.30° to 1 = 57:30°. 

In Table 1 the numerical results for the load position giving rise to the 

smallest collapse load end the corresponding collapse load are listed for 

some arch geometries. 
 

 
Table 1. Collapse loads and most dangerous load positions for different arch              

geometries. 

 

In Fig.6 the collapse load is shown in function of all position of the load, 

α, and in function of the radius of the intrados, ri. The results support 

common wisdom that ticker arch barrels can resist higher collapse loads. 

 
Fig 6. Collapse load in function of α and ri 

 

Also the higher the barrel of the arch, the more the weakest point of the 

arch (i.e., the location α corresponding with the smallest collapse load)         

differs from the crown of the arch. 
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For the biggest and the smallest arch the collapse load in function of the 

load position are shown respectively in Fig. 8 and in Fig. 7. 
 

 
Fig 7. Collapse load in function of α for the smallest arch, ri = 1.7 

 

 
Fig 8. Collapse load in function of α for the thickest arch, ri = 1.4 

 

In Table 2 the overall collapse load is compared to the collapse load                  

cor-responding to the crown of the arch (α = 0).  

 

 
Table 2. Influence of α on the collapse load for different arch geometries. 

 

For each arch geometry only these two values are listed in the table. 

Also the corresponding %-error is calculated. Especially for a thick arch 
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geometry (ri = 1.4) the overall collapse load for a load positioned at α = 

0:25 differs significantly, approximately 30%, from the collapse load            

obtained for α = 0. For smaller arch barrels the error-percentage               

diminishes, but remains larger than 8%. These results indicate that for 

every bridge one should conduct a sensitivity analysis based on an                  

investigation of the weakest position of the arch. 

The latter findings are in accordance with the findings of Brencich et al. 

[16] demonstrating that α = 0 is not the weakest point of the bridge. As 

Brencich used a FEM-program for this calculations he was only able to 

evaluate a limited number of load positions. The computation time                 

requirements of his FEM approach therefore excludes an extensive              

sensitivity analysis required for assessing the safety of arch bridges. Our 

method is capable of doing a fast and very accurate   parameter analysis in 

function of the load position. 

2.4 Conclusions 

Determining a “safe load carrying capacity” of arch bridges continues to 

challenge civil servants and researchers. The proposed method of strength 

assessment described in this paper advances the state-of-the-art in                

two-dimensional modeling of masonry arch bridges. Our two-dimensional 

assessment algorithm serves as a conservative, computationally efficient 

approach to tackle safety of such masonry arch bridges. 

Previous models from the literature assess arches under a given specific 

load condition. Because of the complexity of finite element modeling and 

the com-putation time requirements of 3D finite elements models for a 

large number of load positions, it is regularly assumed that collapse             

positions are situated at the crown of the arc. 

Our methodology investigates the safety of arches under different               

conditions using sensitivity analysis. Computational testing shows that the 

weakest point of an arch is different for every geometry, which means that 

no assumptions about this matter can be made beforehand. The critical             

position differs from the crown of the arch and should therefore be              

determined for every single arch geometry. A small variation in geometry 

or material properties is shown to have a significant influence on the             

bearing capacity of the arch. 

The approach developed in this paper allows for a quick scan of any 

type of masonry bridge, thus providing the necessary information on the 

critical range of load positions to be analyzed in more detail by a 3D           

modeling approach. 
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Abstract. In this paper we introduce a novel self-organizing method 

of moving surface reconstruction from the data obtained from 

measuring real-world objects. The core of the approach is using      

Kohonen's Self Organizing Maps model. We propose a modification 

of the model enforcing input data approximation and time-space 

smoothing. Due to stochastic nature of the proposed method, in 

many cases it is not necessary to employ additional denoising or 

data filtering. Underlying self-organizing principles make the              

technique human-free, efficient and easy to parallelize. The method 

was implemented using AITricks GeomBox® package. 

Keywords. Animation, surface reconstruction, self-organization. 

3.1   Introduction 

Modeling of realistic three dimensional objects is one of the fundamental 

problems in geometry processing. Its applications include 3D computer 

graphics and movie making, industrial computer-aided design, numerical 

modeling of physical processes on real objects, acquiring CAD model of a 

part with lost CAD data, etc. [8] 
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Many approaches of 3D shape acquisition by measuring were 

developed; the most common of those are laser scanning [1], structured 

light techniques [2], and passive multi-view stereo [7]. The result of 

scanning is usually a point cloud or a height map. In this paper, we focus 

on one of the problems of reverse engineering of CAD models: moving 

surface reconstruction from point clouds. 

Currently, numbers of methods exist that allow to reconstruct surfaces of 

static objects from unorganized set of points, particularly, methods of surface 

reconstruction of unknown topology, e.g. [8], methods of surface 

reconstruction via deformation [3], methods of topology estimation [5], etc. 

Recently, several approaches have been proposed to extend measuring 

techniques to capture animated scenes in real-time. That evidently opens 

up a large variety of interesting new applications, such as creating special 

effects for movies or creating content for interactive applications and 

games. Besides, new approaches for moving surface reconstruction appear, 

such as [17], [16], [11]. However, despite high research interest in the 

subject, currently available technologies of automatic moving surface 

reconstruction impose some significant restrictions. First of all, point 

clouds often contain remarkable level of noise, the input data suffer from 

oversampling or undersampling. Second, it is not evident how to evaluate 

the topology of an object being scanned and how it is changing in time. 

Third, in attempt to regenerate a moving surface using a static surface 

reconstruction method we may obtain not a moving mesh, but a sequence 

of meshes of varying connectivity. And finally, the methods of surface 

reconstruction are often difficult to parallelize.   

Those are the problems this paper addresses. The main contribution of 

the paper is a new method EDSOM (Expanding Dynamic SOM) which 

allows us to automatically reconstruct a moving surface with non-uniform 

mesh nodes density, fixed topology and fixed number of nodes from 

unorganized set of points. Due to underlying self-organizing principles and 

stochastic nature, the new method is resistant to noise, can efficiently 

process oversampled or undersampled data and is easy to parallelize. 
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The core of the proposed method is Kohonen's Self-Organizing Maps 

(SOM), a well-known neural network model [9]. In order to properly 

adjust the model to be applicable to the problem of moving surface 

reconstruction, the parameters of the model were fine-tuned. Also, some 

essential modifications are proposed which allow us to refine the surface 

approximation and make the quality of the final animation better. 

Particularly, we propose a stochastic technique which refines the mesh and 

decreases the gaps between the surface and the point cloud, moving the 

nodes in surface normal direction towards the point cloud and then 

additionally refining it with geodesic SOM [10]. To smooth trajectories, we 

use a stochastic K-means-like technique proposed in [4], which allows us to 

deform the mesh only in the areas of real surface deformations in time.  

3.2 Related Work 

We can divide the related work into two parts: moving surface 

reconstruction and surface reconstruction using self-organizing maps.  

Moving surface reconstruction. Though many approaches were 

proposed to reconstruct surfaces from unorganized set of clouds, 

starting with [8], only a few techniques were developed to extend 

surface reconstruction to animated point clouds. Nevertheless, a full 

survey on the area is beyond the scope of the paper, and we will 

mention only some noticeable techniques. 
A close strategy to ours is to generate moving meshes by fitting template 

meshes to the data [11], [16], [7]. The limitation of those methods is that those 

methods are able to work only with low-noise or noise-free data and sufficient 

sampling density. Those limitations are overcome by Wand et al. [17] at the 

cost of significant perforance issues, though producing impressive results. 

Moreover, most of those methods cannot be efficiently parallelized. 

Surface reconstruction using Self-Organizing Maps. One of the 

pioneer papers in the area is [18]. In this paper, static surface 

reconstruction using Kohonen's SOM is considered. The algorithm 

proposed in that paper yields resonable though non-optimized meshes: the 

number of triangles in the mesh tends to the number of points, what is 

unacceptable in most applications. Moreover, even with proposed 

technique called edge swap, the method possibly can not be applied to 

large model with small features. In this paper we solve this problem by 

employing a geodesic metric. 
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The idea of surface deformation by SOM is not new itself [6], [15]. 

Though the key difference of our approach that the initial mesh for 

deformation is irregular, unstructured and has non-uniform nodes density 

when most of the papers concerning SOM deal with regular uniform grids. 

Finally, in [4], moving meshes are generated using Self-Organizing 

Maps. As stated in the paper, the technique is limited to surface without 

holes in it, the input data is a height map while in our paper we deal with 

unstructured sets of points. Though, our paper may be considered as a 

significant extension of that method. 

3.3 The EDSOM reconstruction pipeline 

3.3.1 Scheme 

The proposed method of moving surface reconstruction belongs to the 

class of methods of moving mesh generation via deformation. The main 

goal of the deformation at each time step is to fit the template mesh to 

current point cloud, preserving structure and topology of the template mesh.  

The initial mesh may be generated by any suitable method of static 

surface reconstruction, e.g. mentioned above. It has to be noted that the 

only condition we require is that the initial mesh has the same topology as 

the real object, because we use the initial mesh as a template one, 

generating moving mesh by its deformation. 

Our moving surface reconstruction pipeline at each time step consists of 

three major components: estimation of changes in the point cloud in time 

(Section 4), deformation of the current mesh in the areas of point cloud 

changes with Self-Organizing Maps algorithm (Section 5), and the                   

so-called Expanding - the final refinement of the mesh (Section 6).  

3.4 Motion Tracking 

The main idea of the technique is to investigate changes of sample points 

near each node by its Voronoi cell centroid variation in time. Following this 

technique, we calculate the distance between each node and the centroid of 

its Voronoi cell computed using the point cloud at the next time step.  

This distance actually shows how much the object under consideration 

has changed in the node's neighborhood. The last step is to normalize this 

distance and perform Gaussian smoothing on it. The obtained factor v(t, x) 

is called the function of deformation area: 
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where w(t, qi) is Euclidian distance between the centroids of Voronoi cells 

of i-th node at two adjacent time steps and ni is the number of points in 

corresponding Voronoi cell. The obtained factor will be used as a mask for 

the deformation.  

3.5 Deformation via SOM 

The main goal of SOM deformation stage is to roughly fit the current mesh 

to a new point cloud, making the global structure of the mesh correspond 

the point cloud. 

Let U(t) be the surface of an animated object in a 3D Euclidean space with 

spatial coordinates 
3

Ux∈R , where t is a discrete time step. A moving triangle 

mesh M(t) = {m1(t), …, mN(t)} is to be generated on U(t), where mi(t), 

i = 1, …, N are moving mesh nodes. Let Q = M(0) be a fixed template mesh. 

The moving mesh will be acquired via deformation of that template in time. 

For simplicity, here we assume that the global topology of U(t) is not 

changing in time (i.e. no large holes appear or disappear in time in the           

object under consideration). This is actually a weak requirement since 

most of contemporary applications imply 3D modeling of a single moving 

object, e.g. actor in movie making.  

The sets of sample points X(t) are assumed to lie on the unknown              

surface U(t) or near it. We do not make assumptions about the level of 

noise in the input data since SOM deformation algorithm is stable even on 

data with high noise level. Since the process is stochastic, the influence of 

noise may be lower than in conventional algorithms of surface reconstruction. 

Taking into account that we deform the mesh only in the areas of object 

variation (Stage 1), the SOM deformation algorithm is as follows: 

Algorithm 1. Procedure Deform(S0, S). For each s = S0, …, S: 

    0. Point selection. Take a random point  )(tXy∈  from the point cloud. 

    1. Winner determination. Calculate all the Euclidean distances between y and 

all the nodes )(tms

i and choose the node  )()( tms

tψ which is the closest to y, i.e.  

U

s

i
U

s

t tmytmy )()()( −≤− ψ , (1.2) 
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for all i = 1, …, N. The node )(tms

ψ is called a winner. 

    2. Node coordinates correction. Adjust locations of the mesh nodes           

according to the following rule: 

)),()(,()(

1

)( tmyqsmm s

ii

S

q

s

ti

s

ti −+=+

ψ
θ  (1.3) 

i = 1, …, N, where  ]1,0[),( ∈i

S

q qs
ψ

θ  is a learning rate. 

The learning rate controls the overall quality of the mesh and affects the 

preservation of mesh structure throughout the iterative process. According 

to [12] and our experiments, the learning rate has been thoroughly selected 

to provide acceptable mesh quality with reasonable computational speed, 

and looks like 
),(

)(),( jqsS

qj

S

q sqs
ψψ

ηδθ = , where )()( 2.0 sss χδ −=  is a 

learning step,  
2/ ( )( , ) i Qi

q q r sS s q

q

ψ

ψ
η ζ

−
=  (ζ  is close to zero, e.g. 001.0=ζ ) 

is a neighborhood function, 
/ 0.25( ) ( ) ( )( (1)0.05 ( ))s Sr s r S s r r S sχ −= + −  

is a learning radius, 
5( )/( ) 1 s S Ss eχ −= − .  

The maximum number of iterations S is fixed beforehand proportional to N, 

e.g. S = 10N; r(1) and r(S) are values of a learning radius that are selected            

depending on the distances between nodes of the template mesh Q, r(1) > r(S).  

The learning step indicates the displacement magnitude the winner node 

receives, and the learning radius controls the radius of the neighborhood of 

the winner node that moves along with the winner. Obviously, there is               

always a compromise between low and high learning radius. When the             

radius is high, a large neighborhood of the winner node moves, therefore 

producing smooth, but poorly approximating the point cloud surface. On 

the other hand, low learning radius may yield fine approximation, though 

possibly making mesh non-smooth and even disordering its structure. 

In our experiments we have chosen the starting value of radius greater 

than maximum Euclidian distance between nodes of the mesh:  

Uji mmr −=
∈ N][1;ji,

max3)1( , and final radius value r(S) equal to an average 

edge length in the initial triangle mesh M(0) = Q. 

Following Kohonen [9], the learning process of the SOM model can be 

divided into 2 parts: ordering stage and refinement stage. During the                 

ordering stage, mesh nodes get roughly distributed on the surface of the 

input geometry, since nodes get large displacements.  

During the refinement stage, mesh nodes' displacements are relatively 

low, and that makes the mesh correspond to the probability distribution 

and approximate surface more precisely. This stage affects the final overall 

quality of the mesh (smoothness, topology correctness, etc.). 
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To avoid regeneration of the mesh from scratch at each time step, only 

deforming it to fit a new point cloud, we skip the ordering stage,                         

performing only last iterations of the SOM deformation process. In our           

experiments, we chose S0 = S/4, as the beginning iteration of the                   

refinement stage, therefore using only 75% of whole iterative process. 

3.6 Expanding 

In this section, we introduce Expanding technique which is aimed to refine 

the approximation of the mesh, obtained as the result of Stage 1. The goal 

of the technique is to eliminate a distance between the mesh and the point 

cloud or at least decrease it. 

Formally, the problem we have left is expanding the mesh to fit the point 

cloud which is an optimization problem. Even though after stage 1 we have a 

good guess of the reconstructed mesh, in the paper we prefer to avoid explicit 

minimization of non-linear functions since it would lead to notorious                    

efficiency and parallelization problems, especially in the case of                  

oversampling. 

It has to be noted that the mesh after Stage 1 of reconstruction                        

approximates the geometry of the surface and the distance between the 

mesh and the point cloud is greater in the areas where the surface is              

complex, i.e. has larger surface curvature. Taking that into account, the 

proposed additional refinement technique goes as follows: 

Step 1. Move all the nodes of the mesh in the normal direction. The        

displacement value is proportional to surface curvature in node's position: 

),,()()()( titntmtm iii ξ+=′  (1.4) 

where ni(t) is normal of the surface in the i-th node. Since normal is a                 

differential entity, it is not defined at the vertices of a mesh, instead of it 

we use pseudo-normal [19] which is angle-weighted sum of all the                   

triangles adjacent to the node. ),( tiξ is a factor which is proportional to 

surface curvature. In our experiments we have chosen ),( tiξ  proportional 

to maximum angle between neighborhood triangles' normals. 

Step 2. Perform last iterations of SOM deformation process with a               

special learning radius: instead of calculating Euclidian distance, we can 

obtain better refinement using geodesic distance over the triangl. It is vital 

to use the geodesic distance only in the end of iterative process since then 

the learning radius is low and we can easily optimize the mesh                             

deformation without need to employ complex algorithms of real geodesic 

distance calculations. It is also important to underline that Step 1 is                      
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essential: last iterations of SOM with geodesic distance would be unable to 

refine the mesh. Also, due to computation reasons, it is inefficient to use 

whole SOM with geodesic distance. 

In our experiments, instead of exact geodesic distance, we used a         

graph-based Dijkstra algorithm for shortest paths. 

 
(a)       (b) 

Fig.1. a) The mesh after Stage 2 of reconstruction – SOM deformation.  

          b) Stage 3 refines the mesh even in the areas of complex geometry. 

3.7 Experiments and Results 

The proposed method was implemented in C++ using AITricks                     

GeomBox® package [20] and tested on synthetic data - random points 

generated on the surface of a moving gorilla model. The initial mesh is the 

triangulation of the gorilla at the first frame. As shown in (Fig. 2), the 

mesh successfully adapts to the animated point cloud, the mesh quality is 

satisfactory. Moreover, the surface has holes in it (mouth, eyes) and the 

method successfully tracks their motion. The parameters of the proposed 

method were: S = 20·N, S0 = S/4 for SOM deformation, S = 20·N, 

r(1) = 8/max
];1[, Uji

Nji
mm −

∈
, r(S) = 3.0, S0 = S/2 for geodesic SOM. For 

Stage 3 we used ),(5.1),( titi ρξ = , where ),( tiρ is the maximum angle 

between the i-th node's normal and normals of its neighbors. 

Computation time on a Pentium 4 3.4GHz/2GB RAM for mesh with 

23152 triangles and animated point cloud consisting of 20 frames, 155000 

points per frame is 420 seconds per frame. The proposed method has been also 

parallelized using MPI library and the efficiency of parallelization is above 95%. 
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Fig. 2. The reconstructed moving surface at t = 2 and t = 13. The mesh consists of 

23152 triangles. 

3.8 Conclusions and future work 

We have presented a novel self-organizing method of moving surface                 

reconstruction from an animated point cloud based on self-organization. The 

method is human free, resistant to noise or oversampling, topologically             

correct and efficiently parallelizable. It is able to reconstruct complex                 

geometry with holes from noisy animated point cloud. Instead of                          

regenerating the surface at each time step, the method only deforms the                 

existing mesh in order to fit a new point cloud. The proposed method was 

successfully parallelized. 

The distribution we use for point selection step in Algorithm 1                           

influences the final nodes density. To preserve the initial mesh nodes                 

density, we choose uniformly among all the sampled points. In the other 

case, to make the animated mesh track the model features appearing in 

time, we generate a random point from the point cloud the more often the 

more complex the point cloud in that area is. One of the possible future               

directions is to carry out experiments with non-uniform density. 

One of the limitations of method is that the gap between the                                

reconstructed surface and the point cloud is still noticeable; this is the                

problem we are aiming at in future. Also we are going to improve smoothness 

of the obtained meshes. 
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Abstract. The article presents a preflow algorithm for the                        

parametric minimum flow problem working in a parametric residual 

network with linear lower bound functions of a single parameter. On 

each of the iterations, the highest label preflow partitioning-pull 

(HLPPP) algorithm pulls flow from an active node with the highest 

distance label over a conditionally admissible arc. After each pull of 

flow, either the parametric residual capacity of the arc or the                

parametric deficit of the node becomes zero for at least a subinterval 

of the parameter values. If the two situations take place for different 

subintervals, the algorithm is continued in two different parametric 

residual networks generated by this partitioning pull. The algorithm 

runs as the template-like structure of a dialogue act which reveals a 

design where information about the items (part-of-speech) is a             

multiple section vector with one segment for each of the used part of 

speech categories. 

Keywords. Parametric minimum flow, preflow algorithm, fractal 

partitioning, generative linguistics. 
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4.1   Introduction 

The proposed algorithm for the parametric minimum flow problem uses a 

fractal-like approach [14]. A non-cancelling pull of flow from any node of the 

network might leave the node unbalanced for only a subinterval of the               

parameter. We call this situation a partitioning pull. Like in all fractal                      

approaches a partitioning pull is followed by separating the problem into                

disjoints subintervals allowing the algorithm to continue after the same rules             

independently on each of the partitioned subintervals. The idea of the approach 

derives both from the rules and recursion of generative linguistics on one hand 

and the collective behaviour of neurons on the other hand. 

4.2 Linguistic rule-based approach for network partitioning 

Constraint-based approaches to language bring a fresh perspective to this 

important problem because they share a clear analogue with pattern of                 

activation in neural networks. Some of these theories (i.e. Optimality Theory 

(OT)), take their inspiration from the constraint optimisation that occurs in 

networks of neurons [2]. The principle of constraint satisfaction provides a 

clear mechanism by which we can construct neural models of high-level,             

linguistic processes-models which are independent of the complexity of               

biological neurons, and rely only upon the presence of constraint-satisfaction 

behaviour. The template-like structure of a dialogue act which reveals a design 

where information about the items (part-of-speech) is a multiple section vector 

with one segment for each of the used part of speech categories. These                   

categories are divided into groups, according to their importance regarding the 

task, enabling each segment to use its own representations for the words 

within it.  

The concept which has proved most useful in the description of German 

word order has become known under the name of Functional Sentence                

Perspective (FSP), working with the concepts of the “theme” of a sentence 

(that which is spoken about in the sentence) and of the “rheme” (that which is 

said about the theme in the sentence). Its principal idea is that information is 

not transmitted in random order, but that the speaker seeks to give his                        

information to his interlocutor in portions, normally starting from what he             

assumes is common to both (the THEME, topic) and proceeding to what he 

regards as important new information (the RHEME, comment) [12]. From the 

standpoint of the need to establish the “informational content” of the text an 

analysis of this kind is more important than a traditional examination of a             

subject-predicate relations etc.  
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4.3 The parametric minimum flow problem  

Given a capacitated network )( tN,A,l,u,s,G = , let n being the number of 

nodes, n = |N| and m the number of arcs, m = |A|. The upper bound function and 

the lower bound function are nonnegative functions ),( jiu  and ),( jiℓ                 

associated with each arc Aji ∈),( . The minimum flow problem is to determine 

a flow f̂  for which v  is minimized. A natural generalization of the minimum 

flow problem is obtained by making the lower bounds )λ;,( jiℓ  linear functions 

of a single, nonnegative, real parameter λ : ),(λ),()λ;,( jijiji £
0

⋅−= ℓℓ , where 

),( ji£  is a real valued function associated with each arc Aji ∈),( , referred to 

as the parametric part of the lower bound of the arc ),( ji . The parameter λ  

takes values in the interval ],[ Λ0  where Λ  is chosen so that: 

),()λ;,( jiuji ≤≤ ℓ0 , Aji, ∈∀ )( , ],[λ Λ∈∀ 0 . The parametric minimum flow 

problem is to compute all minimum flows for every possible value of ],[λ Λ∈ 0 : 

][0,) Λ∈λλ( allforvimizemin  (1.1) 
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),(;,);,( λλ jiujifji ≤)(≤ℓ Aji ∈∀ ),( .   (1.3) 

The variables )λ:,( jif  of this problem are piecewise linear functions                

instead of real numbers. On the set of all piecewise linear functions λ)(f  an       

ordering cannot be defined for the whole interval ],[ Λ0  since two piecewise 

linear functions are not necessarily comparable. Therefore a partitioning kJ  of 

the interval of the parameter ],[ Λ0  into disjoints subintervals  

],[... Λ0
1

=KJJ ∪∪  with φ=qp JJ ∩ , qp ≠∀  must be defined so that on each 

of the subintervals kJ  an ordering to be defined as: 
21
ff ≤  ⇔  λ)(λ)(

21
ff ≤ ,  

kJ∈∀ λ . 

A parametric cut partitioning ][ kk JS ;  is a finite set of cuts ],[ kk TS , 

Kk ,,…1=  together with a partitioning kJ  of the interval of the parameter 

],[ Λ0  into disjoints subintervals so that ],[... Λ0
1

=KJJ ∪∪ . The capacity of a 



48      L. Sangeorzan, M. N. Parpalea, M. M. Parpalea 

parametric ts −  cut partitioning for the minimum flow problem is a piecewise 

linear function ][ˆ kk JSc ;  defined for all λ  of every subinterval, kJ∈λ , 

Kk ,,…1= :  ∑∑
∈∈

−=
),(),(),(),(

),()λ;,(][ˆ
kkkk STjiTSji

kk jiujiJSc ℓ ; . 

A parametric ts −  cut for which the subintervals of the parameter values kĴ  

assure that every ts −  cut is a maximum cut ]ˆˆ[ kk TS ;  for all kĴλ∈  is referred 

to as a parametric maximum ts −  cut, ]ˆˆ[ kk JS ;  for the whole interval of the              

parameter values, ],[ Λ0 : ]ˆˆ[ˆ]ˆˆ[ˆ kkkk TScJSc ;; =  for all kĴλ∈ , Kk ,,…1= . 

Theorem 1  (Parametric Min-Flow Max-Cut Theorem) [9]: If there is a feasible 

flow in the parametric network, the value function of the parametric minimum 

flow from a source s  to a sink t  in a capacitated network with parametric 

lower bounds equals the capacity of the parametric maximum ts −  cut.  

Let Ajijiff ∈= ),()),λ;,(()λ( ……  be a vector of flow functions defined on the           

interval ][ Λ0, . The parametric residual capacity )λ;,(ˆ jir  of any arc 

Aji ∈),( , with respect to a given flow λ)(f , is given by: 

+−= )λ;,(),()λ;,(̂ ijfijujir  )λ;,()λ;,( jijif ℓ−+ . For a network 

),,),λ(,,()λ( tsuANG ℓ=  and a feasible solution λ)(f , the network denoted 

by )ˆ,ˆ()λ,(ˆ ANfG = , with NN =ˆ  and Â  being the set of arcs consisting only of 

arcs with 0>)λ;,(ˆ jir  for at least a subinterval of ][ Λ0, , is referred to as the 

parametric residual network with respect to the given flow λ)(f  for the               

parametric minimum flow problem.  

The sets:  AjiforjirjiI ˆ),(})λ;,(ˆ|λ{),(ˆ ∈>= 0  describe subintervals 

of ][ Λ0, , ][),(ˆ Λ0,⊆jiI  where a decreasing of flow along an arc ),( ji  in 

)λ,(ˆ fG  is possible, based on )λ(f . If an arc ),( ji  doesn’t belong to )λ,(ˆ fG  

then φ=:),(̂ jiI  is set.   

The parametric deficit of a node Ni∈  is defined as: 

∑∑
∈∈

−=
AijjAjij

ijfjifie
),(|),(|

)λ;,()λ;,()λ;(ˆ .  

The sets: })λ;(ˆ|λ{)(ˆ 0<= jejI  },{ tsNjfor −∈  describe subintervals of 

[0, Λ], ],[ˆ Λ⊆ 0jI  where the deficit of node j is negative. An arc Aji ˆ),( ∈  in 

the parametric residual network )λ,(ˆ fG  is referred to as conditionally                      
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admissible arc if 1+= )(ˆ)(ˆ idjd  and φ≠)(ˆ),(ˆ jIjiI ∩ ; otherwise it is                

conditionally inadmissible.  

4.4 Highest-label preflow partitioning-pull (HLPPP) 
algorithm for the parametric minimum flow problem  

The first phase of finding a parametric minimum flow consists in                    

establishing a feasible flow in a nonparametric network ),,,',,(' tsuANG ℓ=               

obtained from the initial network ),,,λ)(,,(λ)( tsuANG ℓ=  by only modifying 

the parametric lower bounds as follows: }][0,λ|)λ;,({),(' Λ∈= jimaxji ℓℓ . 

In the second phase, the algorithm maintains a set, L of active nodes as a               

priority queue. In the initialisation step of the algorithm, the flow is set to the 

lower bound value for every arc ),( ti , )λ;,(:)λ;,( titif ℓ=  and all the active 

nodes are added to the priority queue L with priorities given by the distance 

labels. 

 

Fig. 1.1. The partitioning pull (L, J) procedure of the HLPPP algorithm 

The active nodes are then removed from the priority queue in the descending 

order of their priorities. For an active node )fGj λ,(ˆ∈ , if there exists an              

conditionally admissible arc ),( ji , the flow will be pulled on this arc and if 
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si ≠ , ti ≠  and Li∉ , node i  will be added to the priority queue L with the 

priority )(ˆ id ; otherwise the node j  will be relabelled so that at least one                

conditionally admissible arc to be created and node j  is added to L with it’s 

new priority )(ˆ jd . The algorithm terminates when the queue of active nodes is 

empty. A pull of flow from node j  to node i  is referred to as a cancelling pull 

if it deletes the arc ),( ji  from the residual network; otherwise it is a                      

non-cancelling pull. For any node in )λ,(ˆ fG , the expressions: active node and 

balanced node holds only for subintervals of the parameter values. While both 

the parametric residual capacity )λ;,(ˆ jir  of any arc, Aji ∈),(  and the                  

parametric deficit )λ;(ˆ je  of any node },{ tsNj −∈  are piecewise linear            

functions, cancelling or non-cancelling pulls are defined only for certain                    

subintervals of the parameter values. A non-cancelling pull of flow from a node 

},{ tsNj −∈  along an arc Aji ∈),(  in a subinterval ],[]λ,λ( Λ⊆= − 01 pppJ  which leaves 

the node j  unbalanced is referred to as a partitioning pull. Whenever the                  

algorithm performs a partitioning pull in )λ,(ˆ fGp , a new partitioning of pJ  in 

at most two subintervals 1pJ  and 2pJ , with ppp JJJ =
21

∪  and φ=
21 pp JJ ∩  may 

take place. Let 1pJ  be the subinterval inside which the partitioning pull balances 

the node j , i.e. )}λ;,(ˆ)λ;(ˆ|λ{ jirjeJp ≤−=1 . If φ≠2pJ  then, as on every 

subinterval pJ  both )λ;,(ˆ jir  and )λ;(ˆ ie  are linear functions of λ , the               

partitioning pull generates two parametric residual networks, )λ,(ˆ fGp1  for 

1λ pJ∈  and )λ,(ˆ fGp2
 for 

2pJ∈λ , so that node j  is balanced in )λ,(ˆ fGp1  

and active in )λ,(ˆ fGp2
 while arc ),( ji  does not belong to )λ,(ˆ fGp2

 since            

after the pull 0=)λ;,(ˆ jir . The algorithm then continues separately in each 

of the parametric residual networks and for each of the two subintervals. 

Under these observations, the pull/relabel procedure of the non-parametric 

HL-PP algorithm is replaced with a recursive call of a partitioning pull (L, J) 

procedure. 

 

Fig. 1.2. The Highest-label preflow partitioning-pull (HLPPP) algorithm 
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Theorem 2: If there is a feasible flow in the network 

),,,λ)(,,(λ)( tsuANG ℓ= , the Highest-label preflow partitioning-pull            

algorithm computes correctly a minimum flow. 

Proof: The proof of the proposed theorem follows from the correctness of 

the general HL preflow algorithm for each of the subintervals of the                    

parameter values.                                                                                          ■           

A breakpoint is a place where the slope of the piecewise linear minimum 

flow value function is changing. In the worst case the number of                  

breakpoints may be exponential in the size of the problem [13]. The                   

Highest-label preflow partitioning-pull algorithm overcomes this                           

inconvenient by using the multi-thread parallel implementation of a non 

parametric algorithm [16]. The main idea of this implementation is to               

assign a processor to each newly generated subinterval pJ  which will carry 

out the problem forward from the current configuration of the problem. 

For each of the new generated subintervals a copy of the current distance 

labels values is generated so that they can be independently modified in 

the further parallel evolution of the algorithm.  

Theorem 3: The Highest-label preflow partitioning-pull algorithm solves 

the parametric minimum flow problem in )( 2/12 KnmnO +  time.  

Proof: The complexity of the non-parametric HL preflow-pull algorithm is 

)( 2/12mnO  [1]. The HL preflow partitioning-pull algorithm generates new 

copies of distance label values every time a breakpoint occurs, i.e. copying 

distance labels takes )(KnO  time where K is the number of breakpoints. 

Thus, the total complexity of the algorithm is )( 2/12 KnmnO + .                   ■ 

4.5 Example 

The algorithm is illustrated for the parameter λ  taking values in the interval 

[0.1], i.e. Λ=1 on the parametric network presented in Fig.1.3 where node 1 

is the source node s and node 4 is the sink node t.  

 
i  j 

1 

2 

3 

4 

ℓ(i,j;λ), f0(i,j), u(i,j) 
 

5-3·λ, 6, 6

3-λ, 8, 8

4, 7, 11 

3-3·λ, 7, 12 

1-λ, 1, 1 

    

Fig. 1.3. The feasible flow f0 in network 

)tsuANG ,),λ(,,,(λ)( ℓ=  
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After the initialization procedure, the parametric residual network )λ,(ˆ
0
fG  is 

presented in Fig.1.4.a. The priority queue L contains two active nodes: node 2 

and node 3 with the priorities 1)3(ˆ)2(ˆ == dd : L={2,3}. The call of                       

partitioning pull ({2,3},[0,1]) removes node 2 from the list L and selects the 

conditionally admissible arc (1,2). 

a.    

 
i  j 

1 

2 

3 

1+3·λ 

5+λ 

7 

9+3·λ 

λ 4 

λ)( j;i,r̂  

d(i) d(j) 

d(1)=0 

d(2)=1 

d(3)=1 

d(4)=4 

ê (2, λ)=–3 

ê (3, λ)=–4–3·λ  b.  

 

0

1

2

3

4

0 1

λ

   2/3

λ)(1,2;r̂  

λ)(1,2;r̂  

λ)(2;e- ˆ  λ)(2;e- ˆ  

 

Fig. 1.4. a. The parametric residual network
 

)λ,(ˆ
0
fG  after the initialization procedure; 

b. Generating the partitioning of the parameter values by the partitioning pull procedure 

on arc (1,2) in )λ,(ˆ
0
fG  

A pull of an amount of flow, )}λ(ˆ),λ(ˆ{λ);(ˆ 1,2;2,1,2 reg −= min  from node 2 

to node 1, computed as in Fig.1.4.b, generates a partition of ],[ 10=J  in the 

subintervals ],/[ 132
1
=J  and )/,[ 320

2
=J . The parametric residual networks, 

)λ,(ˆ fG
1

 and )λ,(ˆ fG
2

, for the two corresponding subintervals, are presented 

in Fig.1.5. Then the algorithm makes a parallel call of partitioning pull(
11
JL , ) 

and partitioning pull(
22
JL , ) procedures with 

1
L ={3} and 

2
L ={2,3}. 

 
i  j 

1 

3 

3·λ-2 

5+λ 

7 

9+3·λ 

λ 4 

λ)( j;i,r̂  

d(i) d(j) 

d(1)=0 

d(2)=1 

d(3)=1 

d(4)=4 

ê (2, λ)=0 

ê (3, λ)=–4–3·λ 

2 

3 

 

 
i  j 

1 

2 

3 

1+3·λ 

5+λ 

7 

9+3·λ 

λ 4 

λ)( j;i,r̂

d(i) d(j) 

d(1)=0 

d(2)=1 

d(3)=1 

d(4)=4 

ê (2, λ)=3·λ–2 

ê (3, λ)=–4–3·λ  
)λ,(ˆ fG

1
 for 

1
J∈λ  with ],/[ 132

1
=J  )λ,(ˆ fG

2
 for 

2
J∈λ  with )/,[ 320

2
=J  

Fig. 1.5. The parametric residual networks for the two subintervals of the parameter 

values, generated by the partitioning pull over the arc (1,2) 



Highest Label Preflow Algorithm for the Parametric Minimum Flow Problem - A 
Linguistic Rule-Based Network Partitioning Approach      53 

After further iterations the algorithm will stop when the priority queues for 

all the subintervals of the parameter values are empty. Actually, the                  

algorithm stops with the subintervals and with the corresponding                

parametric residual networks from which the parametric maximum ts −  

cut partitioning can be derived. The way the partitioning pull procedure of 

the HLPPP algorithm generate the subintervals between consecutive 

breakpoints of the piecewise linear minimum flow value function is                 

illustrated in Fig.1.6. If no partitioning of the parameter values occurs, for 

each of the generated subintervals, the algorithm goes on independently 

until the corresponding priority list becomes empty. 

 

Fig. 1.6. Illustrating of the partitioning pulls of the HLPPP algorithm for the                 

parametric minimum flow problem in the parametric network in Fig.1.3. 

For every subinterval of ],[ Λ0 , the parametric minimum flow value                 

function equals the capacity of the maximum s-t cut. The parametric 

minimum flow value function, λ)ˆ(v  for the entire interval of the parameter 

values is given by the expression presented in Fig.1.7. 

](λ

](λ

][λ

λ

λ

λ

)λ(ˆ

13,/2

3/23,/1

3/10,

6

48

79

∈

∈

∈









−

⋅−

⋅−

=

for

for

for

v  

0 λ1/3 2/3

v (λ)
9

20

 3

16

 3

ˆ

 

Fig. 1.7. The parametric minimum flow value function for the network in Fig.1.3. 

4.6 Conclusion 

The minimum flow problem on parametric networks turns out to be an                

important scenario in practice since the complexity of its solving algorithm 
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can be reduced to that of the equivalent non-parametric algorithm considering 

the approach of fractal partitioning of the network on one hand and the rules 

and recursion of generative linguistics and the collective behaviour of neurons 

in a network one the other.  
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Abstract. A compartmental model of the sensory activation process 

in the biosensor of angular motion of the head is presented. The 

functional and numerical parameters of the model have been                 

identified by physiological and morphological experiments. Model 

includes four compartments and comparison with experimental              

results of Fernandez and Goldberg [1] that describes the changes in 

the firing frequency of the primary afferent neurons of the left                 

lateral semicircular canal in response to a mechanical stimulus as 

trapezoidal-shape changes of angular velocity when the head turns 

around the vertical axis. Our model shows that the biosensor of             

angular motion of the head must include at least a pair of                       

semicircular canals in each plane considered in the system.  

Keywords. Mechanical stimulus, hair cell, primary neuron,                   

vestibular mechanoreceptor, afferent impulses. 

5.1    Introduction 

Since 2001, mathematicians and physiologists from Lomonosov                

Moscow State University and the Autonomous University of Puebla, 

México, began collaborating for the development of a mathematical model 

of informative processes in the biosensors of the vestibular system [2, 3, 4, 

5, 6, 10, 11, 12, 13]. 
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 Based on this work we present a mathematical model of the biosensor 

of angular acceleration when the head turns around a vertical axis z. 

 Figure 1 shows a functional scheme of the information output in the 

biosensor of angular acceleration in response to a stimulus that arises when 

a movement of the head occurs in the horizontal plane; therefore, the input 

is the angular acceleration )(tzωɺ . The scheme has two input blocks            

describing the dynamics of the cupula-endolymphatic system (CES) of the 

horizontal semicircular canals. Assuming that the dynamics of                 

displacement of the cilia bundle top xL and xR in the left and the right              

semicircular canals coincides with the dynamics of CES, it constitutes the 

input for two vestibular mechanoreceptors forming a string of hair cells 

and primary afferent neurons. The vestibular mechanoreceptor transforms 

the mechanical stimulus into a change in the membrane potential V1L and 

V1R of the hair cell in both left and right semicircular canals, and this is the 

primary output from this model. Subsequently, in the following blocks of 

the model scheme, this output activates the synaptic transmission IsynL and 

IsynR and the action potential discharge in the primary afferent neurons V2L 

and V2R. The scheme has two signal outputs that form the primary input to 

the vestibular nuclei and to the oculomotor system that controls the eye 

movements in the horizontal plane. 

5.2 Mathematical model formulation 

For simplification we consider only the top row of the functional scheme 

(Fig.1.1 A) which corresponds to the left horizontal semicircular canal. 

The mathematical model of the CES is in the form of a modified             

equation of Steinhausen [8] of order two (1.1) where ,1τ 2τ are time                

constants (τ2 << τ1),
 
x is the displacement (µm) of the cilia bundle top. 

 
Fig 1.1. Model scheme. (A) The Scheme of the vestibular mechanoreceptor                

compartments considered in the angular acceleration sensor model. (B) The            

 A                                                                  B 
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relationship between hair cell voltage and synaptic current in the afferent neuron 

displays a sigmoid dependence (from Keen and Hudspeth, 2006).  

 

This displacement produces the transduction current ITr. The equations 

(1.2), (1.3), (1.4), (1.5) describe the dynamics of the membrane potential 

V1 and the total ionic current IT produced by the mechanical displacement 

x. The variables m, h1, h2 are physiological parameters that correspond to 

the parameters of activation and inactivation of ionic currents [3,4]. 

The block corresponding to the synaptic transmission is represented by 

the algebraic model shown in (1.6), obtained from experimental data               

reported by Keen and Hudspeth, 2006 [7]. The graph corresponding to 

(1.6) is shown in Fig. 1.1 B) where 
max

2
60Syn

A
I

sm

µ
= . 

The equations (1.7), (1.8), (1.9) describe the output (from the afferent           

neurons) in the form of a change in the frequency of auto-oscillations            

produced by sodium (INa), potassium (IK) and synaptic (ISyn) currents. The 

variables of the output block are: V2 is the membrane potential at the first 

node of Ranvier; n, hK are the parameters of activation and inactivation for 

the potassium current [2].  
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Here x = Rξ where ξ is the angular deviation of the endolymph [8] relative 
to the center  of the semicircular canal, R- the outer radius of the canal, the 

coefficient k0 has physiological sense and is expressed by geometrical              

parameters of the semicircular canal [6]. 

 The steady state variables, when the mechanic stimulus is absent 

( 0≡ωɺ ) are: IT =145 nA, V1 =-56 mV, ISyn = 1.82 pA/cm
2
. Noteworthy, the 

stationary hair cell potential is  
0
1 56,5V mV= −

 
and the basal frequency of 

discharge of the neuron (V2) in resting condition is 0 56ν =  Hz. 

In the presence of angular accelerations ( ( ) 0tω ≠ɺ ), the change of action 

potential discharge frequency 0)()( ννν −=∆ tt  provides the output of the 

biosensor. The functional and numerical parameters are as in [13].  

The model (1.1-1.9) was tested for long stimuli analog to those used by 

Fernandez and Goldberg [1], and short duration stimuli with the constant 

accelerations (0.1 - 1 s). For long stimulus we present the experimental          

result of Goldberg and Fernandez, 1971 [1] (Fig. 1.2) and the function of 

our model.  The change of the output discharge of the model based on eq. 

1.1-1.9 was calculated for each second and is presented in Fig. 1.3. If we 

compare the results in Fig. 1.2 with those in Fig. 1.3 A, it is possible to     

observe a qualitative coincidence between the experimental result and the 

result obtained by our model (1.1-1.9).  

 

 
Fig. 1.2. (A) The velocity trapezoid stimulus with acceleration magnitude of  80 

deg/s
2
 . (B) Experimental response of the afferents of the left lateral semicircular 

canal [1].  

 A                                        B 

Hz 
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Fig.1.3. (A) Response of the model (1.1–1.9) to the long stimulus (correspond-

ing to the left semicircular canal). (B) Response of the model (1.1–1.9) to the long 

stimulus (corresponding to the right semicircular canal). 

 

 

5.3 Model response to short stimuli 
 
With the assumptions adopted in the development of some blocks of the 

model (1.1-1.9) and described in [2,3,4,5,6,13], our model is intended for 

reproduction of the informative process when ( ) 0tω ≠ɺ in intervals of 

seconds, using stimuli that are analogous to the head turn under natural 

conditions. For this reason we studied the model response (1.1-1.9) to 

trapezoidal stimulus of 1 s duration (Fig.1.4), corresponding to head              

turning around vertical axis at about 12º. 

The dynamics of the response of (1.1-1.9) to this stimulus is presented 

in Fig. 1. 5. The change on the firing frequency in the left semicircular             

canal ∆ν(t) = 20 Hz in response to a steady acceleration 150º/s2 can lead to 
the contraction of the oculomotor muscles producing a movement of the 

eyes of 12º
 
to the opposite side of the head movement (Fig 1.5 C).  

With the use of short stimuli (Figs. 1.4 A,B), the output of the biosensor 

supplies information about the angular velocity of the head. In the case of 

a long stimulus (Fig. 1.3), the head angular acceleration is the output              

information.    

 

  

                A                                        B 

 A                                             B 
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Fig 1.4. Short stimulus. A) Head angle acceleration; B) Head angle velocity.  

  

 
Fig. 1.5.  Response  of the model  (1.1–1.9) to the short stimulus: A) displacement 

of the cilia bundle top; B) change of hair cell potential in the left and right canals; 

C) change of the afferent neuron discharge frequency corresponding to the left 

semicircular canal; D) change of discharge frequency corresponding to the right  

semicircular canal. 

 

In the literature this fact is known (for example [9]). However the               

fundamental difference between the left and right semicircular canals               

outputs represented in Fig. 1.3 and Fig. 1.5 C),D) wasn’t known.  

 Based on our results it is concluded that the biosensor of the angular 

motion of the head must include two semicircular channels since the        

information provided by each channel is needed to have a bidirectional 

movement detection. 

 

 

Acknowledgements. This material is based on work supported by a grant 

from the University of California Institute for México and the United 

States (UC-MEXUS) and the Consejo Nacional de Ciencia y Tecnología 

de México (CONACyT), grant of RFFI 07-01-00216 (Russia) and State 

Grant 02.740.11.0300 (Russia). 

 

 

References 

A                                                B 

C D 



62   V. V. Alexandrov, T. B. Alexandrova, G. Castillo-Quiroz, A. Ortega,                      
R. Vega, N. Shulenina, G. Sidorenko, E. Soto 

 
1.   Fernández C, Goldberg JM (1971) Physiology of peripheral neurons innervat-

ing semicircular canals of the squirrel monkey. I. Resting discharge and               

response to constant angular accelerations. J Neurophysiol 34: 635–660 

2.   Alexandrov VV, Mikhaleva EYu, Soto E, García Tamayo R (2006) Modifica-

tion of Hodgkin-Huxley mathematical model for the primary neuron of              

vestibular apparatus. Moscow University Mechanics Bulletin 5:65-68 

3.   Alexandrov VV, Alexandrova TB, Vega R, Castillo Quiroz G, Reyes Romero 

M, Soto E (2007) Information process in vestibular system. WSEAS              

Transactions on Biology and Medicine 4:193-203 

4.   Sadovnichii VA, Alexandrov VV, Soto E, Alexandrova TB, Astakhova TG, 

Vega R et al (2007) A mathematical model of the response of the  semicircu-

lar canal and otolith to vestibular system rotation under gravity. J  Mathemati-

cal Sciences, 146, 3: 5938-5947 

5.   Sadovnichii VA, Alexandrov VV, Alexandrova TB, Vega R, Castillo Quiroz,  

Reyes Romero M, Soto E.  Shulenina NE (2008) A mathematical model for 

the generation of output information in a gravitoinertial mechanoreceptor 

when moving in a sagital plane. Moscow University Mechanics Bulletin 63,6: 

53-60 

6.   Vega R, Alexandrov VV, Alexandrova TB, Soto E (2008) Mathematical 

model of the cupula-endolymph system with morphological parameters for the 

axolol (Ambystoma tigrinum) semicircular canals. The Open Medical Infro-

matics Journal, 2: 138-148 

7.    Keen EC, Hudspeth AJ (2006) Transfer characteristic of the hair cell’s affer-

ent synapse. Proc. Natl. Acad. Sci. USA, 103: 5537-5542 

8.   Steinhausen W (1933) Uber die beobachtung der cupula in den bogengang-

sampullen des labirinthes des libenden Heechts. Pflig. Arch. ges. Physiol 232: 

500-512 

9.    Orlov IV (1998) The vestibular function. Nauka, Saint Petersburg, p 211 

10. Grebennikov A, Alexandrov V, Leyva J F (2006) Computer modeling of the 

neuronal activity described with the simplified Hodgkin-Huxley system of 

differential equations. Proceedings of the 10th WSEAS International              

Conference on Computers, Vouliagmeni Athens, Greece, pp. 998- 1001 

11. Alexandrov VV, Alexandrova TB, Vega R, Castillo Quiroz G, Reyes Romero 

M, Soto E (2008) Mathematical model of information process in vestibular 

mechanoreceptor. WSEAS Mathematical Biology and Ecology (MABE'08), 

4:  86-91 

12. Grebennikov A, Alexandrov V, Soto E, Castillo G (2009) Local method in 

computer modeling of mechanoreceptor from vestibular system. WSEAS 

Biomedical Electronics and Biomedical Informatics,  pp 136-142 

13. Alexandrov V, Alexandrova TB, Castillo G, Sidorenko G, Ortega A, Vega R, 

Soto E (2009). Mathematical modeling of the informative process in the             

biosensor of angular acceleration. WSEAS Biomedical Electronics and               

Biomedical Informatics, pp 105-110 



Chapter 6 

Numerical Analysis of Electromagnetic (EM) 

Absorption Reduction by using Material 

Attachment 

 

 

M. R. I. Faruque
1, 2

, M. T. Islam
2
, N. Misran

1, 2 

 

1
Institute of Space Science (ANGKASA), 

2
Dept. of Electrical, Electronic and Systems Engineering, 

Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia. 

rashedgen@yahoo.com, titareq@yahoo.com, bahiah@vlsi.eng.ukm.my 
 

Abstract— The numerical analysis is used to reduce the 

electromagnetic absorption with materials attachment. The                     

finite-difference time-domain method with lossy-Drude model is 

adopted in this study. The methodology of SAR reduction is 

addressed and the effects of attaching location, distance, and size of 

ferrite sheet material on the SAR reduction are investigated. 

Materials have achieved a 47.68% reduction of the initial SAR value 

for the case of 1 gm SAR. These results suggest a guideline to 

choose various types of materials with the maximum SAR reducing 

effect for a phone model. 

Keywords — antenna, human head model, lossy-Drude model, materials, 

specific absorption rate (SAR), symmetry. 

6.1    Introduction 

The present day electromagnetic solution is possible due to the progress of 

door due to numerical analysis. RF/MW sources are part of daily life, but 

they also reason for concern regarding the possible biological special 

effects of microwaves. It is important that the biological effects of RF/MW 

fields are minimal, at least at the level of their clinical significance, so that 
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health risk can be assessed. Because the potential shock of RF/MW fields 

on human health has not yet been well characterized, the basic knowledge 

from laboratory studies based on cellular and animal test systems are 

invaluable. The interaction of handset antennas with human body is a great 

consideration in cellular communications. The user’s body, especially head 

and hand, influence the antenna voltage standing wave ratio (VSWR), gain 

and radiation patterns. Furthermore, thermal effects, when tissues are 

exposed to unlimited electromagnetic energy, can be a serious health 

hazard. Therefore standards organizations have set exposure limits in 

terms of SAR [1-3].  

The exposure limits are defined commonly in terms of the spatial peak 

SAR averaged either over any one gram or ten grams of tissue. Since 1997, 

the U.S. Federal Communication Commission (FCC) requires the routine 

SAR evaluation of phone model prior to device authorization or use. So 

there is a need to reduce the spatial peak SAR in the design stage of a 

phone model because the possibility of a spatial peak SAR exceeding the 

recommended exposure limit cannot be completely ruled out [2-4]. The 

interaction of the cellular handset with the human head has been 

investigated by many published papers considering; first, the effect of the 

human head on the handset antenna performance including the feed-point 

impedance, gain, and efficiency [4-7], and second, the impact of the 

antenna EM radiation on the user’s head due to the absorbed power, which 

is measured by predicting the induced SAR in the head tissue [7-9]. 

The most used method to solve the electromagnetic problem in this 

area is the finite-difference time-domain (FDTD) technique [5-8]. 

Although, in principle, the solution for general geometries does not require 

any additional effort with respect to the standard method, the technique 

requires the definition of a discretized space by assigning to each cell its 

own electromagnetic properties, which is not an easy process [7-10]. 

Specifically, the problems to be solved in SAR reduction need a correct 

representation of the cellular phone; anatomical representation of the head; 

alignment of the phone and the head, and suitable design of materials.  

Human exposure to electromagnetic (EM) radiation, as well as the 

pertinent health effects, constitutes a matter of raised public concern, and 

this issue has undergoing continuous scientific investigation. Various 

studies on this subject exist [9–10], most of which mainly investigate into 

the consequences of mobile-phone usage. Yet, devices and communication 

terminals operating in other frequency bands have also gained substantial 

interest in the last 15 years. In [5], a ferrite sheet was adopted as protection 

between the antenna and the human head. A reduction of over 13% for the 

spatial peak SAR over 1 gm averaging was achieved. A study on the 

effects of attaching a ferrite sheet for SAR reduction was presented in [10], 
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Fig.1.1. Complete model used for 

simulation including handset and 

SAM phantom head. 

Table 1.1. Electrical properties of materials 

used for simulation 

and it was concluded that the position of shielding plays an important role 

in the reduction effectiveness. This paper is structured as follows. 

Modeling and analyzing technique will be described in Section 1.2. 

Numerical method FDTD will be analyzed in section 1.3 and SAR 

reduction with numerical schemes will be discussed in section 1.4. 

Simulation and comparing results of materials will be summarized in 

Section 1.5 and finally in Section 1.6 concludes the paper. 
 

 

6.2 Simulation Model and Numerical Techniques 

 
6.2.1  Model Description 
 

The simulation model which includes the handset with PIFA type of 

antenna and the SAM phantom head provided by CST Microwave Studio
®
 

(CST MWS) is shown in Fig.1.1 Complete handset model composed of the 

circuit board, LCD display, keypad, battery and housing was used for 

simulation. The relative permittivity and conductivity of individual 

components were set to comply with industrial standards. In addition, 

definitions in [7,10] were adopted for material parameters involved in the 

SAM phantom head. In order to accurately characterize the performance 

over broad frequency range, dispersive models for all the dielectrics were 

adopted during the simulation [7]. The electrical properties of materials 

used for simulation are listed in Table 1.1 PIFA type antenna constructed 

in a helical sense operating at 900 MHz for GSM application was used in 

the simulation model. In order to obtain high-quality geometry 

approximation for such helical structure, predictable meshing scheme used 

in FDTD method usually requires large number of hexahedrons which in 

turn makes it extremely challenging to get converged results within 

reasonable simulation time. 

 

 

 

 

 

 

 

 

Phone Materials    rε   )/( mSσ  

Circuit Board     4.4   0.05 

Housing Plastic     2.5   0.005 

LCD Display     3.0   0.02 

Liquid @ 900MHz     40   1.42 

Rubber     2.5   0.005 

SAM Phantom Head   

Shell     3.7   0.0016 
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6.2.2  Numerical Technique 
 
CST MWS, which adopted finite integral time-domain technique (FITD) proposed 

was used as the main simulation instrument In permutation of the perfect 

boundary approximation (PBA) and thin sheet technique (TST), significant 

development in geometry approximation with computation speed is achieved 

squashy highly accurate results. Non-uniform meshing scheme was adopted so 

that major computation endeavor was dedicated to regions along the 

inhomogeneous boundaries for fast and perfect analysis. The minimum and 

maximum mesh sizes were 0.3 mm and 1.0 mm, respectively. A total of 2,097,152 

mesh cells were generated for the complete model, and the simulation time was 

1163 seconds (including mesh generation) for each run on an Intel Core
 TM

 2 Duo 

E 8400 3.0 GHz CPU with 4 GB RAM system. 

The analysis workflow started from the design of antenna with complete 

handset model in free space. The antenna was designed such that the S11 response 

was less than -10 dB over the frequency band of interest. SAM phantom head was 

then included for SAR calculation using the standard definition as 

SAR = 
2

2
E

ρ

σ
 

where E is the induced electric field (V/m); ρ  is the density of the tissue (kg/m
3
) 

and σ  is the conductivity of the tissue (S/m). The resultant SAR values averaged 

over 1 gm and 10gm of tissue in the head were denoted as SAR 1 gm and SAR 

10gm, respectively. These values were used as a benchmark to appraise the 

effectiveness in peak SAR reduction. 

 

6.3 FDTD Method 

While many electromagnetic simulation techniques are applied in the frequency 

domain, FDTD solves Maxwell’s equations in the time domain. This means that 

the calculation of the electromagnetic field values progresses at discrete steps in 

time. One benefit of the time domain approach is that it gives broadband output 

from a single execution of the program. However the main reason for using the 

FDTD approach is the excellent scaling performance of the method as the problem 

size grows. As the number of unknowns increases, the FDTD approach quickly 

outpaces other methods in efficiency. FDTD has also been identified as the 

preferred method for performing electromagnetic simulations for biological effects 

from wireless devices [3-5]. The FDTD method has been shown to be the most 

efficient approach and provides accurate results of the field penetration into 

biological tissues. 

As indicated by its name, FDTD method solves Maxwell's equations directly 

in time domain. Assuming a piecewise uniform, homogeneous, isotropic and lossy 

media, source-free Maxwell's curl equations: [5] 
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E
t

H
×−∇=

δ

δ
µ0 .      

 (1) 

EH
t

E
σ

δ

δ
ε −×∇= .     

 (2) 

are discretized both in space and time with (i, j , k) and n representing the discrete 

space and time nodes, 

xE (x, y, z, t) = 
n

xE (I, j, k);x =i tntzkzyjyx ∆×=∆×=∆×=∆× ,,, . 

 (3) 

respectively. All six components of electromagnetic fields are located at specific 

points of unit cells as suggested by Yee [5], where E  and H are interleaved in 

both space and time. This FDTD arrangement is shown in Fig.1.2 Here, electric 

field components Ex; Ey; Ez are located on the three edges and magnetic field 

components Hx; Hy and Hz are located in the middle of the three surfaces and are 

assumed constant. In addition to one-half spatial-cell displacement between E  

andH , there is also one-half time-cell displacement. Applying the discretization 

and rearranging the equations suitable to iterative calculations yield, 
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where n = n+1/2. In equations (4)-(9), it is assumed that no magnetic materials 

are present so that each cell is characterized by constant medium parameters 0µ  

,ε , and σ  given for the reference point of the cell. 

 

 

 

 

 

 

 

 

Hx(i+1,j,k) 
Ez(i+1,j+1,k) 

Ex(i,j+1,k+1) 

Hy(i,j,k) 

Ez(i,j+1,k) 

Ey(i,j,k) 

Ex(i,j,k+1) 

Ey(i+1,j,k) 

Hz(i,j,k+1) 

Ez(i+1,j,k) 

Hx(i,j,k) Ez(i,j,k) 

Ex(i,j,k) 
Hx(i,j,k) Ex(i,j+1,k) 

Ey(i,j,k+1) 
Hy(i,j+1,k) Hy( i, j, k) 

Ey(i+1,j,k) 

Ey(i+1,j,k+1) 

Fig.1.2.FDTD unit cell suggested by Yee and locations of EM field components 
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    FDTD method is mainly based on calculation of equations (4)-(9), with suitable 

excitation representation and with satisfaction of the necessary boundary 

conditions at tntn ∆×= time instants. The most important points in FDTD 

calculations are the stability and numerical dispersion [18]. Since, FDTD 

algorithm is based on iterative calculations of six field components, a certain 

relation between spatial and time intervals 

;

)
1

()
1

()
1

(

1

222

zyx
c

t

∆
+

∆
+

∆

≤∆  c = 3× 10
8
 m/s free- space EM velocity.  

(10) 

needs to be satisfied for stability (named as Courant criteria) [5]. Similarly, the 

spatial discretization must be done to allow tracing the highest frequency 

(minimum wavelength) component in the desired frequency band (numerical 

dispersion). 

 
 

6.4 SAR reduction with Numerical Schemes 

6.4.1  Lossy-Drude Model 

The SAR reduction effectiveness and antenna performance with different 

positions, sizes and materials properties of materials will be analyzed. The head 

models used in this study were obtained from a MRI-based head model through 

the whole brain Atlas website. Six types of tissues, i.e., bone, brain, muscle, eye 

ball, fat, and skin were involved in this model [5-7]. This paper was considered a 

horizontal cross-section through the eyes of this head model. The electrical 

properties of tissues were taken from [10]. Numerical simulation of SAR value 

was performed by the FDTD method. The parameters for FDTD computation 

were as follows. In our lossy-Drude simulation model, the domain was 128 ×  128 

×  128 cells in the FDTD method. The cell sizes were set as ∆ x =∆ y =∆ z = 1.0 

mm. The computational domain was terminated with 8 cells perfect matched layer 

(PML). A PIFA antenna was modeled for this paper by the thin-wire 

approximation. Simulations of materials are performed by the FDTD method with 

the lossy-Drude Model [7-9]. The method is utilized to understand the wave 

propagation characteristics of materials. 

 

6.4.2 Analysis Method 

A portable telephone model at 900 MHz was considered in this paper. It was 

considered to be a quarter wavelength PIFA antenna mounted on a rectangular 
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conducting box. The conducting box was 10 cm long, 4 cm wide and 3 cm thick. 

The PIFA antenna was located at the top surface of the conducting box. A ferrite 

sheet of height of 90 mm, width of 40 mm and thickness of 3.5 mm was attached 

to the conducting box. The SAM head model was considered for this research 

where it consists about 2,097,152 cubical cells with a resolution of 1 mm.  

 

 

6.5 Impact on SAR of ferrite sheet attachment 

 
In this section, a ferrite sheet is placed between the antenna and a human head thus 

reducing the SAR value. In order to study SAR reduction of an antenna operated 

at the GSM 900 band, different positions, sizes, and ferrite sheet materials for 

SAR reduction effectiveness are also analyzed by using the FDTD method in 

conjunction with a detailed human head model.  

This paper considered that the simulation model which includes the handset 

with monopole type PIFA antenna and the SAM phantom head provided by CST 

MWS. The dispersive models for all the dielectrics were adopted during the 

simulation in order to accurately characterize the ferrite sheet. The antenna was 

arranged in parallel to the head axis; the distance is varied from 5 mm to 20 mm; 

and finally 20 mm was chosen for comparison with the ferrite sheet. Besides that, 

the output power of the mobile phone model need to be set before SAR is 

simulated. In this paper, the output power of the cellular phone is 500 mW at the 

operating frequency of 0.9 GHz. In the real case, the output power of the mobile 

phone will not exceed 250 mW for normal use, while the maximum output power 

can reach till 1 W or 2 W when the base station is far away from the mobile 

station (cellular phone). The SAR simulation is compared with the results in [3, 

10] for validation, as shown in Table 1.2. The calculated peak SAR 1 gm value is 

2.002 W/Kg, and SAR 10 gm value is 1.293 W/Kg when the phone model is 

placed 20 mm away from the human head model without a ferrite sheet. This SAR 

value is better compared with the result reported in [1], which is 2.43 W/Kg for 

SAR 1 gm. The ferrite sheet material is utilized in between the phone and head 

models, and it is found that the simulated value of SAR 1 gm and SAR 10 gm are 

1.043 W/Kg and 0.676 W/Kg respectively. The reduction about of 47.68% was 

observed in this study when a ferrite sheet is attached between the phone and 

human head models for SAR 1 gm. This SAR reduction is better than the result 

reported in [5], which is 13% for SAR 1 gm. This is achieved using different 

radiating powers and impedance factors. Figs. 1.3-1.6 show the SAR value 

compared with the distance between phone and head models, width of ferrite sheet 

between 20-40 mm, thickness of ferrite sheet between 2-3.5 mm and height 

between 40-90 mm respectively. 

The reduction efficiency of the SAR depends on its width and height. In order 

to definitely confirm this, 1 gm and 10 gm average SAR versus distance, width, 

thickness and height are plotted in the Figs. 1.3-1.6. In Fig. 1.3, it is shown that if 

the distance between phone and human head models is varied then the SAR value 
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decreases. This is because the dielectric constant, conductivity, density and 

magnetic tangent losses are also varied. In Fig. 1.4, it can be observed that the 

SAR value reduces with the increase of the width of the ferrite sheet. As shown in 

Fig. 1.5, the SAR value decreases until a thickness of 3 mm, and then a different 

tendency i.e., it started to increase after 3 mm. The height is varied up to 90 mm in 

Fig. 1.6. From this figure it can be shown that if the height of the ferrite sheet 

increases then the SAR value also decreases up to a height of 80 mm, and it 

started to increase after 80 mm. The results implies that only suppressing the 

maximum current on the front side of the conducting box contributes significantly 

to the reduction of spatial peak SAR. This is because the decreased quantity of the 

power absorbed in the head is considerably larger than that dissipated in the ferrite 

sheet. 

 

Table 1.2. Comparisons of peak SAR with  

ferrite sheet 
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SAR value for [3]  

SAR value for [10]  

SAR value with 
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2.17 
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6.6 Conclusions 

The EM interaction between an antenna and the human head with materials has 

been discussed in this paper. Utilizing material in the phone model a SAR value is 

achieved about 0.676 W/Kg for SAR 10 gm and 1.043 W/Kg for SAR 1 gm. 

Based on the 3-D FDTD method with lossy-Drude model, it is found that the peak 

SAR 1 gm and SAR 10 gm of the head can be reduced by placing the materials 

between the antenna and the human head. Numerical results can provide useful 

information in designing communication equipment for safety compliance.  
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Abstract. In this paper, free surface flow problems in a 2-D               

container with a moving floor are solved by VoF method. This              

numerical method (VoF) is used to employ impacted factors on                

dimensional analysis in laminar and turbulence cases. Comparing 

laminar and turbulence cases (in free surface flows), in laminar 

flows, steady state happened sooner and more symmetric circulation 

is formed. Then, in turbulence cases (with and without surface              

tension) have been considered and inconsiderable effect of surface 

tension will be presented. Also VoF method is utilized in laminar 

flows to study about some impacted factors on dimensional analysis 

such as different velocity for moving floor, different height of fluid 

in the container, different fluid properties (density and viscosity), 

etc. So, in free surface flows, Reynolds number has no magnitude in 

comparison with without free surface flows and fluid properties 

should be considered in advance. 

Keywords. Cavity, Free Surface Flow, Laminar Flow, Turbulence 

Flow, VoF Method. 
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7.1  Introduction 

Applying numerical models for flows with free surface has less research 

background and less attention is paid to numerical models. By considering 

oil industry and vast offshore facility that exist in some countries, it is         

necessary to believe numerical models in this state of flows. 

The application of this problem is in area of survey and investigation the 

situation of fluid inside the controller (capacity) in transfer pipe line, also 

in cases, which the bottom wall of oil or fuel capacitor for some reason 

such as earthquake or unwanted movement are shocked or fluctuated.            

Research about these flows like other flows is possible in two methods. 

First method is using laboratory and experimental models; usage of this 

choice is so difficult and costly. Point of view, it is not reachable by all            

researchers. Thus, applying numerical models which could simulate the 

behavior of flow have to recommend such as the second method. Of course 

it should be mentioned that the numerical research in the field of flow with 

free surface has less background than numerical research in the field of 

flow without free surface. Purpose of flow with free surface is that kind of 

flows that have a common boundary between two different phases. Both of 

these phases could be liquid or one of them could be gas. Prevalent                 

equations of flows for both phases are Navier- Stocks equations. As the 

common boundary was unknown and the complexity of forces that exist in 

common boundary of these two phases make it harder to model these 

flows in comparison with classic flows without free surface. 

Numerical models, which apply for free surface flows are mainly                

categorized in two parts as follow: 

1. Following the free surface inside a constant grid in order to free 

surface is always inside the grid. In this method the scalar quantity 

that introduces the location of free surface is used. Among the applied 

methods we can cite MaC [1], and VoF [2] methods. These methods 

are suitable for situation that difference height of free surface at             

different point is very high or intensive slopes in free surface exist to         

horizontal surface are suitable. 

2. Following the free surface as a solving grid boundary. In these             

methods, solving grid is exclusive to liquid flow and points of grid do 

not exist outside of fluid and where free surface is as one of the                 

boundary condition of field should be distinguished continuously. 

Thus, solving grid in each order of calculation would be regenerated. 

In this method free surface is nominated like a less thickness surface. 

    These methods are suitable where difference height of free surface at 

different points is not very high or sloppily. 
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Goudarzi and Azimian [3], [4], [5], introduced a numerical method in 

2003 and tested this procedure for channel flow. This method is placed in 

second part and it is practical for free surface flow and also for flow            

without free surface because in this manner momentum equation has been 

solved by introducing none hydrostatic pressure term. Also, they have 

taken advantage of approximate boundary condition instead of exact               

boundary condition in free surface for some auxiliary channel flows [4], 

[5]. As their results, because none hydrostatic pressure gradient in                       

direction of channel axis is dominant whereas there is the inconsiderable 

fluctuations in free surface we can ignore such as these negligible                   

displacements. 

In this paper we compared the results of one of laminar cases (that has 

been solved by VoF Method) with this method for free surface flow in 

moving floor cavity. In this problem unlike the channel flow, none               

hydrostatic pressure gradient is important in all directions. 

7.2 Problem formulation 

Differential equations for a laminar and incompressible fluid flow are              

Navier- Stocks equations. By choosing Cartesian as reference, dominant 

equations on 3-D incompressible flows could be introduced. These                

equations consist of continuous equation, three momentum equation,             

fraction volume equation and turbulence models equations for turbulence 

cases. In this Cartesian coordination x-y axises laid on horizontal                 

directions and z axis laid on vertical direction supposed as opposite of 

gravity acceleration. By considering all above the dominate equation at 

steady state are written as follow: 
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Where, u,v,w  presented  velocity component (m/s) at x,y,z directions, ρ 

presented fluid density (kg/m
3
), g presented gravity intensity (m/s

2
) and P 

presented pressure value (Pa). 

     It should be noted; in 2-D cavity the third equation in these                    

formulations is unconsidered.  

Suppose, two uncombined and incompressible fluids are available, so 

divergence of the velocity is: 

 

 

For using the fraction volume, the positions of two fluids are important, 

so for inside one of the fluid C=1 and for inside another fluid C=0. Cells 

which are between these two phases are verified as 0<C<1. The first fluid 

fraction volume is expressed as follow: 

                                                                            

 

 

No slip condition is another boundary condition for studding the lid dri-

ven cavity flow that surrounded the fluid completely. But in free surface 

flow problem, one of the boundary condition is free surface. In this bound-

ary, kinematic and dynamic conditions should be met. If we assume that 

free surface flow is a scheme (z) without any breakdown, it will be possi-

ble to consider the height of different points proper to a reference surface 

(figure 1) as following equation: 

                                                                        

                                                                                                            (1.7) 

    

Where, h denoted liquid height, x presented horizontal direction and t 

denoted time dependent. 

     Without any evaporation through free surface, no mass transfer from 

free surface would be occurred, that is presented as: 
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Left hand term illustrates free surface velocity (wfs), so we can rewrite it 

such as:
 
 

 

 

      

 

Therefore, kinematic conditions for free surface would be demonstrated 

by no mass transferring. 

 

 

 

 

 

 

 

 

 

 
Fig.1.1 Cartesian coordination and reference surface 

 

 In order to dynamic condition the free surface forces should be equal 

which were consisted of the consequent of the tangent forces such as            

surface tension and shear stress, and the consequent of the vertical forces 

affected by atmosphere pressure and fluid pressure have to be zero.               

Frequently, because of negligible density and viscosity of surrounded per-

manent, shear stress has to be inconsiderable:
  

 

 

 

Where, ζ denoted vertical vector through the free surface. 

     Also, surface tension is negligible for extensive free surface flow. 

Thus, in this case, dynamic condition is equality of atmosphere pressure 

(in this paper) and fluid pressure. 
  

 

     

 For atmospheric and free surface attribute, we use atm, fs subscripts. 

     By variable replacement we have: 
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7.3 Problem solution 

Numerical method is based on grid generation. In free surface flow, the 

boundary condition of free surface is not obvious; in fact one of the             

unknown parameter is the configuration and geometry of free surface. 

First, for solving this problem, we should suppose a model for free surface. 

Considering it; first grid has to be generated that doesn’t confirm to the 

boundary condition of free surface. Then, by numerical solving and      

employment of kinematic and dynamic boundary conditions in free              

surface, the correct boundary geometry and solving grid should be              

exhibited. Some of the numerically models for solving VoF method were 

presented by scientist that based on Hert and Nickels’ method. This solver 

estimated the curve of medial surface by vertical and horizontal lines and 

was structured by upwind and downwind methods. The advantage of             

upwind method convention is its stability, but this method is much            

spacious and might be extend in some middle surface cells. Although 

downwind method is not stable, this able to form the middle surface and it 

is very useful in that’s function. Some of the Vof methods were                  

incremented which are able to offset the stability of upwind method and 

the advantage for front surface modeling by downwind method [6], [7], 

[8]. 

 

 

7.3.1   Numerical results 

To confirm the accuracy of VoF Method, we solved numerically a 2-D lid 

driven cavity. The numerical results in comparison with Ghia’s [9] results 

are shown in figure (1.2). The numerical accordance obtained from this 

method and which one explained by Ghia’s [9], portended acceptable             

accuracy of employed this method, so this procedure would be applicable. 

By assuring this numerical method ability, we have investigated such as           

2-D cavity with moving floor and free surface flow instead of upon rigid 

wall (figure 1.3). First, we suppose laminar case and Reynolds Number 

equal to 1000. Therefore, once grid mesh 100*100 and second grid mesh 

200*200 has to be used and boundary conditions were defined by steady 

lateral walls, moving floor by velocity equal to 1 m/s and pressure outlet 

condition for upon wall. Then, consider the half of this cavity was full of a 

fluid. Where µ presented viscosity value (kg/ms
-1

). 
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Fig.1.2 Horizontal velocity component diagram in the middle of lid 

driven cavity. a) Re=400. b) Re=1000 

 

    

 

 

 

 

 

 

 

 

 
Fig.3 Geometry of the moving floor cavity with free surface  
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Consider laminar unsteady flow and time step = 0.001, by solving this 

problem with VoF Method after 36.28s (CPU time = 259200s) the steady 

state was achieved. Obviously, in figure 1.4 (stream function and vorticity 

contours) the right corner of the surface flow rises and the circulation is 

closer to the right side and a visible dip springs in the middling of flow. In 

turbulence case, we consider the physical theorem as same as laminar case 

except that the fluid in the cavity was liquid water. 

 

 

 

 

 

 

 

                    

                                
Fig.1.4 Laminar flow in the moving floor cavity with free surface. 

 

 

 

Hence, the mesh regeneration has to be harmonized to that statue.             

Fig. (1.5) demonstrate unsteady solution via VoF Method by time step = 

0.03 verged to steady state after 88.76s (CPU time = 432000s) and the           

circulation traversed the same auxiliary orbit and stood close to the right 

side.  
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Fig.1.5 Turbulence flow in the moving floor cavity with free surface and without 

surface tension  

 

Although, the ledge in the right corner have been emerged, the visible 

dip in the midline of flow was not obvious. Afterwards, this problem was 

solved by involving surface tension up to 0.07 and considering unsteady 

solution via VoF Method with time step = 0.03. In this situation, after 

118.76s (CPU time = 518400s) that redounded steady state and the same 

consequences happened such as previous problem (Figure 1.6). These          

outcomes are derived from stream function and vorticity contours, pressure 

contours, free surface profile contour, horizontal velocity vector            

component in the middle of cavity (Figure 12,13a), velocity vectors                       

diagrams (Figure 10,11a) in the steady state for laminar and turbulence 

cases. 

 

                          
Fig.1.6 Turbulence flow in the moving floor cavity with free surface and surface 

tension  

 

� Laminar flow achieved to steady state earlier than turbulence flow. 
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� Comparing the steady state results expose that formed circulation in 

laminar case is closer to the right side; also, the right lower corner in 

stream function and vorticity contours is sharp.  

� Although in laminar case a small circulation was formed in right upon 

corner, which was not appeared in the turbulence mode. 

� According to horizontal velocity vector component diagram, in            

laminar flow the circulation is more symmetric than turbulence flow. So, 

in laminar case these vectors mitigated from bottom to upon side. 

� Because of larger amount of diffusion terms in comparison with             

inertia terms in laminar case with further density content, free surface ve-

locity vector in the middle of the cavity in turbulence case is -0.2 m/s 

while in laminar mode it is -0.7 m/s. Also, in laminar case velocity vectors 

diverge to zero value without continuance; these facts actualized the             

fluctuated free surface laminar flow profile. (Figure 12, 13a) 

� Velocity vector of turbulence flow converged to zero value in higher 

height. 

� More continues velocity vectors in turbulence flow demonstrate           

steadier free surface profile. 

� Considering the left part of the velocity diagram concluded that             

fluctuation near the floor in laminar case is more continuous and further 

than turbulence mode in the same distance, this reason was occasion of             

sharpness near the right bottom corner (Figure 1.4). 

� Obviously, the vortex flow is the dominant flow in cavity. In this 

flow, pressure gradient is important in all of directions and there is not any 

horizontal or vertical conqueror pressure gradient in the fluid flow.          

According to pressure counters, the difference between minimum and 

maximum pressure value in laminar and turbulence cases have been 38.15 

k Pa, 2774 k Pa. This fact illustrated a little free surface fluctuation is able 

to vary pressure dominate completely. Therefore, the pressure value         

reduces in turbulence case more than in laminar case. 

� Velocity vectors for both cases in the cavity conceded the previous      

results. Also, the descent gradient in figure (1.11a), near the floor is less in 

laminar flow than turbulence flow, hence velocity vectors is more                

continuous. 
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 Fig.1.7 Laminar flow in the moving floor cavity with free surface and the height 

of liquid was 

 

 

                              
Fig.1.8 Laminar flow in the moving floor cavity with free surface, the height of 

liquid was ¼, by ignoring gas density versus from liquid density 

 

 

     Next, for investigating about free surface flow, which is closer to the 

moving floor, we suppose the same physical problem and the same             

property for liquid and gas, by considering ¼ height of liquid in the cavity 

and floor velocity is equal to 2 m/s (Re= 2000) and solving this problem 

via VoF Method, after 26.11 s (CPU time= 172800 s), the steady state was 

occurred. This moment is lower than previous case. According to figure 

(1.7), there are many circulations and the initial one is closer to the right 

side corner. Comparing this result and another one solved numerically by 

Goudarzi an Azimian [3], [4], [5] (Figure1.9), verified this method for free 

surface flow. By examining the results from stream function and velocity 

contours, pressure contours, phase contours, horizontal velocity               

component vector in the midline of the cavity (Figures 1.13a, b) and the 

velocity vectors (Figures 1.11a, b), from outset to steady state, in the same 

time for both laminar cases, we mentioned such as: 
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� Laminar flow in the second case (which the height of liquid was ¼ 

and the floor velocity was 2 m/s) attained to the steady state rather than the 

first case, because of lower height of liquid.  

� In the second case, more circulations have been formed, because the 

velocity of moving floor increased. 

� Comparing the circulation promenade to achieve the steady state in 

both cases, we are able to represent the circulation in the second case has 

not grow and has not orbit completely opposite the first one. 

� Real circulation in the first case of laminar flow was more symmetric 

than another one, which was derived by the horizontal velocity component 

diagram. (In the further section, you would follow by receding from floor, 

velocity vectors in the first case opposite of second one decreased gently 

up to achieved to free surface.) 

     Comparing the horizontal velocity component in the midline of the 

cavity (Figures 1.13 a, b), these results could be decelerated: 

� In the first case, after circulation grew and promoted completely, ac-

cording to C.C.W revolution, horizontal velocity components descended 

up to free surface, though the descend course in the second one changed in 

the middle of fluid and incepted the ascendant course earlier than another 

one, that explained the center of the circulation was closer to free surface 

in the first case. 

� Minimum velocity in the first case occurred on free surface (-0.7 m/s), 

though in the second one because of forming the adverse circulation,            

minimum velocity happened in the middle of fluid height (-0.65 m/s). 

� According to the phase contours, free surface fluctuated more in the 

first case that is able to describe by attending to the horizontal velocity 

component diagram. 

� Obviously, the vortex flow is the dominant flow in cavity. In this 

flow, pressure gradient is important in all of directions and there is not a 

conqueror pressure gradient in the fluid flow. Due to quicker moving floor, 

pressure value decreased more in the second laminar case than the first           

laminar case which is able to consent by pressure difference (38.15 k Pa in 

the first case and 99.56 k Pa in the second one). 

� According to the horizontal velocity component diagram, the             

descendent gradient of the curve in the first laminar case was much less 

than another one which proved the continuous variation in velocity               

vectors.   
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Regenerated boundary at free surface

 
Fig.1.9 Stream function contours for laminar flow in the moving floor cavity with 

free surface and the height of liquid was 1/4. (Solving numerically by Goudarzi 

and Azimian [3], [4], [5]. 

 

 

                                 
Fig.1.10 Velocity vectors for turbulence flow in the moving floor cavity with 

free surface 

 

 

For laminar flow study in this cavity, when the difference between            

liquid density and gas density was much enough to ignore gas density, first 

we consider the same physical problem (the height of liquid is equal to ¼ 

and the velocity of moving floor is equal to 2 m/s), if properties of liquid 

and gas change such as below, it would be approached by these properties 

and density difference, the results must be unusual. That was because of 

ignorable gas density. After 235.39 s (CPU time= 777600 s), we get the 

steady state. 
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(a)                                             (b) 

                                 
                                               (c) 

Fig.1.11 Velocity vectors for laminar flows in the moving floor cavity with free 

surface. a) First case. b) Second case. c) Third case 

 

According to figure (1.8) the result is so different from other laminar 

cases and the circulation was more extended because of high distinctive 

between gas viscosity and liquid viscosity. Next, by examining the results 

of second laminar flow and third laminar flow, which consist of stream 

function and velocity contours (Figure 1.7, 1.8), phase contours, horizontal 

velocity component distribution diagram in the midline of cavity (Figure 

1.13b, c), velocity vectors diagram (Figures 1.11b, c) for flow in the             

cavity. 

� Second flow achieved to the steady state (26.11 s) rather than third 

flow. 

� The scale and the location of circulation in the second flow are more 

adjacent than the scale and location of circulation in the third one and the 

circulation is closer to the right side. 

� The circulation of the second flow is more symmetric than another 

one that is also arising from parabolic zone of horizontal velocity                   

component (Figure 1.13). 
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Fig.1.12 Horizontal velocity component distribution in the midline of the cavity 

for turbulence flow 

 

 

By ignoring the density of air opposite of water we were not able to      

persuade the accurate results that should be attended in solving problems 

by VoF method. 

Comparing horizontal velocity component distribution diagram in the 

midline of cavity with moving floor velocity equal to 2 m/s (Figures 1.13b, 

c), in the laminar flows following results were stated. 

� Due to opposite revolving circulation from the first circulation in the 

second flow, the minimum velocity occurred almost in the middle of liquid 

height (-0.65 m/s), whereas the minimum velocity of third flow happened 

near free surface and it is because of homogenous revolving circulations 

and it is more than minimum velocity in the second flow (-1.25 m/s). 

� Parabolic zone in the horizontal velocity component diagram in the 

second flow is more symmetric. So, free surface in this flow fluctuated less 

and the circulation is more symmetric than the third one. 

� In the second flow, the value of horizontal velocity component is       

positive because the powerful circulation near free surface was formed  

� According to figures (1.7, 1.8), it is obvious that free surface in the 

second one is steady and the formed dip is in the reduced region. That 

could be obtained by observing the horizontal velocity component               

distribution diagram. 

� Because of ignorable gas and liquid density in the third case opposite 

of second one, the pressure decrease in the third case must be so little. The 

pressure value reduction in the second one is 99.56 k Pa whereas in the 

third case, it is 11.53 k Pa. The maximum pressure reduction occurred in 

free surface. 

� Due to less downward slope of parabolic curve in the horizontal          

velocity component distribution diagram (Figure 1.13b, c), we expected 

continuous variation for velocity vectors near the moving floor in the third 
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case (Figure 1.11b, c). Certainly this anticipation realized by comparing 

these figures, near the lateral walls discontinues distribution of velocity 

vectors was formed admitted by different assumption in fluid properties.    

 

 

  
                      (a)                                                    (b) 

                          

                         
                                                        (c) 
Fig.1.13 Horizontal velocity component distribution in midline of the cavity. a) 

First case. b) Second case. c) Third case 

7.4 Conclusions 

As we knew, laminar flows achieve to the steady state rather than                     

turbulence flows. Although, there was the same pressure gradient, the free 

surface fluctuation gauge in laminar case was further than turbulence case 

that occurred because of less fluid density value in laminar flow. Also,            

because of the ignorable surface tension between air and liquid water there 

was no discrepancy in both turbulence cases.  

By this investigation, we can observe this problem in Taylor fluids is 

similar to Benarth problem in convection branch, which occurred because 
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of the temperature difference between upper and lower part that offered 

such Benarth case in fluids. 

Also, in free surface flows opposite of other flows, Reynolds number 

has no effect on problem analyses and viscosity and density parameters are 

important in solving this problem exclusively, by ignoring gas density          

versus from liquid density, unusual results were achieved. Also, we have 

to examine considerately in these cases for Reynolds number, as, each 

steady turbulent in free surface flows could not result steady state in the 

problem. 

. 
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Chapter 8 

Possibilities of Air Quality Modelling based on  
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Abstract. The paper presents a design of parameters for air quality 

classification of districts into classes according to their pollution. 

Therefore, the design of air quality classification is presented by             

IF-sets introduced by K.T. Atanassov. In the next part of the paper 

we present basic notions of IF-sets for the design of the tree                       

hierarchical IF-inference systems of Mamdani type. Moreover, the 

paper describes air quality modelling, the design of membership 

functions and non-membership functions, if-then rules of individual 

subsystems, inference mechanism and analysis of the results.  

Keywords. Air quality, IF-sets, hierarchical IF-inference systems of 

Mamdani type, classification. 

8.1   Introduction 

At this time there are several generalizations of fuzzy set theory for               

various objectives [1, 2]. Intuitionistic fuzzy sets (IF-sets) theory                   

represents one of the generalizations, the notion introduced by K.T. 

Atanassov [3, 4]. The concept of IF-sets can be viewed as an alternative 

approach to define a fuzzy set in cases where available information is not 

sufficient for the definition of an imprecise concept by means of a                     

conventional fuzzy set. In this article we will present IF-sets as a tool for 
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reasoning in the presence of imperfect fact and imprecise knowledge. The 

IF-sets are for example also suitable for the air quality modelling as they 

provide a good description of object attributes by means of membership 

functions µ and non-membership functions ν. They also present a strong 

possibility to express uncertainty.  

The paper presents the basic notions of IF-sets and the design of the               

hierarchical IF-inference systems of Mamdani type. Hereby, it points out 

the reduction of if-then rules. Based on [5], the output of the IF-inference 

system is defined in general. In the next part of the paper, we design and 

formalize the tree hierarchical IF-inference system of Mamdani type for 

the classification of the i-th district t
io ∈O, O={ t

1o , t
2o , … , t

io , … , t
no } in 

time t to the j-th class t
j,iω ∈Ω, Ω={ t

j,1ω , t
j,2ω , … , t

j,iω , … , t
j,nω }.                  

Moreover, the classification of the i-th district t
io ∈O in time t to the j-th 

class t
j,iω ∈Ω presented in the paper assists state administration to evaluate 

air quality. The knowledge of notable experts in the field of air quality 

measuring gives support to the results of the classification.  

8.2 Problem formulation 

Harmful substances in the air represent the parameters of air quality                

modelling. They are defined as the substances emitted into the external air 

or formed secondarily in the air which harmfully influent the environment 

directly, after their physical or chemical transformation or eventually in          

interaction with other substances. Except the harmful substances, other 

components also influence the overall air pollution. For example, solar              

radiation, the speed or the direction of wind, air humidity and air pressure 

represent these components. Both, the parameters concerning the harmful 

substances in the air and the meteorological parameters influence the air 

quality development. The interaction of both types of parameters can cause 

an increase of air pollution and influence human health this way. The               

design of parameters can be realized as presented in Table 1.1. Based on 

the presented facts, the following data matrix P can be created 

P =
 

t
j,n

t
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Table 1.1. Parameters design for air quality modelling 

where t
io ∈O are objects (districts) in time t, t

kx  is the k-th parameter in 

time t, t
k,ix  is the value of the parameter t

kx  for the i-th object t
io ∈O, 

t
j,iω ∈Ω is the j-th class assigned to the i-th object t

io ∈O, t
ip =( t

1,ix , t
2,ix , … 

, t
k,ix , … , t

m,ix ) is the i-th pattern, x
t
=( t

1x , t
2x , … , t

kx , … , t
mx ) is the              

parameters vector. The air quality evaluation is based on the results of 

weight concentrations’ measures of substances in the air. The evaluation 

takes the possible effects on human health into account. New limits                 

specified in the government order of the Czech Republic No: 350/2002 

Coll. set the limits of pollutants, the conditions and the procedure of air 

quality monitoring, evaluation and management. The classes t
j,iω ∈Ω for 

air quality evaluation defined in this order are presented in Table 1.2. 

Table 1.2. Air quality classes t
j,iω ∈Ω 

Parameters 
t
1x = SO2, SO2 is sulphur dioxide. Harmful 

substances t
2x = O3, O3 is ozone. 

 t
3x = NO, NO2 (NOx) are nitrogen oxides. 

 t
4x = CO, CO is carbon monoxide. 

 t
5x = PM10, PM10 is particulate matter (dust). 

Meteorological t
6x = SW, SW is the speed of wind. 

 t
7x = DW, DW is the direction of wind. 

 t
8x = T3, T3 is the temperature 3 meters above the Earth’s 

surface. 

 t
9x = RH, RH is relative air humidity. 

 t
10x = AP, AP is air pressure. 

t
11x = SR is solar radiation. 

 Class description 

t
1,iω  Clean air, very healthy environment. 

t
2,iω  Satisfactory air, healthy environment. 

t
3,iω  Slightly polluted air, acceptable environment. 

t
4,iω  Polluted air, environment dangerous for sensitive population. 

t
5,iω  High polluted air, environment dangerous for the whole population. 
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Air quality modelling [6] represents a classification problem. By the                   

defining the problem in this manner it is possible for it to be modelled by 

unsupervised methods (if classes t
j,iω ∈Ω are not known). The districts 

(bus stops: Cihelna, Dubina, Polabiny, Rosice, Rybitví, Srnojedy,                 

crossroads: Palacha-Pichlova, Square Republic, Spa Bohdaneč, chemical 

factory of Paramo) in the city of Pardubice, the Czech Republic, have no 

class t
j,iω ∈Ω assigned. 

8.3 Hierarchical IF-inference systems design 

The concept of IF-sets is the generalization of the concept of fuzzy sets, 

the notion introduced by L.A. Zadeh [7]. The theory of IF-sets is well 

suited to deal with vagueness. Recently, the IF-sets have been used to             

IF-sets classification models which can accommodate imprecise                          

information. 

Let a set X be a non-empty fixed set. An IF-set A in X is an object             

having the form [3, 4] 

A = { 〈x, µΑ(x), νΑ(x) 〉 | x∈X}, (1.1) 

where the function µΑ:X→ [0,1] defines the degree of membership                

function µΑ(x) and the function νΑ:X→ [0,1] defines the degree of               

non-membership function νΑ(x), respectively, of the element x∈X to the 

set A, which is a subset of X, and A⊂X, respectively; moreover for every 

x∈X, 0 ≤ µΑ(x) + νΑ(x) ≤ 1, ∀x∈X must hold.  

The amount πΑ(x) = 1 − (µΑ(x) + νΑ(x)) is called the hesitation part, 

which may cater to either membership value or non-membership value, or 

both. For each IF-set in X, we will call πΑ(x) as the intuitionistic index of 

the element x in set A. It is a hesitancy degree of x to A. It is obvious that 

0 ≤ πΑ(x) ≤ 1 for each x∈X. The value denotes a measure of                           

non-determinancy. The intuitionistic indices πΑ(x) are such that the larger 

πΑ(x) the higher a hesitation margin of the decision maker. Intuitionistic 

indices allow us to calculate the best final results (and the worst one) we 

can expect in a process leading to a final optimal decision.  

Next we define an accuracy function H to evaluate the degree of                      

accuracy of IF-set by the form H(A) = µΑ(x) + νΑ(x), where H(A)∈[0,1]. 

From the definition H, it can be also expressed as follows H(A) = µΑ(x) + 

νΑ(x) = 1− πΑ(x). The larger value of H(A), the more the degree of                 

accuracy of the IF-set A. 
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Let there exists a general IF-inference system defined in [5]. Then it is 

possible to define its output yη as 

yη = (1− πΑ(x)) × yµ + πΑ(x) × yν, (1.2) 

where yµ is the output of the fuzzy inference system (FIS) using the                

membership function µΑ(x), yν is the output of the FIS using the                       

non-membership function νΑ(x). 

Let t
1x , t

2x , … , t
ix , … , t

mx  be input variables, and let 1,1
ηy , 2,1

ηy , … , 1,q
ηy  

be the outputs of subsystems 1,1
ηFIS , 1,2

ηFIS , … , q,1
ηFIS , where η=µ are 

membership functions (η=ν are non-membership functions). Then, if-then 

rules 1,1hR , 1,2hR , … , q,1h
R  of the tree hierarchical IF-inference system, 

presented in Fig. 1.1, 

 
               t

1
x  t

2
x        t

3
x  t

4
x      t

5
x  t

6
x          …    t

1m
x

−−−−
t
m

x  

Fig. 1.1. A tree I-hierarchical fuzzy inference system 

where q is the number of layers, can be defined as follows 

Layer 1: 1,1
ηFIS  1,1hR : if t

1x  is 1,1h

1A AND t
2x  is 1,1h

2A  

 then 1,1
ηy  is 1,1h

B , 
1,2
ηFIS  1,2h

R : if t
3x  is 1,2h

3A AND t
4x  is 1,2h

4A  

 then 2,1
ηy  is 1,2h

B , 

Layer 2: 2,1
ηFIS  2,1h

R : if 1,1
ηy  is 1,1h

B AND 2,1
ηy  is 1,2h

B  

 then 1,2
ηy  is 2,1h

B , 
2,2
ηFIS  2,2h

R : if t
5x  is 2,2h

5A AND t
6x  is 2,2h

6A   

 then 2,2
ηy  is 2,2h

B , . . . , 
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Layer q: q,1
ηFIS  q,1h

R : if 1,1q
ηy −−−−  is 1,1-qh

B AND 2,1q
ηy −−−−  is 1,2-qh

B  

 then 1,q
ηy  is q,1h

B , 

where: - h1,1 = h1,2 = … = hq,u = {1,2, ... ,k
m
}, u=1,2, 

- 1,1h

1A , 1,1h

2A , … , q,1h

n
A  are linguistic variables corresponding to 

fuzzy sets represented as )x(η t
i

h

1
1,1 , )x(η t

i

h

2
1,1 , … , )x(η t

i
h
m

q,1 , 

- 1,1h
B , 1,2h

B , … , q,1h
B  are linguistic variables corresponding to 

fuzzy sets represented as )( 1,1
η

h
y1,1

η , )( 2,1

η

h
y1,2

η , … , )(η 1,qh

ηyq,1 , 

- )(yη 1,1
jh1,1B

, )(yη 1,2
jh1,2B

, … , )(yη
q,1
jhq,1B

 are membership function 

η=µ (non-membership function η=ν) values of aggregate fuzzy 

set for outputs 1,1
jy , 1,2

jy , … , q,1
jy . 

Similarly, it is possible to design and define a cascade hierarchical                 

IF-inference system and various others, hybrid hierarchical IF-inference 

systems. The outputs 1,1
ηy , 2,1

ηy , … , 1,q
ηy  of particular subsystems 

1,1
ηFIS , 1,2

ηFIS , … , q,1
ηFIS  of the tree hierarchical IF-inference system can 

be expressed by using defuzzification method Center of Gravity (COG)  

[8, 9] as 
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∑∑∑∑
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and the outputs of particular subsystems 1,1
ηFIS , 1,2

ηFIS , … , q,1
ηFIS in each 

layer of the hierarchical IF-inference system are calculated as follows 

y sr,
η ( sr,h

B )=(1−π sr,
µ ) × y sr,

µ ( sr,h
B ) +π sr,

ν × y sr,
ν ( sr,h

B ),   (1.3) 

for r = 1,2, … ,q, s = 1,2. 

8.4 Modelling and analysis of the results 

Air quality modelling is realized by the tree hierarchical IF-inference               

system with inputs parameters x
t
=( t

1x , t
2x , … , t

kx , … , t
mx ), m=11,                 

outputs 1,1
ηy , 2,1

ηy , … , 1,q
ηy  of individual subsystems 1,1

ηFIS , 1,2
ηFIS , … 

, q,1
ηFIS , q=6. The design of specific tree hierarchical IF-inference system 

results from the recommendation of experts in given field. Thus, it                 

simulates their decision-making process. The design of input (output) 

membership functions µ and non-membership functions ν is based on the 

limits specified by the government and on the recommendation of experts. 
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As an example, the input (output) membership functions µ  for input              

parameters t
1x  and t

2x  (y1,1
µ ) of the particular subsystem FIS 1,1

µ  are                

presented in Fig. 1.2 (Fig. 1.3). In a similar manner, the input (output) 

non-membership functions ν  for input parameters t
1x  and t

2x  (y 1,1
ν ) of the 

subsystem FIS 1,1
ν  are presented in Fig. 1.4 (Fig. 1.5). These functions are 

designed for an example of intuitionistic index π=0.05. 

 
Fig. 1.2. Input membership functions µ for t

1
x  and t

2
x  of subsystem FIS 1,1

µ  

 
Fig. 1.3. Output membership functions µ  for y1,1

µ  of subsystem FIS 1,1
µ  

 
Fig. 1.4. Input non-membership functions ν for t

1
x  and t

2
x  of subsystem FIS 1,1

ν  

 

Fig. 1.5. Output non-membership functions ν  for y 1,1
ν

 of subsystem FIS 1,1
ν  
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Base of if-then rules for example for subsystem FIS 1,1
η  is defined as            

follows: 

for η=µ 
1,1
µFIS  1R : if t

1x  is low_value_ t
1x  AND t

2x  is low_value_ t
2x  

then 1,1
µy  is low_value_ 1,1

µy , 
1,1
µFIS  2R : if t

1x  is low_value_ t
1x  AND t

2x  is high_value_ t
2x  

then 1,1
µy  is medium_value_ 1,1

µy , 
1,1
µFIS  3R : if t

1x  is high_value_ t
1x  AND t

2x  is low_value_ t
2x  

then 1,1
µy  is medium_value_ 1,1

µy , 
1,1
µFIS  4R : if t

1x  is high_value_ t
1x  AND t

2x  is high_value_ t
2x  

then 1,1
µy  is high_value_ 1,1

µy . 

for η=ν 
1,1
νFIS  1R : if t

1x  is not_low_value_ t
1x  AND t

2x  is not_low_value_ t
2x  

then 1,1
νy  is not_low_value_ 1,1

νy , 
1,1
νFIS  2R : if t

1x  is not_low_value_ t
1x  AND t

2x  is not_high_value_ t
2x  

then 1,1
νy  is not_medium_value_ 1,1

νy , 
1,1
νFIS  3R : if t

1x  is not_high_value_ t
1x  AND t

2x  is not_low_value_ t
2x  

then 1,1
νy  is not_medium_value_ 1,1

νy , 
1,1
νFIS  4R : if t

1x  is not_high_value_ t
1x  AND t

2x  is not_high_value_ t
2x  

then 1,1
νy  is not_high_value_ 1,1

νy . 

The inference mechanism of particular subsystems 1,1
ηFIS , 1,2

ηFIS , … 

, q,1
ηFIS  involves also the process of implication (MIN method) and                        

aggregation (MAX method) within if-then rules, and the process of          

defuzzification by COG method of obtained outputs to the crisp values. 

Data measured monthly during six years (n=720) was used for air quality 

modelling. Yearly means of these measurements was applied for the               

classification, i.e. n=60. Further, the classifiers assigned the best t
1,iω and 

the worst t
5,iω  class (from the original five classes) to a minimum number 

of districts. Moreover, the classification into three classes ( t
2,iω , t

3,iω , t
4,iω ) 

considers also the recommendation of experts. The output 1,6
ηy  (the 

classification of the i-th district t
io ∈O in time t to the j-th class t

j,iω ∈Ω, 

j=2,3,4) of the designed tree hierarchical IF-inference system (the 

frequencies f of the classes t
j,iω ∈Ω) is presented in Fig. 1.6. The 

classification problem works with the set of input patterns t
ip  assigned to 

one of the classes t
j,iω ∈Ω. From Fig. 1.6 it also results that in the 

neighbourhood of class t
3,iω  the highest occurrence of classified districts is 

located in time t.  Similarly, classes t
2,iω  and t

4,iω  can be described with 

the difference that more districts are located in the neighbourhood of the 

class t
4,iω . Thus, it is obvious that the tree hierarchical IF-inference system 

designed this way better models imperfect fact and imprecise knowledge 
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better models imperfect fact and imprecise knowledge than standard            

hierarchical fuzzy inference system. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6. The ouptut 1,6
η

y  of the tree hierarchical IF-inference system (the                    

frequencies f of the classes) 

8.5 Conclusions 

The air quality modelling has been focused for example on the air quality 

parameters prediction [10] and modelling by multi-agents systems [11] so 

far while classification of the district [12, 13, 14]. Air quality modelling in 

generally is currently realized by methods combining                              

mathematical-statistical methods and expert opinion. Some of the methods 

do not make it possible to work with uncertainty and the expert                   

knowledge; the others feature imprecise classification of assessed objects. 

Therefore, the model based on IF-sets is designed in the paper as they                

allow processing uncertainty and the expert knowledge. IF-sets can be 

viewed in the context as a proper tool for representing hesitancy                

concerning both membership and non-membership  of an element to a set. 

Based on [5], the paper presents the design of the tree hierarchical                    

IF-inference system of Mamdani type. Similarly, it is possible to design 

and define a cascade and various others, hybrid hierarchical IF-inference 

systems. The hierarchical IF-inference system defined this way works 

more effective than the standard hierarchical fuzzy inference systems as it 

provides stronger possibility to accommodate imprecise information and 

better model imperfect fact and imprecise knowledge. For example, we 

can express the fact that parameters x
t
=( t

1x , t
2x , … , t

kx , … , t
mx ) of the              

i-th object t
io ∈O changes and are not quite clear. The measurements of 

the air quality parameters were realized by the mobile monitoring system. 

      t
2,i

ω      t
3,i

ω    t

4,i
ω  



Possibilities of Air Quality Modelling based on  IF-Sets Theory      99 

The model design was carried out in Matlab in MS Windows XP operation 

system. 
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Abstract. The problem of small transverse vibrations in a thin              

elastic plate of variable thickness with a bending moment and a 

shearing force on the plate contour is considered. The elaborated 

numerical method for the problem solution is described. It is based 

on a reduction of the initial partial differential equation to a system 

of equations with the first-order time derivatives. The results of                

numerical simulation for the problem of floating ice vibrations 

caused by moving loads are discussed. 

Keywords. Thin elastic plate, transverse vibrations, numerical 

method and applications. 

9.1   Introduction 

The mathematical model of transverse vibrations in thin elastic plates has 

applications in various fields of science and engineering [1-3]. In                     

particular, in geoecology it can be applied to the problem of floating ice 

vibrations caused by various moving loads. It can also be applied to the 
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problem of а plate material strength and to the problem of transverse                

vibrations in oceanic lithosphere plates [4] because thin oceanic                   

lithosphere (as compared with thickness on the continental lithosphere) 

consists of a relatively uniform basalt layer and can be considered as the 

thin elastic plate. In addition to the above mentioned applications there 

have been other applications (e.g., in structural mechanics). And yet                

despite the fact that there is a wide range of applications, the numerical 

methods to solve the above problem have not been developed sufficiently. 

In present paper, a new efficient numerical method to solve the above 

problem is  described and some results of numerical simulation for the 

problem of vibrations in floating ice caused by  moving loads are                   

discussed. 

9.2 Problem formulation 

The equation of small transverse vibrations in a thin isotropic elastic plate 

of variable thickness h(x,y)  lying on the Winkler elastic base has the form 

[5]:  

( ) ( )(1 ) 2 ,tt yy xx xy xy xx yyhW D W D W D W D W aW Fρ +∆ ∆ − − σ − + + =  (1) 

where ( , ) ,x y ∈Ω W(x,y,t) is the plate deflection measured along the z axis, 

ρ  is the density of the plate material, 3 2/ [12(1 )]D Eh= −σ  is the                         

cylindrical stiffness of the plate, E is the modulus of elasticity, σ  is               

Poisson's ratio of the plate material, aW is the reaction of  elastic base                  

(reactive pressure) proportional to the plate deflection according to the 

Winkler model, a = const > 0, F is the external force given on a surface of 

a plate. 

On the curvilinear contour of a plate ∂Ω  general                                    

(Kirchhoff-generalized) conditions: the bending moment M ∂Ω  and the           

vertical shearing force N∂Ω  are given: 

1 , ( , ) ,BW M x y∂Ω= ∈∂Ω  

2 , ( , ) ,B W N x y∂Ω= ∈∂Ω  

where 

2 2

1 (1 ) sin2 sin cos ,xy xx yyBW D W D W W W = − ∆ − −σ θ − θ − θ   
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( )
2

D W
BW

∂ ∆
= − −

∂n
 

( )(1 ) sin cos ( ) cos 2yy xx xyD W W W
∂  − − σ θ θ − + θ + ∂l

 

( )(1 ) sin cos sin cos ,y xx x yy x y xyD W D W D D W + −σ θ + θ − θ + θ   

 n is the outward normal to the contour ∂Ω , l is the tangent to the contour, 

θ  is the angle between normal to the contour and the positive OX axis. 

The initial conditions: 

( ) ( )
0 0

, , , .tt t
W x y W x y

= =
= ϕ = ψ  

A finite-difference approximation of the equation (1) based on a               

three-level finite-difference scheme will have a multipoint stencil and its                 

numerical implementation will be complicated. Our new approach [6] to 

construction of a numerical method for the problem solution based on            

reduction method  with finite-difference approximation is described in the 

next section. 

9.3 Numerical method for the problem solution 

We use the well-known approach to reducing a high-order partial                      

differential equation to a system of equations of smaller order. We reduce 

the initial equation, which is of the second order on time, by a system of 

equations with first-order on time and a two-level implicit finite-difference 

scheme is developed for solving this system. For this purpose at first we 

will write down the equation (1) in an equivalent form [5]:  

2 222

2 2 2
2 ,

xy yx
M MMW

h aW F
t x x y y

∂ ∂∂∂
ρ = − + − +

∂ ∂ ∂ ∂ ∂
 (2) 

where ( ) ,x xx yyM D W W=− + σ ( )y yy xxM D W W=− + σ  are bending                    

moments, ( )1xy xyM DW= −σ   is a torsion moment. Then in the equation of 

plate vibrations (2), we make the substitution tS W= . Further we                      

differentiate on t the formulas for the bending moments xM  and yM  and 
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make the substitution tS W= , too. As a result, we receive the system of the 

equations of the first order on time: 

2 22

2 2
2 ,

xy yx
M MMS

h aW F
t x x y y

∂ ∂∂∂
ρ = − + − +

∂ ∂ ∂ ∂ ∂
 (3) 

2 2

2 2

xM S S
D D

t x y
σ

∂ ∂ ∂
= − −

∂ ∂ ∂
 (4) 

2 2

2 2

yM S S
D D

t x y
σ

∂ ∂ ∂
= − −

∂ ∂ ∂
 (5) 

W
S

t

∂
=

∂
 (6) 

with boundary conditions: 

2 2cos sin sin 2 , ( , ) ,x y xyM M M M x y∂Ωθ + θ − θ = ∈∂Ω  

cos sin , ( , ) ,nl
x y

M
Q Q N x y∂Ω

∂
θ + θ − = ∈∂Ω

∂l
 

where  

,
xy y xyx

x y

M M MM
Q Q

x y y x

∂ ∂ ∂∂
= − = −

∂ ∂ ∂ ∂
 

are vertical shearing forces,  

2 2(cos sin ) ( )sin cos .nl xy x yM M M M= θ − θ + − θ θ  

The initial conditions: 

0 0
, ,

t t
W S

= =
= ϕ = ψ  

0 0
( ), ( ).x xx yy y yy xxt t

M D M D
= =
= − ϕ + σϕ = − ϕ + σϕ  

For numerical solution of the system (3)-(6) the two-layer implicit             

finite-difference approximation [6] on a rectangular mesh  has been                

created. For interior cell of the mesh, the system  of the finite-difference 

equations has the form: 
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o o

1/2 1/2 1/2 1/2 1/2

, , ,
,

2 ,n n n n n n

ij t ij xx ij yy ij ij ij
x y ij

h s u r v aw f+ + + + +ρ = − + − +  

1/2 1/2

, , , ,n n n

t ij ij x x ij ij yy iju D s D s+ += − −σ  

1/2 1/2

, , , ,n n n

t ij ij x x ij ij yy ijv D s D s+ += −σ −  

1/2

, ,n n

t ij ijw s +=  

where [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]n n n n n n

ij ij ij ij ij ij ij ijw s u v r h D f  are the  finite-difference 

analogues of  the corresponding functions W, S, , , ,x y xyM M M  h, D, F,  

1

1/2 , ( , , , , ) ,
2

n n

ij ijn n n n n n n T

ij ij ij ij ij ij ijw s u v r

+
+ φ + φ

φ = φ =  

( ) ( )
1, 1, , 1 , 1

, ,2 2

2 2
, ,

i j ij i j i j ij i j

xx ij yy ij

x y

+ − + −φ − φ + φ φ − φ + φ
φ = φ =

∆ ∆
 

oo

1

1, 1 , 1 1,

,
, 1/2, 1/2

, .

n n

i j i j i j ij ij ijn

t ij
xy i j x y t

+
+ + + +

+ +

φ − φ − φ +φ φ − φ
φ = φ =

∆ ∆ ∆
 

This scheme is more convenient for the numerical solution of the                

problem, than the three-layer scheme for the equation (1). The system of 

finite-difference equations is suitable to solve by splitting into two               

subsystems. In the first subsystem are implicitly approximated only the           

finite-difference derivatives on x: 

1/2

1/2

, ,
0.5

n n

ij ij n n

ij xx ij ij

s s
h u P

t

+
+−

ρ = +
∆

 

1/2

1/2

, ,
0.5

n n

ij ij n n

ij x x ij ij

u u
D s Q

t

+
+−

= − +
∆

 

1/2

1/2

, ,
0.5

n n

ij ij n n

ij x x ij ij

v v
D s R

t

+
+−

= −σ +
∆
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1/2

1/2 ,
0.5

n n

ij ij n

ij

w w
s

t

+
+−

=
∆

 

and in the second − the finite-difference derivatives on y: 

1 1/2

1 1/2

, ,
0.5

n n

ij ij n n

ij yy ij ij

s s
h v P

t

+ +
+ +−

ρ = +
∆

 

1 1/2

1 1/2

, ,
0.5

n n

ij ij n n

ij yy ij ij

u u
D s Q

t

+ +
+ +−

= −σ +
∆

 

1 1/2

1 1/2

, ,
0.5

n n

ij ij n n

ij yy ij ij

v v
D s R

t

+ +
+ +−

= − +
∆

 

1

1.
0.5

n n

ij ij n

ij

w w
s

t

+
+−

=
∆

 

To solve each of these subsystems efficiently, we renumber the                 

unknowns in a certain order and reduce the system of linear algebraic 

equations to a system with a nine-diagonal matrix, which is solved by 

Gaussian elimination. In this case, the coefficients are calculated in four 

stages. Test calculations have shown the high efficiency of the method 

proposed for solving the problem. 

Stability of the finite-difference scheme from the input data has been 

proved [6,7]. The function F describing the forces acting on the plate              

surface can be discontinuous. Therefore, solutions of the initial problem 

are regarded as generalized solutions in corresponding function spaces [8]. 

The strong convergence of the solution of the finite-difference problem to 

a generalized solution of the initial differential problem has been proved 

and the rate of convergence has been estimated [7]. 

9.4 Numerical criterion of a plate destruction 

In the process of transverse vibrations in a plate its material is stretched 

and compressed. For a thin elastic plate the stress tensor components              

determined by Hooke’s law and have the forms: 312 / ,xx xzM hσ =  
312 / ,yy yzM hσ = 312 /xy xyzM hσ = − . The finite-difference analogues of 

their corresponding moments ,xM ,yM xyM  are computed at each time 
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step of the computer program. Since maxima in absolute magnitude values 

of tensile and compression stress occur on the plate’s surfaces, the maxima 

in absolute magnitude values  of stress for the mesh at / 2z h= ±  are         

computed. When one of these values reaches its critical magnitude, we 

conclude that at this time step an irreversible deformation and destruction 

of the plate will take place. 

9.5 Some applications of the method 

As an example of the developed numerical method application, let us        

consider the problem of vibrations of a floating ice  in response to a              

moving load. The mathematical model of the floating ice vibration                

problem is described by the equation for transverse vibrations of a thin 

elastic plate (1) lying on a liquid base, where  la g= ρ , lρ  is the water 

density, lgWρ   is the  buoyancy Archimedean force on the lower surface 

of the ice, F is the moving load on the upper surface of the ice.  Notice that 

the floating ice vibration problem so formulated has been considered by 

many authors (See, e.g., [9-12]). In [9-12] the analytical methods have 

been used to solving the problem: the plane pressure front advance on the 

ice was specified in the right-hand side of the equation by a δ-function of 

the form Pδ(x-vt), where P is the force acting upon the ice surface, the           

δ-funcion was represented in the form of a Fourier integral, and the               

solution of the problem for the plate’s deflection and for liquid flow                 

potential under the ice was also represented in the form of integrals. The 

focus was mainly on the study of the resulting dispersion relations,                

dependence of the wave amplitude on the load’s velocity, and existence of 

critical velocities. Consequently it may be concluded that for the above 

applied problem no numerical methods with direct approximations of the 

equation for transverse vibrations in thin elastic plates were used. 

The elaborated method and computer code were used to carry out               

numerical simulation of the problem of propagation of floating ice                        

vibrations caused by moving cars. The parameters used in the                              

computations were as follows: linear dimensions of an ice plate with             

constant thickness were 100 m×40 m, the size of the mesh was 500×200 

mesh points, the time step was chosen corresponding with the stability 

condition of the method used for solving the system of difference                 

equations [5]; the values of physical parameters of the ice were as follows: 

modulus of elasticity 8 25.1 10 n/mE = ⋅ , Poisson's ratio σ =0.35, ice tensile 

strength was 0.5−1.0 MPa, ice compression strength was 2−3 M P a . 
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Minimal values of ice tensile and compression strength were selected as 

the destruction criteria. The boundary  conditions are given on the free            

border: 0, 0.M N∂Ω ∂Ω= =  

The motion of one car with a mass of 2.2 tons moving at a speed of 

15m/sec on a floating 0.26m thick ice plate was numerically simulated 

(See Fig.1).  Tensile  and compression strength was computed at each time 

step of the computer program.  No ice destruction happened in this case.  

 

 

a) n = 1000 

 

b) n = 32000 

Fig. 1. The computed results for the case when the only  car is moved across the 

ice cover. Wave dynamics of the floating ice deflection W [m]. On the right the 

cross-section in a direction of movement of the car's centre of mass is shown. 

Of particular interest is the case of the combined motion of two vehicles 

or more on a floating ice. Depending on the distance between these              

vehicles, the waves propagating from the vehicles can be quenched or 

added increasing their amplitudes. Numerical simulation was carried out of 

the combined motion of two identical cars each having a mass of 2.2 tons 

moving at the same speed of 15m/sec on a floating 0.29m thick ice, the 
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distance between the cars being 20m (See Fig. 2). When the wave due to 

the motion of the first car reached the other car, there was an increase in 

amplitude of vibration (See Fig. 2b)  and the computed maximum stress 

values exceeded the minimum tensile strength value of 0.5 MPa, and it 

means that the destruction of the ice will take place. 

 

 

a) n = 1000 

 

b) n = 6000 

Fig. 2. The computed results for the case when two cars are moved across the ice 

cover. Wave dynamics of the floating ice deflection W [m].  
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9.6 Conclusions 

The elaborated numerical method and computer software to solve the 

problem of small transverse vibrations in thin elastic plates gives an                

opportunity to study wave dynamics of transverse vibration in such plates 

under the action of various moving loads and also enables us to make              

inferences about possible destruction of the plate material. 
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Abstract. This paper presents an application of Principal 

Component Analysis (PCA) to the problem of pose estimation in 

computer vision. Continuum Shape Constraint Analysis (CSCA), a 

theoretical development bases on PCA, generates a variety of 

numerical measures that can be used to assess the shape and predict 

the accuracy of pose estimation. The proposed approach was 

developed for LIDAR-based scanning that samples non-specific 

points from the object across the area observed from a single view. 

Based on CSCA measures, the paper answers the question: what 

views of an object can be expected to lead to the lowest pose 

estimation error computed via the Iterative Closest-Point Algorithm, 

or conversely, what level of error can be expected for a particular 

scan view.  A novel measure, the Expectivity Index, presented in 

this paper, is used to assess and predict the pose estimation 

accuracy. The approach is demonstrated in both numerical 

simulation and experimental studies using the Stanford Bunny, 

cuboid and asymmetrical cuboctahedron shapes. The continuum 

nature of the CSCA formulation produces measures that are pure 

shape properties an object. 

Keywords. Computer Vision, LIDAR, ICP, Pose Estimation, 

Principal Component Analysis 

10.1 Introduction 
 

Computer vision has become an integral part of numerous aerospace 

industry applications. The need for rapid development of on-orbit 

autonomous robotic operations entails further improvement of computer 

vision systems and algorithms.  One of these innovations is the use of active 

sensors that scan an object with a laser beam and deliver 3D range data in 

form of a point cloud.The practical application of the present work supports 

the use of LIDAR (light detection and ranging) based computer vision for 
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spacecraft rendezvous operations [1, 2, 3 and 4]. Pose estimation is 

performed using the Iterative Closest-Point (ICP) algorithm [5] which 

generally seeks to minimize a cost function that quantifies the registration 

error between a model and the data points. A continuous surface model of 

the object, generally assumed to be a triangulated surface mesh model, is 

registered against the point cloud to produce a pose estimate for the object. 

Our emphasis and contribution is focused on the potential terminal accuracy 

of the algorithm in the context of imperfect data. To this end, our 

invocation of geometric constraint as a shape property will focus its 

attention on the sensitivity of the pose solution in the vicinity of the true 

pose to the inevitable presence of noise-like error. 

Pose estimate can also be computed using non-iterative algorithms which 

perform matching of shape descriptors such as spin images, geometric 

histogram, surface signatures, etc. For details, see [6 and 7]. 

Principal Component Analysis (PCA) is a powerful tool which is used in 

many applications in computer vision such as surface inspection [8] and 

face recognition [9]. Geometric constraint analysis is an application of PCA 

that directly assesses the sensitivity of shape registration error to variation 

in pose, providing a powerful way of assessing the expected accuracy of 

iterative registration algorithms. Both ICP and constraint analysis share the 

same attractive feature of being based on bulk calculation of data, avoiding 

feature (primitives and local shape invariants) detection tasks, and is thus 

generally applicable to any object shape.  

Simon [10] is credited with introducing the application of constraint 

analysis to the ICP process of pose estimation in computer vision. In his 

work, constraint analysis was used to optimize the selection of target points 

on human bones for scanning during radiation therapy. The key metric used 

in by Simon was the Noise Amplification Index (NAI), developed by Nahvi 

& Hollerbach [11]. A high value of NAI indicates “good” geometric 

constraint balancing the extremities of pose vector error in pose space and 

has been used as a relative measure comparing scenes under comparable 

conditions. While Simon uses a sparse set of key points for the bone 

problem, Shahid & Okouneva  [12] later used the same form of                   

discrete-point constraint analysis applied to point-clouds collected from the 

uniform projection of points onto “windowed'” areas of spacecraft objects 

in order to identify optimal local scan areas for pose estimation. Another 

related paper by Gelfand et al. [13] considers sampling strategies over an 

area to produce an effective set of points for use by ICP. 

A more recent paper by McTavish & Okouneva [14] generalizes the 

concept of discrete-point self-registration to a surface-integral based 

approach referring to its use for pose estimation assessment as                     

Continuum-Shape Constraint Analysis (CSCA). The application was         

single-view LIDAR-based scanning that generates a return of uniformly 

distributed, but non-specifically located sample (data) points, from the 

target on a given measurement set. The authors account for the directional 

nature of a single scan by incorporating a view factor into the CSCA cost 

matrix calculation. The result is a cost matrix that is a well-defined property 

of the shape geometry and also dependent on view direction. The authors 

followed Simon in the use of NAI as a relative indicator of expected pose 

estimate accuracy. Rather than for designing a target point pattern on an 

object, CSCA was used to assess or compare different shapes and views of 

shapes for good pose estimation. 

In our present work we have found that while very high NAI values are 

generally associated with “good views” (or “good shapes”), the index does 

not provide an adequate general indication of pose estimate accuracy. The 

main contribution of this paper is the development of a new constraint 
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analysis measure, the Expectivity Index, which provides more informative 

predictions for registration accuracy.  

Section 2 of this paper reviews (briefly) the discrete-point basis for the 

surface-integral forms of CSCA, defines self-registration and provides the 

definition of NAI. Section 3 describes the CSCA formulas that represent the 

discrete-point computed cost function minimized by ICP. Section 4 derives 

different expectivity indices that seek to provide general predictions of pose 

error (in the neighborhood of true pose). Section 5 provides numerical and 

experimental demonstrations of the CSCA/expectivity approach including a 

comparison with NAI. 

10.2 Point Based Registration 
 

The fundamental problem considered in this paper is the registration of a 

continuous surface model M  to a set of discrete data points }{ iz
 
measured 

in a reference frame 
0F  (shown in Figure 1).  

Fig. 1.  Point-based shape registration: general (left) and self-registration (right) 

 

The pose of model defined by the translation Md
 
and rotation MΦ vectors 

of its describing reference frame FM 
, is determined to minimize the          

closest-point distances as defined by the cost function 

i

i

T

iE rr ∆∆= ∑
2

1
                                                                             (1) 

where iii zxr −=∆  and the { }ix  are the transformed closest points { }ir  

on the model’s surface to the data points { }iz . The basic ICP algorithm 10 

selects a new set of closest points { }ir for each iteration based on the 

previous iteration’s pose to refine the pose estimate toward its optimal 

value based on the transformation 
iMMi rCdx += . The final position pose 

of FM then represents the pose of the target body frame FB. Regarding 

orientation, note that we use the rotation vector MΦ
 
as a concise reference 

noting its alternate invocations as either a rotation matrix MC
 
used for 

writing transformation or as an Euler-parameter quaternion Mq
 
used for the 

calculation thereof (as per Horn’s method [15]), for example). 

Though not named therein, Simon [10] introduces the concept of                     

self-registration – the perturbation of pose from its truth value. The concept 

of self-registration is shown in Figure 1 wherein the difference between the 

frames F  and ′F represents the small pose difference. For Simon’s 
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problem, the self-registration cost function (for noiseless data) takes a form 

equivalent
1
 to 

1

1 1 1ˆ ˆ
2 2

N

i i

i

E
N

⊥ ⊥ ⊥ ⊥
=

= ⋅ ∆ ∆ =∑ r r p E p
T T    with     pΨr ii ⊥⊥ =∆                                           

(2) 

In (2), ( )Tθδp =  is the 6 1× small pose vector, consisting of a small 

translation and rotation vectors δ  and  θ , and 
i

T

i
N

⊥⊥⊥ ∑= ΨΨE
1ˆ

 
is the 

6 6×  cost matrix built from the projection matrices ( )×⊥ −= i

T

iii r1nnΨ
 

corresponding to the truth position { }ir of each point in the model frame 

with the normal in . The matrix cross construct is defined as 



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
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x
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aa

aa

a

a

a

a                                                                             

(3) 

With the form of the { }i⊥Ψ above, this self-registration emulates the 

closest-point difference used in ICP, becoming a infinitesimal form of the 

point-to-plane distance consistent with that as developed by Chen&Menioni 

[16]. We note our deliberate choice of normalizing the cost matrix by the 

number of points N , and the use of the over-caret notation to indicate this. 

 

10.3 Point Measurement Noise 
 

Application of constraint analysis to pose estimation involves the addition 

of the vector of noise { }iε  to the closest-point difference vector from (2) 

written here as 

iii εpΨr −=∆ ⊥⊥                                                                                                       

(4)                    

The self-registration cost function (1) then becomes 

pEpep ⊥⊥ +−= ˆ
2

1
ˆˆ

2

1ˆ
0

TTEE    with i

N

i

T

i
N

E εε∑
=

=
1

0

1ˆ    and    

i

N

i

T

i
N

εΨe ∑
=

⊥=
1

1
ˆ          (5)                                                                            

Before proceeding further, note the new definition { }i
N

⊥⊥ = ΨΨ col
1ˆ  

where { } 







= ⊥

⊥
⋮

1
col

Ψ
Ψ i

. The relationships (5) are reorganized as   

⊥⊥⊥ ∑= ΨΨE ˆˆˆ

1

N
T

      and      }col{ˆ1
ˆ

i

T

N
εΨe ⊥=                                                        

(6) 

                                                      
1 Our notation and use of the perturbation form is developed from 14 whose work is extended in this 

paper. 
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The noise, now embedded in ê , may be considered to represent some 

combination of measurement or model error that leads to an error in pose 

estimate. So long, as the cost matrix is non-singular, the small pose solution 

for the self-registration context is eEp ˆˆ 1−
⊥=ε .  

 

10.4   Rotation Scaling 
 

It is generally required to dimensionally scale the rotation part of p  to 

balance its numerical influence on cost gradient with translation. This is 

done in a simple manner by using a scaling distance D  as and defining a 

modified pose vector p~  as follows: 

Dp
θ

δ

10

01

θ

δ
p =
















=








=

DD

~                                                                                       

(7) 

leading also to the modified definitions DEDpE ⊥
−

⊥ = ˆ~̂ 1  and 1ˆ~̂ −= DΨΨ . 

Generally, we assume the use of rotation scaling and drop the explicit            

over-tilde notation. 

 

10.5 Continuum-Shape Constraint Analysis 
 

The basic idea behind CSCA is to “re-tool” self-registration with 

continuous surface integration rather than a discrete-point summation. 

While the latter is explicitly experiment specific (for LIDAR scanning), and 

hence unknown a priori, the CSCA approach leads to well-defined shape 

properties.  

 

 

10.6 Directional Closest-Point Registration 
 

Corresponding to Equation Error! Reference source not found., we have 

 

pEprr ⊥⊥⊥⊥ =∆∆= ∫ T

s

T dSE
2

1

2

1
,   dS

S

T∫ ⊥⊥⊥ = ΨΨE                                            

(8) 

where  pΨr ⊥⊥ =∆
    

and   ( )×
⊥ −= r1nnΨ

T

 
. 

When the discrete-points arise from a uniform directional scan, Equations 

(8) are modified with a view factor in the integrand as follows: 

pEprr v

T

s

T

v dSE ⊥⊥⊥⊥ =∆∆= ∫ 2

1

2

1
,    vdS

S

T

v ∫ ⊥⊥⊥ = ΨΨE                                    

(9) 

 

The view factor is defined as 





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≤
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0,obstructednot  iswhen

nv
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T

TT

dS

dS
v  
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where  v  is the direction vector (unit-length) of the viewpoint from the 

surface location r . As a practical approximation for viewpoints at a 

significant distance, v  can be taken to be constant (orthographic view). 

Similar to the point-number normalization of the discrete-point cost and 

cost matrix, the continuum-shape analog is normalized by area: 

v

p

v E
A

E ⊥⊥ =
1

 and    v

p

v
A

⊥⊥ = EE
1

 

Where pA  is the un-obscured projected area as seen from the viewpoint 

and can be computed from the upper-left translation-translation partition 

δδ,v⊥E  of the raw cost matrix as { }δδ,trace vpA ⊥= E . The eigenvalues of 

the raw and area-normalized cost matrices are { } { }vk ⊥= Eeigλ
 
and 

{ } { }












== ⊥ k

p

vk
A

λλ
1

eig E . 

Note, that there is a direct correspondence between the point-number 

normalized discrete-point cost matrix of (2) and the area-normalized 

continuum-shape cost matrix v⊥E  : v⊥⊥ ↔ EÊ  and { } { }kk λλ ↔ˆ . The key 

implication is that the continuum-based quantities, being well-defined 

shape properties and known a-priori, can be used in the place of the 

discrete-point summation based quantities that depend, in principle, upon 

unknown future data to be collected by a measurement scan. In the case of 

NAI, we use 

max

minˆ

λ

λ
=≈ NAINAI KK . If the pose rotation is dimensionally-scaled 

according to Error! Reference source not found., the source cost matrix 

used for the { }kλ   must be similarly scaled. 

CSCA measures are based on surface integrals and as such are definitions. 

In practice, and for the examples provided in this paper, our choice is to 

work from triangulated mesh models of a shape’s surface. The process 

generally involves projecting the full 3D mesh onto a view and re-meshing 

as required to remove all back-facing or occluded surface regions. Analytic 

integration is then available, summing over the triangular faces of the              

re-meshed model. 

10.7 The Expectivity Index 
 

The following development is based upon the characterization of noise 

present in the scan points by a common standard deviation from zero-mean 

error. If the actual point locations are { }iy , then the measured locations are 

{ } { }iii εyz += . Assuming further that the components of the { }iε
 
are 

uncorrelated with equal standard deviations each of { }εσ , we can write for 

the covariance of { }iε  : { } 1εε ⋅==Ε 2

εσT

ii . 

The pose solution and its expected value in the noise added case are 

{ }i11 colˆˆ1ˆ εΨEEp
T

N
⊥

−
⊥

−
⊥ ==ε  ,  { } { } { }{ }TT

εεεεε ppppp trace
2

Ε=Ε=Ε               

(10) 

Applying (10), the above covariance for { }iε
 
and using ˆ ˆˆ

⊥ ⊥ ⊥=E Ψ Ψ
T , leads 

to 
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{ } { }{ }1
2

2 ˆtrace −
⊥=Ε Ep

N

ε
ε

σ
                                                                                        

(11) 

With the discrete-point cost matrix isolated, we can use its                          

continuum-shape counterpart in its place 

{ } { }{ } ∑==Ε −
⊥

k k

v
NN λ
σσ εε

ε
1ˆtrace

2
1

2
2

Ep                                                                   

(12) 

We now define the “standard deviation” of the pose-error magnitude as 

{ } ∑=Ε=
k k

p
N

e λ
σ

σ ε
ε

12
p                                                                             

(13) 

and define the area-normalized and non-normalized Expectivity Indices for 

pose accuracy as 

1

1
−











= ∑

k k

EIK
λ

        and    EIp

k k

EI KAK =









=

−

∑
1

1

λ
                                

(14)                                                                                               

Using the definition of the Expectivity Indices above, we recognize two 

useful forms of (13): 

EI

p
KN

e

1εσ
σ =  and   

EIp

p
Ke

1

ρ
σ

σ ε=                                                                  

(15) 

The first applicable when the number of scan points is specified, and the 

second when the point density of scan is given ( pp AN ρ= ). Again, if the 

pose orientation is dimensionally scaled, the source cost matrix used for the 

{ }kλ or { }kλ  must be similarly scaled. 

 

 

10.8  Edge Effect in ICP 
 

Point-to-plane registration upon which self-registration constraint analysis 

is based, is one of the contributors to the computed cost function of the ICP 

algorithm. ICP also detects edges. A simple example of this is the exterior 

boundary on the object as projected in the view of the scanner. For a 

particular pose, data points that are “past the edge'” will be matched to the 

closest-points on the edge, deviating from the small pose assumption of 

point-to-plane matching used in the self-registration cost functions. The 

same applies to internal edges as well. The spacing of points in the scan 

effectively provides an additional constraint that holds onto the edges. A 

simple example is the view of a plane rectangular surface, geometrically 

unconstrained in its own plane but absolutely held within the data points by 

the matching of data points to the outer boundary as a trial pose shifts those 

points beyond the boundary. 
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10.9 Validation of CSCA Approach 

We present results from three numerical studies: an illustrative cuboid 

shape, the Stanford Bunny and the asymmetrical cuboctahedron. The 

numerical studies employ simulated LIDAR scans. The cuboid and 

cuboctahedron are further used in the experimental study described below. 

 

 

10.10 Numerical Simulation 
 

     CSCA indices can be graphically represented as using the sphere. 

Viewing directions are mapped onto the sphere of a desired resolution to 

create a sphere-mesh as shown in Figure 2 (left). 

 
Fig. 2. Graphical Representation of CSCA Indices 

 

     The index value for a given shape for a particular view is found by 

projecting the view direction out from the origin through the sphere surface, 

and the radial distance of the intersection is then taken as the index value. 

Figure 2 (right) shows the spherical map of the Expectivity Index, along 

with the cube polyhedron  and the view-sphere. In order to read the function 

value from any given view vector, one can simply read the radial distance 

to the surface of the function-map along the direction of the view vector. 

For additional clarity, the plots are color-coded with blue as minimum and 

red as maximum. For clarity, the sphere can be omitted. In Figure 2, one 

can see that the highest values of the Expectivity Index (red) are found at 

the vertices of the cube and the lowest at the faces. 

 

 

Fig 3. (a) Cuboid shape with (b) NAI function and (c) Expectivity Index function, 

over all possible views. 
 

The cuboid, shown in 3, is chosen for study due to its extreme range of 

geometric constraint based on view direction. The relative dimensions of 

the shape sides are { }1,4,8 , with a characteristic distance of 2 used for 

rotation scaling. The figure also shows the index functions for the                 

area-normalized NAI and the Expectivity Index. The index value for a 

particular view direction v  is found by projecting that vector out from the 

origin to intersect the function surface. The two shown indices both range 
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from values of zero (unconstrained when less than three faces of the cuboid 

are visible)  to very high values (well-constrained when all three orthogonal 

faces are highly visible). Qualitatively, the NAIK  function is much more 

selective about view quality than the EIK . 

     We restrict ourselves to the question… what views produce the most 

accurate pose estimate? The plots of  Figure 4 record the pose estimates 

returned by ICP for up to 10 different views for each index. The views were 

selected to cover the range of index values presented in the corresponding 

function plots of  

Fig, but otherwise randomly selected from a large pool of views.  

 

 

 

 

 

 

 

 
 

Fig. 4. Pose error norm vs. CSCA index value (a) NAI and (b) Expectivity index 

At each view, 50 runs with different added noise ( 0.01εσ = ) and initial 

conditions randomly specified. A nominal 60 simulated scan hits were 

generated independently for each pose estimate run. The set of runs on any 

view generates a distribution of pose norm error εp
 
according to the 

distribution of weak and strong constraint directions associated with that 

view. The RMS average value of this distribution is the goal of the 

Expectivity Index EIK
 
to predict, and shown as the red curve in 4(b)) with 

good agreement. Regarding the ability of NAI to predict pose estimate 

accuracy, we observe in 4(a) that the view with the largest value of NAI 

does produce a pose estimate with low error, however it is also noted that 

there is no perceptible variation of pose estimate accuracy with decreasing 

NAI until the index value becomes very low near a completely 

unconstrained view (where minλ  becomes zero). 

Although used by the cited authors to detect well constrained situations, the 

NAI index does only what it is able to do. Only in situations where 

min maxλ λ≈  
can it be considered a general indicator of pose accuracy. A 

quick examination of the form 

max

min

λ
λ

=NAIK  

reveals its limitations immediately when 
 maxmin λλ ≈ is not true. For one, 

an increase in the value of any eigenvalue with all others held constant 

represents a reduction in the  

volume of the pose-error space and will result in small pose errors. NAI 

follows this rule when minλ increases, but breaks it when maxλ increases. 

Second, NAI provides limited  

information regarding the other four eigenvalues that lie between minλ  
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and maxλ : the greater the spacing, the greater the possible range of the 

unaccounted-for pose space directions, each contributing in the same 

relative measure to the overall volume of the pose-error space. 

The Stanford Bunny represents a more general shape to which CSCA 

expectivity can be applied. Fig.2 shows a model of the bunny superimposed 

with the EIK
 
expectivity function. Unlike the cuboid, the bunny is fairly 

well constrained on any view. As indicated in the figure six views were 

selected spanning from the minimum to maximum value. 
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Fig.2. Stanford Bunny with CSCA Expectivity Index function and results from 

simulated scans. 

 

ICP was applied with simulated noisy scans and fully randomized initial 

conditions to produce the plot in Fig.2. The blue points are the pose error 

norm values obtained from 50 trials at each view. The RMS values are 

indicated by red circles and match well to the red curve generated from the 

second relation in. 

 

 

10.11   Experimental Study 
 

Large data sets were collected for a cuboid test article, approximately 

50x200x400mmin size (same relative dimensions as numerical study) using 

a TriDAR scanning system developed by Neptec Design Group. For the 

views considered, a truth pose of the object and effective measurement 

noise level were estimated by using a large number of scan points (5000) 

out of a larger set. Typically, the data exhibits a noise level of 2-3mm 

standard deviation. For each view, 40 independent sets of 100 scan points 

were extracted  
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from the larger set and ICP used for pose estimation. Fig 3 presents the 

results compared to the Expectivity Index function prediction. As the 

estimated noise levels at each view differ the data is normalized to the noise 

level, i.e., plotting / εσp . 

Fig 3. Experimental results for a cuboid shape 

 

Similar experimental validation of the CSCA approach using Neptec’s 

TriDAR scanning system was performed for the asymmetrical 

cuboctahedron. Figure 7 shows the shape and the graph of the Expectivity 

Index vs. the norm of the pose error. The cuboctahedron was selected 

because it is a well-constrained shape which delivers a consistent pose error 

from all around views. 

 

 
 

Fig 7. Experimental Results for asymmetrical Cuboctahedron 

 

It can be seen that the mean pose error from the experiment (red dots) 

matches the theoretical curve (15). 
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10.12 Concluding Remarks 
 

The paper applies CSCA to directly assess the sensitivity of shape 

registration error to variation in pose, providing a powerful shape-property 

based approach to estimating the expected accuracy of iterative registration 

algorithms. CSCA can be applied to generally complex shapes represented 

as triangular meshes. The newly developed CSCA measure, the Expectivity 

Index, provides estimation of  the expected norm of the pose error. The 

paper presents the CSCA analysis of two shapes, the Stanford Bunny and a 

cuboid, which were used to validate the concept of the Expectivity Index. 

The Bunny is a shape which is well-constrained from all views. On the 

contrary, the cuboid is well-constrained from only a limited range of views. 

To obtain the expected pose error norms via the ICP algorithm, simulated 

and experimentally collected scans were used. The norm of the expected 

pose error computed from scans showed a consistent agreement with the 

norm obtained via formulas (15) and with visual assessment of the shapes. 
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Chapter 11 

A Parametric Approach to Matrix Root Clustering 

V. G. Melnikov 

Department of Theoretical and Applied Mechanics, The National               

Research University of Information Technologies, Mechanics and Optics, 

Sablinskaya 14, 197101, St.- Petersburg, Russia, melnikov@mail.ifmo.ru  

Abstract. This paper presents a new criteria for matrix                       

root-clustering in sophisticated, multiply-connected and non-convex 

regions of the complex plane. A concept of the closed forbid-den 

region is defined as a complement of the root-clustering region to 

ℂ  and the concepts of the forbidden subregions and the expanded 

root-clustering regions are introduced to formulate the main results 

of the paper. The set of the modified three-parametrical Cassini             

regions are offered to use as the subregions covering the forbidden 

region. In these terms the generalizations of the Gutman theorem 

and the Jury-Ahn theorem onto the intersection of the systems of 

nonlinear algebraic inequalities are obtained.  An application to the 

problem of root-clustering in outside of a system of the forbidden 

frequency bands is shown for illustration. 

Keywords. matrix root clustering, Lyapunov inequality,                  

forbidden subregions, expanded root-clustering regions, modified 

Cassini regions. 

11.1 Notation and introduction 

( )s A  the spectrum of the matrix n nA R ×∈  

D  the open root-clustering region 

\ S D=ℂ  the closed forbidden region 
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Sα  the forbidden subregion number α  

\D Sα α=ℂ  the expanded root-clustering region number α  

( )S µ  the forbidden subregion depending on parameter µ  

( ), ( )s sα αψ φ  the polynomials of a complex variable 

Xα  the solution of a generalized Lyapunov matrix inequality number α  

( )X µ  the parameter-dependent solution of the generalized   Lyapunov 

matrix inequality  

( , , )a c µΓ  the three-parametric modified Cassini oval  or a pair of the 

modified Cassini ovals 

( , , )H a c µ  the modified oval regions with a border ( , , )a c µΓ  

( , , ) \ , , ) ( ,G a c H a cµ µ=ℂ  external open Cassini region 

( ), ( )z s w s  the functions of conformal mapping of external Cassini              

region respectively into the central unit disk and into the left half-plane 

Q 0>  

 

The properties of linear and quasi-linear control systems strongly               

depend on the location of eigenvalues of a system matrix on the complex 

plane. In this connection the problem of root-clustering acquires interest 

and importance for linear and robust systems analysis and  has received 

much attention in recent years [1-9]. There exist several approaches to this 

problem. The first approach is based on the Kronecker product of matrices. 

The second  approach uses a conformal mapping of the root-clustering              

region  into the left half-plane or into the unit central disk and leads to the 

common Lyapunov inequality or Hurwitz criteria for functional trans-

formed system matrices. The third and the most-used approach is based on 

the generalized Lyapunov matrix inequality [1-5], [8]. The necessary and 

sufficient conditions for matrix root-clustering in Γ  - transformable and 

Ω  -transformable algebraic regions obtained in the work of Gutman and 

colleagues [1] made the fundamental contributions in this direction.  The 

problem of root clustering for robust systems was investigated in the work 

[2], and was further developed in a number of issues; some of them are:       

[3-4] 

This paper is devoted to a problem of matrix root-clustering in the             

sophisticated regions given as an intersection of several algebraic regions 

of the fourth and smaller order. Such regions can have one or several 

boundaries. The boundaries may be smooth or piecewise smooth, convex 

or nonconvex; the boundaries may be formed by segments of algebraic 

curves or by curves enveloping a continual set of curves. The region may 

be multiply- or simply-connected, nonconvex or convex. 
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Thus we consider more general statement of the problem than in the          

literature. In this connection the approach to the problem is changed. The 

main attention is focused on a complement of the root-clustering region to 

ℂ  these regions are called the closed forbidden region. The forbidden   

region we cover or approximate by a set of algebraic subregions;  we offer  

to use a set of simply-connected and multiply-connected three-parametric 

regions of the fourth order called  the modified Cassini oval regions as 

these algebraic subregions. The simply-connected and multiply-connected 

modified Cassini regions are not harder in use than the regions bounded by 

simply-connected algebraic curves of the second order. Functions of a 

simple form conformally map the modified Cassini regions onto the unit 

central disk and onto the left half-plane [6]. The modified Cassini regions 

are eminently suitable for covering of the multiply-connected regions 

symmetrically located about the real axis. 

 

In the introduced terms the root-clustering region is an intersection of 

the complements of a set of the forbidden subregions. Necessary and              

sufficient conditions of matrix spectrum localization in the specified region 

are obtained as a union of a set of conditions of spectrum location in             

outside of each forbidden subregion. 

11.2 Root-clustering in outside of the closed forbidden 
region S  and generalization of root-clustering theorems 

In the literature a problem of matrix root - clustering is usually considered  

as a problem  of a membership of all roots to a specified open region D  of 

the complex plane ℂ . Let us consider another treatment of this problem. 

Let the closed region S  be the complement to ℂ  of D,  i.e., \ ;S D=ℂ  

then the region S  is called the forbidden region. Let us consider 2 cases. 

 

Case 1 Suppose the region S  is defined as below: 

1,2,...., ,S Sα α ν= ∪ ∀ =  (1.1) 

where { , 1, }Sα α ν∀ =  is a final set of mutually intersecting or noninter-

secting subregions; the envelope of this set forms the border of S . Then by 

definition put 

{ : \ } 1,2,..., ,D D C S Dα α α α ν= ⊇ ∀ =  (1.2) 
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where the regions Dα  are called the expanded root-clustering regions. 

Note that ;D Dα ⊇  this follows from \ \S S D S S Dα α α⊆ ⇒ = ⊇ =ℂ ℂ . 

 

Case 2  Let { ( ), [0, ]}µ µ τΩ ∈  be a continual set of the subregions                

covering the region S  

( ) [0, ]S µ µ τ= ∪Ω ∀ ∈ . (1.3) 

Then by definition, put 

{ ( ) : ( ) \ ( )} [0, ]D Dµ µ µ µ τ= Ω ∀ ∈ℂ , (1.4) 

where ( ) [0, ]D Dµ µ τ⊇ ∀ ∈  is the continual parametric set of the         

expanded root-clustering regions. 

 

Theorem 1 Let the forbidden region S  for the matrix spectrum ( )s A  

be a union of the regions (1.1); then the root-clustering region \D S=ℂ  

satisfies the equality 

* *, ( \ ), 1,2,.D D D D Sα α α ν= = ∩ =∩ =ℂ . (1.5) 

i.e., D  is the intersection of the set of the expanded root-clustering regions 

(1.2). 

Proof  The proof is trivial. It follows from the point set property 

\ ( ) ( \ ) ( \ )A B A B A∪ = ∩ℂ ℂ .                 □ 

 

Theorem 2 Let the forbidden region S  be a union of the parametric 

continual set (1.3); then the root-clustering region D  satisfies the equality 

* *, ( ), ( ) \ ( ) [0, ]D D D D Dµ µ µ µ τ= = ∩ = Ω ∀ ∈ℂ . (1.6) 

Proof  The proof is in 2 steps. 

Step1:  First let us prove that *D D⊆ . Assume the converse. Then there 

exists a point *M D∈  such that M D∉ . From here follows that M S∈  

and taking into account (1.3), we obtain that there exists µ µ′=  such that 

( )M µ ′∈Ω . This means that ( )M D µ′∉  and M D∉ . The contradiction 

proves that *D D⊆ . 

Step2: On the other hand, by (1.3) and * ( )D D µ= ∩ , it follows that 
*D D⊇ . Finally, taking into account the result of Step 1, we obtain 
*D D= . This completes the proof of Theorem 2.             □ 
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Extensive works during last decades on the subject of the matrix root 

clustering with respect to various algebraic regions led to the standard 

methods developed by Gutman, Jury and colleagues [1] enlarging 

Lyapunov theory on the regions defined by algebraic inequalities. This pa-

per offers the further generalization of these results on a case of a final set 

of algebraic inequalities. 

By A′  denote the transpose of a matrix n nA R ×∈ . Suppose the forbidden 

subregion Sα  in the union (1.1) satisfy the inequalities  

2 2{ : ( ) | ( ) | | ( ) | 0}, 1,2,...,S s f s s sα α α αψ ϕ α ν= ∈ − =≤= ∀ℂ , (1.7) 

where ( ) constf sα ≠ , and ( ), ( )s sα αψ ϕ  are some polynomials of s . Then 

the expanded regions \D Sα α=ℂ  satisfy the inequalities 

2 2{ : ( ) | ( ) | | ( ) | 0}, 1,...,D s f s s sα α α αψ φ α ν= ∈ = − < ∀ =ℂ . (1.8) 

 

Theorem 3 (Generalization of results of Jury): Let the root-clustering 

region D be defined as (1.5), (1.8). Then a necessary and sufficient condi-

tion for the matrix spectrum ( )s A  to be clustered in D  is that there exist 

ν  symmetric positively determined matrices Xα  satisfying the matrix ine-

qualities 

( ) ( ) ( ) ( ) , 0, 1,...,A X A A X A Q Qα α α α α αψ ψ φ φ α ν′ ′− = − > = . (1.9) 

 

Proof  Actually, any region Dα  from  set (1.8) satisfies the Jury-Ahn 

theorem; therefore conditions (1.9) are necessary and sufficient conditions 

for root-clustering in any Dα  from the set (1.8). In light of  Theorem 1 the 

region D  is the intersection of the final set of the expanded regions (1.8). 

From here follows, that a necessary and sufficient condition for                     

root-clustering  in D  is the intersection of conditions (1.9) for 

all 1,2,...,α ν= . This completes the proof of Theorem 3.    

            □ 
 

Further, let's consider  the forbidden region S  covered by a continual 

set of  intersecting and non-intersecting parametric subregions ( )S µ . 

In other words, let the subregion ( )S µ  completely sweeps the region S  as 

parameter µ  ranges over [0, ]ν , i.e., 
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2 2( ) { : ( ) | ( , ) | | ( , ) | 0}, [0, ]S s at f s s sαµ ψ µ ϕ µ µ ν= ∈ = − ∈≤ℂ .(1.10) 

 

Theorem 4 Assume that the open region D  is  a complement to ℂ  of 

the forbidden region ( )  [0, ]S S µ µ τ= ∪ ∀ ∈ , where the continual set of the 

forbidden subregions ( )S µ  is determined by  inequality (1.10). The spec-

trum ( )s A  lies in the region \D S=ℂ  if and only if there exists a sym-

metric positively determined depending on parameter µ  matrix ( ) 0X µ >  

such that at all values of the parameter µ  it satisfies to a matrix inequality 

( , ) ( ) ( , ) ( , ) ( ) ( , ) [0, ]A X A A X A Qψ µ µ ψ µ ϕ µ µ φ µ µ ν′ ′− = − ∀ ∈ . (1.11) 

 

These obtained theorems can be easily generalized on a case of complex 

functions ψ , φ  and on a case of a complex matrix A . 

 

Theorem 5 Let the forbidden region is given as an association of 

subregions (1.1) 

0 ,

{ : 0}, , 1,...,k l

kl kl lk

k l m

S s c s s c cα α α
α α ν

≤ ≤

≤= ∈ = ∈ =∑ℂ ℂ . (1.12) 

It corresponds to the root-clustering region 

,

1,..., , { : 0},k l

kl

k l

D D D s c s sα
α αα ν= ∩ ∀ = = ∈ <∑ℂ . (1.13) 

The spectrum ( )s A  is clustered in D , if and only if there exist a set of 

symmetric matrices { , 1,2,..., }Xα α ν∀ =  satisfying 

,

( ) 0, 0, 1,...,k l

kl

k l

c A X A Xα
α α α ν′ < > ∀ ∈∑ . (1.14) 
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Fig. 1.1. The modified Cassini oval region and its applications 

11.3 Root clustering theorems for Cassini regions 

Suppose the closed region H  satisfies the inequality 

 

2 2 2( , , ) { : | ( ) | 0}H a c s s c aµ µ= ∈ + + − ≤ℂ , (1.15) 

where 0, 0, [ / 2,0] [ , )a c a aµ> ≥ ∈ − ∪ ∞ . Then the region ( , , )H a c µ  is 

called the modified three-parametric Cassini oval region. At 0c <  we ob-

tain the oval with semi-axis ( )a c−  and ( )a c+ , extended along the 

real axis. At / 2c a= −  the curvature of the oval in the top and in the bot-

tom points are equal to zero. At c a=  we have the lemniscates. Finally, at 

any values c a>  we have the pair of ovals symmetrically located at both 

sides of the real axis having the height of  ( )c a c a+ − −  and having 

the maximal width of ( / )a c  (Fig 1.1.).  

Suppose the forbidden region S  is covered by the final set of regions 

(1.15), i.e., 

( , , ), 1,2,...,S H a cα α αµ α ν= ∪ ∀ = , (1.16) 

where 
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2 2 2( , , ) { :| ( ) | 0}H a c s s c aα α α α α αµ µ= ∈ + + − ≤ℂ . (1.17) 

Then the set of external oval regions is defined as follows 

2 2 2( , , ) { : ( ) | ( ) | 0}, 1,...,G a c s f s a s cα α α α α α αµ µ α ν= = − + + < = . (1.18) 

Let  ( )sαψ  and ( )sαφ  in inequality (1.7) be defined as ( )s aα αψ = , 
2( ) ( ) .s s cα αφ µ= + +  

Then by Theorem 3, we get the following statement. 

 

Theorem 6 All roots of a real matrix A  lie in the region \D S=ℂ , 

where S  is the forbidden region (1.16), (1.17), if and only if there exist a 

set of positively definite symmetric matrices { , 1,2,..., }Xα α ν∀ =  satisfying 

2 2 2(( ) ) (( ) )a X A E c E X A E c E Qα α α α α α αµ µ′− + + + + = −  (1.19) 

Let the parameters a  and c  be functions of the third parameter µ , and 

the oval region completely sweeps the forbidden region as µ  ranges over 

[0, ]τ , i.e., 

2 2 2( ), ( ) { : ( ) | ( ) ( ) | 0}, [0, ].S H H s a s cµ µ µ µ µ µ τ= ∪ = − + + ≥ ∈  (1.20) 

Then using  Theorem 4, we get the following statement. 
 

Theorem 7 All roots of a real matrix A  are clustered in \D S=ℂ , 

where S  is the forbidden region(1.20), if and only if for all [0, ]µ τ∈  

there exists a positively definite symmetric parameter-depending matrix 

( ) 0X µ >  satisfying the following parametric matrix inequality 

2 2 2( ) (( ) ) ( ) (( ) )a X A E cE X A E cE Qµ µ µ µ′− + + + + = −  (1.21) 

11.4 Example 

This example is adopted from a band-filtration problem and illustrates the 

developed method. Let a band filter has three suppression frequency 

bands: low, high and intermediate all having different width (Fig. 1.1). In 

terms of the developed method these bands form the forbidden region. 

Now we will obtain the algebraic conditions for matrix root-clustering in 

outside of this forbidden region. First we approximate the forbidden bands 
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by a set of modified three-parametric Cassini oval regions (1.16), (1.17). 

The low frequency band we approximate by four simply-connected oval 

regions with the values of the parameters a 1,  c 0.5= = − , [0,2,4,6]µ = . 

The intermediate and high bands we approximate by multiply-connected 

oval regions with the values of the parameters 

{ 10, 14.5, [0,2,4,6]}a c µ= = =  and{ 65, 42.5,a с= =  [0,0.7,.,6.3]}µ = . 

As a whole we approximate the forbidden region by seventeen                   

simply-connected and conjugate oval regions. Secondly in the light of 

Theorem 7 all roots of matrix A  are clustered in outside of this forbidden 

region, if and only if there exist seventeen positively-definite symmetric 

matrices { , 1,17}Xα α∀ =  satisfying (1.19) for all given above values of 

the parameters , ,a cα α αµ . 

11.5 Conclusions 

In this paper the new theorems for matrix root-clustering in                   

sophisticated and multiply-connected regions with piecewise-smooth 

boundary have been established. We introduce a new approach to the          

problem of root-clustering based on the application of a new class of                 

regions of the forth order. The example illustrates an application of the            

developed method to the problem of band filtration.  
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Chapter 12 
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Abstract. The Course Timetabling Problem consists in the weekly 

scheduling for all the lectures (events) of a set of university courses, 

subject to certain constraints. Un-fortunately, course timetabling 

problems vary from university to university, and as far as we know, 

no standard formulation has been proposed from the community. 

Nevertheless, the International Timetabling Competitions, ITC-2002 

and ITC-2007, have been organized with the aim of creating the 

common formulation for compari-son. The formulation has become 

quite standard, and many solutions have been pro-posed in the               

literature. Most of the provided solutions utilize non-deterministic 

tech-niques. In this paper, we introduce a new deterministic                   

algorithm for the solution of timetabling problems. The instances 

upon which the algorithm was tested are the of-ficial ones of the 

ITC-2002 web page. Almost all solutions run in less than 10% of 

the ITC-2002 benchmark time. The analysis is still ongoing, and it 

includes suitable extensions for tackling problems of the ITC-2007. 

Keywords. Course Timetabling Problem, International Timetabling 

Competition, STF Algorithm, Scheduling Problem, Deterministic 

Search, Implementation. 
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12.1 Introduction 

The Course Timetabling Problem consists of fixing a sequence of events 

lectures) of a set of university courses within a number of rooms and time 

periods, usually weekly, satisfying some constraints. During the recent 

years a large number of works has been directed to automated timetabling. 

Unfortunately, course timetabling problems vary from university to              

university, and as far as we know, no standard formulation has been             

proposed from the community. Nevertheless, throughout the years it has 

been possible to characterize common underlying formulations that could 

be used for comparing algorithms. 

In particular the International Timetabling Competitions, ITC-2002 and 

ITC-2007, have been organized with the aim of creating the common            

formulation for comparison. The formulations have become quite standard, 

and many solutions have been proposed in the literature [14, 6]. Even 

when the competition is open to stochastic and deterministic approaches, 

all the proposed solutions appearing in the competition web pages are              

stochastic [4], they utilize non-deterministic techniques, such as tabu 

search, genetic algorithms, simulated annealing, ant colony optimization, 

etc., thus the competitions missed of deterministic approaches; as far as we 

know there is no record of some deterministic approach to find feasible         

solutions and effectively participate in the contest.  

The motivation of this work was to develop a deterministic algorithm 

that solves the hard constraints of the 20 instances of the ITC-2002 in a 

timely manner, so we introduce a new deterministic algorithm, called the 

Sort Then Fix (STF) algorithm, for solving the timetabling problems. The 

instances upon which the algorithm was tested are the official ones of the 

ITC-2002. Even when the proposal solves only instances from ITC-2002, 

the analysis is still ongoing, and we expect suitable extension of the             

algorithm for ITC-2007. One of the major advantages of the proposal is 

that the best and worst cases are the same; this means that the running time 

does not need to be averaged over some number of runs. 

Although there is evidence of the implementation of an initial algorithm 

that preprocess the information problem in order to find a feasible solution 

[6, 7], authors do not provide the overall penalty nor the time spent in this 

initial phase. This deterministic algorithm may create standard feasible           

inputs for other metaheuristics in order to measure their real performance. 

This paper is organized as follows, the next section introduces the target 

problem; the third section presents the deterministic algorithm; the fourth 

section provides the results in detail, and finally we conclude and discuss 

some possible research directions.  
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12.2 Target problem 

We consider the problem of weekly scheduling a set of single events (or 

lectures). The problem has been discussed in [1] and it was the topic of 

ITC-2002 [2], where twenty artificial instances were proposed. The                 

instances are available from the ITC-2002 web page. In addition, some            

instances have been proposed and made available via web in [5]. The data 

format used is an ad hoc fixed-structure text-only one. The input data 

comes in a sin-gle file containing the scalar values (number of events, 

rooms, room features, and stu-dents), followed by the elements of the input 

arrays, one per line. The output format must be done in a single file               

containing two scalar values (room and timeslot) per line, which indicate 

the schedule for events.  

Formally, the problem consists of finding an optimal timetable within 

the following framework: there is a set of events E = {E1, E2, …, EnE} to be 

scheduled a set of rooms R = {R1, R2, …, RnR}, where each room has 45 

available timeslots, nine for each day in a five day week. There is a set of 

students S = {S1, S2, …, SnS} who attend the events, and a set of features F 

= {F1, F2, …, FnF} satisfied by rooms and required by events. Each event is 

attended by a number of students, and each room has a given size, which is 

the maximum number of students the room can accommodate. A feasible 

timetable is one in which all events have been assigned a timeslot and a 

room so that the following hard constraints are satisfied: 

1. no student attends more than one event at the same time; 

2. the room is big enough for all the attending students and satisfies all 

the features required by the event; and 

3. only one event is scheduled in each room at any timeslot. 

In contest instance files there were typically 10-11 rooms, hence there 

are 450-495 available places. There were typically 350-400 events, 5-10 

features and 200-300 students. 

The problem proposes to penalize a timetable for each occurrence of 

some soft constraint violations, which are the followings:  

1. a student has to attend an event in the last timeslot on a day; 

2. a student has more than two classes in a row; and 

3. a student has to attend solely an event in a day. 

The problem may be precisely formulated as: 

• let F = {F1, F1, …, FnF} be a set of symbols representing the features; 

• Ri = {F
´
1, F

´
2, …, F

´
nRi} where F

´
j  F for j = 1, …, nRi and nRi is the 

number of features satisfied by room Ri,  
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• N = {Ni, …, NnR} be a set of integer numbers indicating the maximum of 

students each room can accommodate; 

• Ei = {F´´1, F´´2, …, F´´nEi} where F´´j  F for j = 1, ...,nEi and nEi is the 

number of features required by event Ei, 

• Si = {E´1, E´2, …, E´nSi} where E´j  E for j = 1, ...,nSi and nSi is the 

number of events student Si attends; and 

• T = {T1, …, T45} be a set of timeslots. 

Find a feasible solution, i.e. a set of pairs {(T´1, R´1),…, (T´nE, R´nE )} such 

that:  

• T´i  T and R´i  R 

• ¬( T´i = T´j) if Ei, Ej  Sk and ¬(i = j) 

• Ei  Ri´ and |{ Sj | j= l, …, nS and Ei  Sj}| ≤ Nk where R´i = Rk, 

• ¬  i  j (¬(i = j) ^ T´i = T´j  ^ R´i = R´j). 

The competition adds a constraint over execution time, i.e. given the             

information about rooms, events, features, and students; find the best             

possible feasible solution within a given time limit. The time limit is given 

by a benchmark tool provided by the organizers. 

12.3 Algorithm STF 

We propose the Algorithm 1 to solve timetabling problems; it is based on 

events and rooms sorting.  

The first step in the algorithm, apart from the obvious actions such as 

reading the problem file, is to find a binary matrix that represents the 

available rooms for every event. The following actions are performed:  

• the number of students for each event is calculated and stored, ni = |{Sj |j 

= 1, ...,nS and Ei  Sj}| 

• a list of available rooms is created for each event, ei = {Rj|Ei  Rj and ni  

≤ Nj}. 

This first step allows us to reduce the problem by eliminating the                

information concerning features and room capacity, defining a new event 

set {e1, …, enE}, called in the algorithm Event-Room, that includes the 

eliminated information. The new event set will be used for defining the 

most constrained event.  

Our approach differs from direct heuristics [13], which usually fill up 

the complete timetable with one event at a time as far as no-conflicts arise,  
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Data: 

Data-file  

Result: 
Solution-file  

begin 

Timeslots � 45  

Read from Data-file: [ 

 Events: Number of events  

 Rooms: Number of rooms  

 Features: Number of features 

 Students: Number of students 

 RoomCapacity Vector of number of available places of rooms  

 EventStudent Matrix of attendance to events by students  

 Feature-Room Matrix of satisfied features by rooms  

 Feature-Event Matrix of required features by events ] 

 EventCapacity � find number of places required by every event  

   Event-Room � find binary matrix of suitable rooms for events  

 EventsARoom � find for every room the number of potential events to be allocated in  

RoomSlot � create a matrix of onesRooms * timeslost  

EventSlot � create a matrix of onesRooms * timeslost  

R_S � create a matrix of zeros2 * Events  

IX-Rest � indexes of events  

for i=1 … Events do 

IXi � find the index of the most constrained event in IX-Rest  

IX-Room � find the indexes of suitable rooms for event IXi  

sort IX-Room from the least to the most constrained room Events4Room � 

Events4Room - Event-RoomIXi 

for r  IX_Room do 

for s = 0 … Timeslots - 1 do 

OK � 1, k � 1 

IX_Student � find indexes of students associated to event IXi while k < i 

and OK do 

if R_S2,ixk = r and R_S1,ixk = s then 

OK � 0, break 

for j  IX_Student do 

if Event_StudentIXk,j and R_S1,IXk = s then 

OK � 0, break 

 k � k + 1  

if OK then 

R_S1,IXi = s 

RoomSlotr,s � 0  

for j = 1 … Events do 

if any(Event_Studentj,IX_Student) then  

EventSlotj,s � 0 

        break 

if OK then 

RS2,IXi � r, break 

IX_Rest � IX_Rest - IXi  

write to Solution-file : [R_S]  

end 

 

Algorithm 1: STF 
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Data: 

IX_Rest 

Event_Room 

Room_Slot 

Event_Slot 

EventCapacity 

Events4Room 

Result: 

IX_i 

begin 

sort IX_Rest in ascending order for Event_RoomIX_Rest * Room_Slot. * Event_SlotIX_Rest 

for in case of tie do 

sort indexes with equal values in descending order for  

EventCapacityIX_Rest 

for in case of tie do 

sort idexes with equal values in ascending order for ΣRooms Event_RoomIX_Rest 

for in case of tie do 

sort indexes with equal values in ascending order for Event_RoomIX_Rest * 

Events4Room  

IXi  � first index of the sorted IX_Rest 

end 

 

Algorithm 2: find the index of the most constrained event 

 

and then at that point they start making some swapping so as to                        

accommodate other events. 

Our approach does not consider swapping; if an event cannot be               

schedule then the next most constrained event is scheduled letting the 

event in question without room and timeslot. Thus we focus in the                

definition of the “most constrained event” as precise as possible in order to 

avoid letting an event without schedule. 

The core strategy of the algorithm is to assign the most constrained 

event to the least constrained times-lot found for that event. In order to 

avoid strategies of movement that provide a limited form of backtracking 

to recover from mistakes, our aim is not to make mistakes of selection of 

placement and event.  

Algorithm 2 finds the most constrained event, the intuitive ideas is as 

follows: sort IX-Rest (indexes of the unassigned events) in ascending order 

for the number of free slots, then for any index with equal number of free 

slots, sort them in descending order for the number students attending the 

event, then for any index with equal number of student attending the                 

associated event, sort them in ascending order for the number of available 

rooms for the event, then for any index with equal number of suitable 

rooms associated to the event, sort them in ascending order for the number 

of potential accommodation of events in its available rooms, finally the 
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most constrained event is the one appearing in the first place of the sorted 

IX-Rest. 

We have developed an extension of STF algorithm for considering two 

soft constraints. The extension uses the same criteria of Algorithm 1. 

12.4 Results 

The STF algorithm was developed in GNU Octave 3.0 on a Toshiba                 

Satellite A105-S433(R)laptop computer, with a 1.60 GHz Centrino Duo 

processor T5200, Mobile Intel(R)945GM Express Chipset, 2 GB in RAM, 

160 GB in HDD and the Ubuntu Linux 9.10 operating system. 

All tests were done in this box, according to the time provided by the 

benchmark tool provided by the organizers of the ITC-2002. The                

benchmark program took 558 seconds to end, so the STF algorithm has 

this time to find a feasible solution. 

The Table 1.1 shows the results obtained by the STF algorithm in the 20 

problem instances of the ITC-2002. The table display the hard constraints 

broken, the soft constraints, the time in seconds taken by the algorithm 

running on GNU Octave 3.0, an the time taken running on a trial version 

of Matlab® R2009b. 

As the Table 1.1 shows, the STF algorithm finds a feasible solution in a 

timely manner, according to the benchmark program. It is worth noticing 

that the algorithm has a better performance on Matlab®, almost all               

solutions run in less than 10% of the benchmark time.  

The Table 1.2 shows the results obtained by the extension STF               

algorithm in the 20 problem instances of the ITC-2002. The table display 

the hard constraints broken, the soft constraints broken, the time in seconds 

taken by the algorithm running on a trial version of Matlab® R2009b. It is 

worth noticing that the only soft constraint broken concerning students 

having single event in a day. Some events might not be placed in the             

timetable in order to ensure that no hard constraints are being violated. 

Such events are then be considered unplaced. It is worth noticing that in              

ITC-2007 it is allowed to generate timetables with unplaced events.  

 In order to verify the results, the participants of the ITC-2002 provide 

the executable file of their implementations. Nevertheless, the details are 

hidden in this file format. Our results can be reproduced using the source 

code of the STF algorithm.1 

                                                      
1 The STF implementation is available under request via email. 
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Table 1.1. Results of the STF algorithm in the 20 problem instances. Time in sec-

onds. 

Instance Hard constraints Soft constraints GNU Octave time Matlab time 

01 0 940 139.491 35.775 

02 0 870 129.923 33.507 

03 0 926 132.475 34.354 

04 0 1191 144.784 40.401 

05 0 1395 130.249 33.199 

06 0 1387 128.457 32.857 

07 0 1736 104.068 27.671 

08 0 1135 135.687 35.811 

09 0 937 154.627 40.409 

10 0 952 145.488 36.641 

11 0 958 138.342 35.398 

12 0 829 126.545 32.471 

13 0 1097 141.385 36.905 

14 0 1605 125.638 30.660 

15 0 1448 131.486 31.743 

16 0 1032 163.606 42.263 

17 0 1491 134.854 35.476 

18 0 926 138.835 35.992 

19 0 1325 156.347 40.449 

20 0 1450 141.738 34.448 

12.5 Conclusions 

STF algorithm has been proposed and appears to solve timetabling                 

problems in a natural way. The idea is intended to sort the events before 

scheduling. Unlike other approaches STF is defined in a deterministic 

manner. 

The STF algorithm solves effectively the 20 instances of the ITC-2002 

within the time established by the benchmark program provided by the             

organizers of the contest. The approach utilized in the algorithm focuses 

only in the hard constraints, so the algorithm finds feasible solutions to the 

problem regardless the soft constraints. 

As a main contribution, the STF algorithm may be used to find an initial 

solution to another optimization algorithm, so it can be combined with a 

non-deterministic approach, such as a metaheuristic, to build a hybrid             
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algorithm that can find a better solution faster than a metaheuristic by                

itself. 

The metaheuristics used by the other participants of the contest do a              

preprocessing of the problem data before starting the search process, so all 

of the algorithms start with a different initial solution. To tackle this issue, 

the timetables generated by the STF algorithm can be used as an initial              

solution for all of these metaheuristics, in order to measure the real                

effectiveness of each metaheuristic with respect to the other ones. 

Table 1.2. Results of the extension of STF algorithm in the 20 problem instances. 

Time in seconds. HC, Hard constraints broken. SC, Soft constraints broken. 

Instance HC SC Unplaced Matlab time 

01 0 80 66 31.07 

02 0 91 53 29.22 

03 0 88 59 91.43 

04 0 148 76 72.51 

05 0 137 69 49.74 

06 0 149 69 104.82 

07 0 143 42 61.47 

08 0 82 45 44.62 

09 0 103 57 62.45 

10 0 79 63 60.93 

11 0 109 71 69.57 

12 0 84 48 49.40 

13 0 125 68 78.12 

14 0 139 46 58.20 

15 0 133 54 58.45 

16 0 88 66 139.45 

17 0 146 58 40.12 

18 0 72 53 47.95 

19 0 104 62 82.83 

20 0 139 61 73.11 

 

The STF algorithm finds a feasible timetable in much less than the time 

available. A preliminary approach for finding perfect solutions has been 

proposed. This extension solves two soft constraints and reduces                

considerably the number of soft constraints broken. 
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Also, the STF algorithm will be extended for solving instances of the ITC-

2007, in order to manage the new constraints proposed in the competition 

and thus close the gap between the real problems and theoretical solutions.  
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Chapter 13 

Periodic Flows Associated with Solutions of Hill 

Equation 
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Abstract. Periodic solutions of Hill’s differential equation and its 
associated ordered eigenvalue pairs with 2π and π periodicity are 
investigated. Also, the occurrence of Hill equation in a number of 
problems of laminar boundary layer flows is demonstrated and the 
relevant solutions are described.    

Keywords. Hill’s Differential Equation, Boundary Layer, Inverse 
Problems of Fluid Mechanics 

13.1 Introduction 

Hill’s differential equation is a homogeneous, linear, second order                     
differential equation 

0)( =+′′ ftqf , (1.1) 

with real periodic coefficients q . It is named after G.W. Hill, who                 
investigated it in his study of lunar motion [6]. The motion of particles or 
massive bodies in periodic external fields has been studied extensively by 
astronomers in the past century especially in connection with the                  
three-body problem. It is also well known in the quantum theory of metals 
and semi-conductors [1], or in optics when ultra short optical pulses are 

2 1 

2 

1 
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examined [2]. The value of the period of the solution plays an important 
role in the discussion of periodic solutions. A specific question is the case 
of solutions of period π  and π2  [3-5]. This equation involves Mathieu 
differential equation and Lame’s differential equation as particular cases 
and by suitable transformations, Legendre’s differential equation and the 
confluent hypergeometric differential equation as well. 
   There exist hundreds of applications of Hill’s equation to problems in 
engineering, physics, astronomy, the theories of electric circuits and              
electric conductivity. Our aim here is to show some applications of the 
Hill’s equation to the boundary layer theory of laminar fluid flows.  

13.2 Hill’s Differential Equation 

We will discuss in this part the equation called Hill’s equation, its                   

solutions, and properties. If 2)( λ=tq , where λ  is a positive constant, then 

(1.1) is the simple wave equation with solutions [ ])(sin 0ttC −λ  which are 
clearly oscillatory in R . We have to point out two properties. First, that 
the zeros of linearly independent solutions are interlaced. Between two 
consecutive zeros of one of the solutions there is only one zero of the other 
linearly independent solution. The second feature is that the distance              
between consecutive zeros is λπ /  and becomes smaller the larger λ  is. It 
is possible to generalize these properties to the case of solutions of (1.1). 
Let us consider the differential equation (1.1), where )(tq  is an integrable, 

real function of period .π  We apply the Prüfer’s method, which provides a 
peculiar type of polar coordinates in order to handle the zeros of linear 
second order equations. For solution f  of (1.1) we introduce A  and ϕ  
defined by  

)(cos)()(

)(sin)()(

ttAtf

ttAtf

ϕ

ϕ

=′

=
 

(1.2) 

The differential equations for A  and ϕ  are  

[ ] [ ]
[ ]2

22

)(cos))(1)(()(

)(sin)()(sin1)(

ttqtAtA

ttqtt

ϕ

ϕϕϕ

−=′

+−=′
 

(1.3) 

From the initial conditions ,0)0( =f  0)0(' ≠= af  we get 0)0( AA =  and 

[ ].,0)0(0 πϕϕ ∈=  We find ϕ  from the first equation of (1.3), since this 

equation is independent of .A  Once ϕ  is determined, ,A  is found by             
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integration. A  has to be exponential and therefore it cannot vanish.               
Moreover, )0(/)( AtA  is a positive function. We obtain from (1.3) that 

)(1)(/)( tqtAtA −≤′  from where )(log tA  is of bounded variation and 

.)(lim 0AtA
t

=
∞→

 )(tA  has to be exponential and therefore it cannot vanish. 

M. Hukuhara and M. Nagumo [7] showed that all solutions of (1.1) are 
bounded if q  satisfies the condition: there exists constant 0>M  such that 

∫
∞

∞<− dtMtq )( . In this case the solution of (1.1) with initial conditions 

,0)0( =f  0)(' 0 ≠= atf  can be given by 

))(sin())(()( 00 tottoAtf +++= ϕ , where 0)(lim =
∞→

to
t

.  

   In the theory of Hill’s equation (1.1) the solutions of period π  and π2  
play an exceptional role. Let us consider the case )()( tQtq += λ . The 

main problem is the determination of those values of λ  for which the 
equation [ ] 0)('' =++ ftQf λ  has a solution of period π  or π2  (see            

Floquet's theorem [9]).  If ),( λtf  is periodic with period π , then it                 

satisfies conditions  ),0('),('  ),,0(),( λλπλλπ ffff ==  and from (1.2) 

we get that  ),,0(),( λλπ AA = ,2),0(),( πλϕλπϕ k=−  where k  is a 

positive integer. If ),( λtf  is periodic with period π2 , then it satisfies the 

so-called semi-periodic conditions: ),0('),('  ),,0(),( λλπλλπ ffff −=−= , 

hence )
~
,0()

~
,( λλπ AA = , ,)12()

~
,0()

~
,( πλϕλπϕ −=− k  where k  is a 

positive integer. To every differential equation (1.1), there belong two 
monotonically increasing infinite sequences of real numbers ...,,, 210 λλλ  

and ...,
~

,
~

,
~

321 λλλ  such that (1.1) has a solution of period π  if and only if 

nλλ = , ...,2,1,0=n , and a solution of period π2  if and only if nλλ
~

= , 

...,3,2,1=n  . The nλ  and nλ
~

 satisfy the inequalities  

0 1 2 1 2 3 4 3...λ < λ ≤ λ < λ ≤ λ < λ ≤ λ < λɶ ɶ ɶ ɶ , (1.4) 

and the relations ( ) 0lim 1 =−

∞→
n

n
λ , ( ) 0

~
lim

1
=

−

∞→
n

n
λ . The real numbers nλ  shall 

be called characteristic values of first kind of (1.1) and the nλ
~
 shall be 

called characteristic values of second kind. The solutions are stable in the 

intervals ( )12 ,
~

λλ , ( )32

~
, λλ , ( )34 ,

~
λλ   (see [3]). 



148      G. Bognar, S. H. Sohrab 

The asymptotic behavior of the characteristic values was examined in              
[8-10]. In that case when )(tQ  is periodic with period π  such that 

∫ =
π

π
0

/)( BdttQ  exists and ∫ =
π

0

0)( dttQ , then for any integer 2/Bn >  for 

the characteristic values: ),4/(212 nBnn ≤−−λ  ),4/(22 nBnn ≤−λ  

)24/(12
~

12 −≤+−− nBnnλ , )24/(12
~
2 −≤+− nBnnλ  hold (see G. 

Borg [10]). 
   We note that many of the properties valid for (1.1) can be extended to 
the nonlinear version of the Hill’s equation of the form 

,0)('"
11 =+ −− pp

fftqff  where 0>p  ([11, 12]).  

13.3 Hill Equation and the Modified Form of the 
Equation of Motion 

In this section, some examples of applications of Hill’s equation to the 
problems of laminar boundary layer in fluid mechanics will be discussed. 
The scale invariant modified forms of the conservation equations were re-
cently introduced as [13]  

βββββ
β ρρ

ρ
Ω=∇−∇+

∂

∂ 2. D
t

w  

ββ

β
βββββ

β

ρ
α

pc
hTT

t

T Ω
−=∇−∇+

∂

∂ ~
. 2

w  

β

β
βββ

β

β
ββββ

β

ρρ

Ω
−∇∇+

∇
−=∇−∇+

∂

∂
vvvvw

v
).(

3

1p
. 2 vv

t  

(1.5) 

(1.6) 

(1.7) 

where βΩ
 
is the reaction rate and the last equation is the modified form of 

the equation of motion that is linear as compared to the classical non-linear 
Navier-Stokes equation of motion  

).(
3

1p
. 2

ββ
β

β
ββββ

β

ρ
vvvv

v
∇∇+

∇
−=∇−∇+

∂

∂
vv

t
, 

(1.8) 

The main difference between the modified (1.7) and the classical (1.8) 
forms of the equation of motion is the distinction between the convective 
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versus the local velocity in the former. In the following some examples of 
fluid flow models that lead into Hill’s equation will be examined. 
An important feature of (1.7) is that one can first determine the convective 
velocity βw

 
from the solution of the inviscid potential flow 1+βv  at the 

outer scale )1( +β . Next, with the known convective velocity one can             

obtain the associated local velocity βv  from the solution of (1.7) in the 

presence of viscous term. Let us consider the classical problem of Blasius, 
i.e. laminar flow over a flat plate [14, 15]. For an incompressible steady 
laminar flow in the absence of reactions the last two terms on the                  
right-hand side of (1.7) vanish and it simplifies to  

ββββ p−∇=∇−∇ vvw
2. , (1.9) 

involving the dimensionless velocities =)ww,v,v( yxyx  

oyxyx w'/)w'w',v',v'(= , 2'w/'pp oρ=  and coordinates He lxx /'= , 

Hlyy /'= , oHl 'w/ν=  where Hl is the hydrodynamic diffusion length and 

ν  is the kinematic viscosity. First, in the outer potential flow one sets the 
viscosity to zero thus neglecting the diffusion term and hence the diffusion 
velocity [13] 0)vln(Vwv =∇−==− ρνxxx  such that xx wv =  and with 

0w =x , (1.9) reduces to  

1
2

1 p)2/1( ++ −∇=∇ ββv  (1.10) 

For uniform outer velocity 1v +βx =constant, the solution of (1.10) gives the 

constant convective velocity and pressure as 

1wv 1 ==+ ββ xx ,    p  = constant (1.11) 

Next, for the inner flow within the boundary layer the usual assumption 
2222 '/'/ yx ∂∂<<∂∂  and constant pressure from (1.11) simplify (1.9) to  

2

2vv
w

β

β

β

β
β

yx

xx

x ∂

∂
=

∂

∂
 

(1.12) 

Further substitution from (1.11) for the convective velocity leads to 
 

0
v

2
v
2

2

=
∂
∂

+
ξ

ξ
ξ

xx

d

d
, 

(1.13) 
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where 2/4/ ηξ == xy  that with the boundary conditions 0)0(v =x ,  

1)(v =∞x  leads to the solution  

)2/(erf)(erfv ηξ ==x  (1.14) 

Defining the edge of the boundary layer as the location where 

99938.0)(v * =ξx  one obtains from (1.14) 5.2* ≈ξ ,   5* ≈η  in exact 
agreement with the classical result of Blasius [14]. It is emphasized that 
the modified theory leads to analytical solution (1.14) while the classical 
nonlinear problem requires numerical solution. 
As a second example let us consider the classical problem of                 
stagnation-point flow with the outer convective velocity field [14, 16] 

'w' xx Γ= , 'w' yy Γ−= , where Γ  is the stagnation flow velocity gradient. 

One introduces the dimensionless quantities 

Γ= ν/),v',v'(),v,v( ww yxyx , 2'w/'pp oρ=  and coordinates δ/'exx = , 

δ/'yy = , Γ= /νδ .  For the potential flow at the outer scale 1+β  the 

vanishing of viscosity leads to zero diffusion velocity hence xx wv =  and 
(1.9) reduces to the Euler equation  

xyx

x
y

x
x ∂

∂
−=

∂
∂

+
∂

∂ pv
v

v
v ,     

yyx

x
y

y

x ∂
∂

−=
∂
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+
∂

∂ pv
v

v
v  

(1.15) 

 

with the local solutions close to stagnation-point  

xx =+1v β , yy −=+1v β ,  2/)(1p 22 yx +−=  (1.16) 

The stream function for the outer potential flow (1.16) is xyo =Ψ  Next, 

the flow within the boundary layer at the lower scale β  is considered and 
the local velocity of the outer potential flow (1.16) provides for the con-
vective velocity of the inner viscous flow as  

xxx ==+ ββ wv 1 , yyy −==+ ββ wv 1  (1.17) 

Assuming that the pressure gradient within the boundary layer is negligible 

and 2222 '/v'/v yx xx ∂∂<<∂∂ , 2222 '/'/ yx ∂∂<<∂∂  one obtains from (1.9)  

2

2vv
w

yy

xx
y ∂

∂
=

∂
∂

. That with the boundary conditions 0)0(v =x , xx =∞)(v  

and upon substitution from (1.17) leads to the solution [16]: 

)2/(erfv yxx = . Also, from the continuity equation (1.5) for an                    
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incompressible flow one obtains ∫−=
y

y dyy
0

)2/(erfv  leading to the 

stream function  

∫−=Ψ dyyx )2/(erf   (1.18) 

The above procedures show that for any convective velocity field               
associated with an outer potential flow one can determine the                   
corresponding solution of the equation of motion for the inner viscous 
boundary layer. Therefore, one next searches for possible solutions of 
(1.12) for flow fields when the convective and local velocities have the 
forms  

)()(w yqxax = ,  )()(v yfxbx =  (1.20) 

and satisfy the condition  

)('/)()( xbxbxa −=  (1.21) 

Substituting from (1.20)-(1.21) into (1.13) results in  

0)('' =+ fyqf  (1.22) 

that becomes Hill’s equation (1.1) if )(yq  is a periodic function of y . 

The assumption of incompressibility 0. =∇ βw , 0. =∇ βv  and hence the 

condition (1.21) will be satisfied for certain pairs the functions )(xa  and 

)(xb  in (1.20) with a few examples given in Table 1.1. 

Table 1.1. Pairs of conjugate functions )(xa  and )(xb   

)(xa  x  xtan  2/)(tan x nx /)(tan  

.

),cossin2/()(sin2

constK

xxKx

=

+ xxcossin  xx ln   

)(xb  x  xsin  x2sin  xnsin  Kx +2sin  xtan  xln  

 

For the case of xxbxa == )()(  from Table 1.1, let us consider an example 

of Hill’s equation when the outer potential flow has periodicity in the y -
coordinate and given as  

)tan1(2)(w 2 yxyqxx −−==  (1.23) 

such that by (1.5) we have 

)tan(2w yyy −=  (1.24) 



152      G. Bognar, S. H. Sohrab 

The stream function for outer potential flow becomes 
( )yyxo tan22 −−=Ψ . The flow fields (1.23)-(1.24) are somewhat similar 

to (1.17) except that due to certain obstacles periodically positioned in the 
transverse direction they have acquired periodicity in the y -coordinate. 

However, the exact nature of the outer potential flow requires further             
examination and is as yet not fully understood. With the outer flow (1.23) 
and the inner boundary layer velocity of the form (1.20) equation (1.12) 
reduces to (1.22) and becomes the Hill’s equation with the solution  

yxx
2cos2v −=  (1.25) 

The result (1.25) and (1.5) give yyy 2sin)2/1(v +=  that lead to the 

stream function ]2sin)2/1([ yyxi +−=Ψ . Near the wall 0=y , the outer 

(1.23) and the inner (1.25) velocities become identical.  
Even though the flow fields could indeed represent a model for a               

realistic hydrodynamic problem involving an accelerating basic flow 
xx 2w −=  with periodic transverse modulations due to certain obstacles. 

A conjugate flow field of the form (1.20) that also satisfies (1.22) is the 
outer potential flow  

)cot1(2w 2 yxx −−= ,  )cot2(2w yyy += , )cot2(2 yyxo +−=Ψ  (1.26) 

and the associated inner viscous flow  

yxx
2sin2v = ,  )2sin2(2v yyy −= ,  ]2sin)2/1([ yyxi −−=Ψ  (1.27) 

In view of the results (1.20)-(1.27), one can identify a general procedure 
whereby a known outer solution with )(xa  and )(yq  are substituted in 
(1.21) and (1.22) for the determination of the corresponding inner solution 

)(xb  and )(yf . On the other hand, an inverse problem is encountered 

when a known inner flow field given by )(xb  and )(yf  are applied to        

obtain the corresponding outer potential flow )(xa  and )(yq  from (1.21) 

and (1.30) by direct substitutions. The latter problem arises in design of 
hydrodynamic systems when one wants to know what outer potential flow 
field should be imposed in order to induce a desired local boundary layer 
flow field. If one considers an outer potential flow that is periodic in two 
spatial directions such as  

)cot1(tan2w 2 yxx −= ,  ]cot2[
cos

2
w

2
yy

x
y +−=  

(1.28) 



Periodic Flows Associated with Solutions of Hill Equation      153 

by (1.21) and Table 1.1, the corresponding inner velocity field will have 
the form  

)(sin2v yfxx =  (1.29) 

By substitutions from (1.28)-(1.29) into (1.12) one obtains the solution  

yxx
2sinsin2v = ,   ]2sin)2/1([cosv yyxy −−=  (1.30) 

The stream function for the outer flow fields (1.28) will be 
)cot2(tan2 yyxo +=Ψ . The exact nature of the potential flow (1.28)        

requires further future investigation. The stream function for the inner flow 
(1.30) will be ]2sin)2/1([sin yyxi −=Ψ . Although we do not address      
unsteady flows in the present study it is clear that if instead of (1.12) one 
considers  

2
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=
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+
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∂
 

(1.31) 

and neglects the time dependence of the outer solution then unsteady             

solutions of the form t
x eyfxb λ−= )()(v  substituted in (1.31) will lead to 

equations of type [ ] 0)('' =++ ftQf λ  discussed in the previous section. 
Therefore, it is reasonable to expect that the ordered pairs of eigenvalues 
identified in (1.4) for solutions with 2π and π periodicity correspond to the 
zeros of the outer and the inner periodic solutions such as (1.23) and (1.25) 
discussed above. In other words, between each pair of zeros of the outer 
flow there is a pair of zeros of the inner flow.

 

13.4 Concluding Remarks 

Periodic solutions of the Hill equations with periodicity π and 2π were            
described and their ordered pairs of eigenvalues were identified. Also, 
some examples of the Hill equation encountered in a number of problems 
of laminar boundary layer flows are demonstrated and the relevant              
solutions are described.  
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Abstract. The objective of this paper is to develop a model of JPEG 

8×8 sub-image compression and decompression for simulation and 

analysis by using an Upgraded Petri Net (UPN). The Upgrade Petri 

net is an extension of an ordinary Petri Net and a formal modeling 

tool appropriate for simulation and analysis of processes, 

particularly at the register transfer level. This paper describes an 

UPN model which can generate the compressed image for given 

input image and initial marking. From this model a new model can 

be derived which includes different parameters for simulation and 

analysis. As an example, a model that generates data for analysis of 

average absolute error is included. Original software for modeling 

and simulations of UPN, PeM (Petri Net Manager), is developed 

and used for all models described in this paper. This paper includes 

a preface on the UPN theory, the UPN model formulation, 

simulation and analysis.  

 

Keywords. Upgraded Petri Net, Image Compression, JPEG, 

Modeling. 
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14.1 Introduction 

Upgraded Petri nets (UPN) are a formal mathematical apparatus which 

enables modeling, simulation and process analysis [1]. They enable 

interactive monitoring of process operations. The hierarchical structure of 

an UPN gives wide possibilities for abstraction and facilitates the model 

implementation consisting, at the same time, of elaborate pieces essential 

for the analysis at a certain level, and also of some general pieces whose 

details are irrelevant for the analysis at the given level of abstraction. 

This paper presents the usage of UPN for modeling, simulation and 

analysis of JPEG 8×8 sub-image compression [2, 3, 4]. The Upgraded 

Petri net model includes the visualization of data flow and data generation 

through execution of the UPN model. 

An Upgraded Petri net is used to develop the low level model which 

refers to detailed representation of JPEG method for image compression 

and decompression on an 8×8 8-bit sub-image. The Upgraded Petri net 

model can be changed with respect to the object of analysis. This object 

can be: quality of compression, compression ratio, average absolute error, 

etc. [5, 6] or some other aspects of the algorithm  [7, 8, 9]. As an example, 

this UPN model generates data for analysis of average absolute error. 

For given input parameters the model generates data into a *.mem file. 

Input parameters are determined by: initial marking, arcs multiplicities, 

transition functions, transition firing levels, place attributes, and UPN 

conflict solving rules. 

14.2 Upgraded Petri Net Formal Theory 

Upgraded Petri net formal theory is based on functions. An Upgraded Petri 

net is a 9-tuple: 

C = (P, T, F, B, µ, θ, TF, TFL, PAF)  where : 

• P={p1,p2,p3,...,pn}, n>0 - a finite nonempty set of places pi 

• T={t1,t2,t3,...,tm}, m>0 - a finite nonempty set of transitions tj 

• F:T×P→N0   - Input Function; 

• B:T×P→ N0   - Output Function;  

• µ:P→ N0   - Marking Function:  

• θ:T×∆→λ   - Timing Function; 

• TF:T→Α    - Transition Function;  

• TFL:T→N0   - Transition Firing Level;  

• PAF: P→(x,y)  - Place Attributes Function; 
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The input function assigns a non-negative integer number to an ordered 

pair (ti,pj). This number defines how many times the place pi is input into 

the transition ti. N0 represents the set of non-negative integer numbers. The 

set of places which are input into the transition tj is labeled as 
*
tj={pi∈P,F(tj,pi)>0}. The following notation is introduced: *

tj
S
 for the 

place pi∈*
tj which has the standard input into the tj, F

S
(tj, pi) for the 

corresponding input function, 
*
tj

I
 for the places pi∈*

tj with inhibitor arc into 

to the tj transition, and F
I
(tj, pi) for the corresponding input function.  

The output function assigns a non-negative integer number to the 

ordered pair (ti,pj). This number determines how many times the place pi is 

input into to the transition ti. The set of places which are input into the 

transition tj is labeled as tj
*
={ pi∈P, F(tj, pi)>0}.  

The marking function can be defined as an n-component vector: 

µ=(µ1,µ2,...,µn), where n=P and µ(pi) can be used instead of µi. The 

marking function assigns a non-negative integer number to the place pi. 

The timing function assigns the probability λj to the ordered pair (ti,∆q
tj). 

The transition ti can be fired at the interval ∆q
tj with the probability λj. The 

notation ∆q
tj represents the q-th interval of the transition tj. 

The transition function TF(tj) assigns one operation αj∈Α to the 
transition tj, where A is the set of operations which can be assigned to the 

transition. This operation can be: arithmetical, logical or file operation. 

The transition firing level function assigns a non-negative integer 

number to the transition tj. If that number is zero then all places pi∈*
tj 

affect the transition tj firing, otherwise it shows the number of places pi∈*
tj 

that participate in the transition firing.  

Place attributes function assigns an ordered pair (x,y) to the place pi∈*
tj 

where x∈R, y∈N0. Attributes x and y represent value and position, 

respectively, of an operand for the operation αj assigned to the transition tj. 

An Upgraded Petri net execution performs system state changes 

triggered by firing of appropriate transitions. By Upgraded Petri net 

execution the marking, the contents of the *.mem file and attributes which 

belong to the places pi∈tj
*
 of the fired transition tj can change. 

A transition tj∈T of the UPN C=(P,T,F,B,µ,θ,TF,TFL,PAF) can be 

enabled if the next 3 conditions are true: 

1. if timing function θ(tj, ∆q
tj)>0 over an interval ∆q

tj where transition tj 

can become enabled. 

2. if TFL(tj)>0, then (#pi∈*tj) + (#pk∈*tj) = TFL(tj) 

if TFL(tj)=0, then (#pi∈*tj) + (#pk∈*tj) =*tj 
   where: 
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#pi is the number of places pi∈*tj
S
 which satisfis: µ(pi)≥F

S
(tj, pi) 

#pk represents number of places pi∈*tj
I
 which satisfie: µ(pk)=0 

3. if a logical operation αj∈Α assigned to the transition tj  

then the result of the operation αj must be true. 

A marking µ will be changed to the new marking µ' by firing of 

transition tj where: 

• µ'(pi) = µ(pi) - F(tj, pi) + B(tj,pi) , pi∈*tj
S
 

• µ'(pk) = µ(pk) + B(tj,pi)     , pk∈*tj
I
 

By firing of the transition tj a corresponding arithmetic or file operation 

is executed. A logical operation which is assigned to the transition tj will 

be executed if conditions 1 and 2 related to tj are true. 

14.3 An Upgraded Petri Net Model of the JPEG Image 
Compression and Decompression 

The JPEG algorithm is a well established standard for digital image 

compression which features an excellent compression ratio. It is 

unavoidable since even relatively low resolution images contain 

megabytes of data. The JPEG algorithm is applicable to wide range of 

continuous-tone digital images without any restrictions regarding image 

resolution or color representing scheme and with tractable computational 

complexity to make possible efficient software, as well as cheap hardware 

implementations. 

The JPEG algorithm is based on discrete cosine transform (DCT) [10, 

11, 12]. Basic steps of JPEG sequential encoding are forward DCT, 

quantization and entropy coding (where a variation of run-length encoding 

appears). Most digital images reveal strong coherence in horizontal and 

vertical direction that means intensity is usually slowly changing within 

large pixel blocks. Gradual changes of image digital signal means that it 

has low frequency components dominating, while most of high frequency 

components are equal 0. The JPEG algorithm converts the image to 

frequency domain where only small number of components is significant 

and high compression ratio can be attained. 

The JPEG algorithm is not a single fixed standard, but rather a set of 

rules and recommendations with many adjustable parameters. Different 

applications require emphasis on different features of the JPEG algorithm. 

JPEG standard specifies that trade-off between compression ratio and 

image fidelity can be further fine-tuned by setting appropriate algorithm 
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parameters. An Upgraded Petri net model can be used to experiment with 

these parameters. 

The Upgraded Petri net model of the JPEG image compression and 

decompression on a 8×8 8-bit sub-image is depicted in Fig. 1. 

 

 

Fig. 1. UPN model of sub-image of JPEG image compression and decompression 

which generates an absolute average error 

In the PeM software a file which is the target of file operation function 

has a *.mem extension. This file is a text file and it is used for simulation 

of computer system memory. One line inside the *.mem file represents the 

content of one memory location. Input data matrix i(x,y) is stored in the 

*.mem file and it contains RGB (red, green, blue) values of the sub-image. 
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Places represent state of the system as follows: p-2: the input data 

matrix i(x,y) starts from address 100 in the *.mem file, p-1: constant value 

64, p-6: constant value 8, p-4: constant value 128, p-5: start address of 

matrix α(u,v) which includes normalizing function values (Eq. 3.1), p-8: 

start address of matrix Q which is a typical quantization matrix as 

specified in the JPEG standard.  

Initial marking of the UPN model shown in Fig. 1. is µ(p14)=2. This 

marking enables transitions t-7 and t-6. After firing of this set of transitions 

the markings µ(p2), µ(p3) , µ(p13) and µ(p16) all become equal to 1 and the x-

attributes of the places p-2, p-3, p-13 and p-16 all become equal to 200, 

because of TF(t6)=copy function. This x-attribute value refers to the start 

address of g(x,y) matrix in the *.mem file. This matrix is generated by 

firing of transitions t-1 and t-2 respectively. By firing of transition t-1 a 

destination matrix g(x,y) is calculated as conversion of the input matrix 

i(x,y) which contains RGB values into the YCbCr (luma, blue-difference 

and red-difference chroma components) values. By firing of transition t-2 

all elements of the destination matrix g(x,y) are decremented by 128, since 

TF(t2)=VSUBS (vector subtract by scalar) and x-attribute of the place p-4 

is equal to 128. After this firing new markings are µ(p16)=1 and µ(p12)=2, so 

transition t-3 becomes enabled. 

Function DCT2D (discrete cosine transform, 2 dimensions) is assigned 

to this transition. After firing of transition t-3 the DCT function is applied 

to the matrix G(u,v): 

),(),(),()()(),(
7

0
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0

vyFuxFyxgvuvuG
x y

∑∑
= =
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• u is the horizontal spatial frequency, for the integers 0≤u<8, 

• v is the vertical spatial frequency, for the integers 0≤v<8, 
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1

0,
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1

)(α

 is a normalizing function 

• g(x,y) is the pixel value at coordinates (x,y) 

• G(u,v) is the DCT coefficient at coordinates (u,v) 
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The state of the UPN model after this firing is µ(p15)=µ(p16)=1, and 

transition t-4 is enabled. The corresponding transition function 

TF(t4)=QUANT (quantization). This function calculates a new matrix 

which starts at address 2200 in the *.mem file, as determined by the x-

attribute of place p-7. Elements of this matrix are rounded integer values of 

B(j,k)=G(j,k)/Q(j,k). After firing of transition t-4, set of transitions {t-5,t-9} 

become enabled and the state of the UPN model is determined by 

µ(p10)=µ(p16)=1. 

Transition function TF(t5) is ENTq (entropy) function. By firing of this 

transition, final matrix is generated, starting at address 2300 in the *.mem 

file, as determined by x-attribute of place p-11. After that Run Length 

Encoding (RLE) can be done over this final matrix. 

By firing of transition t-9 a DQUANT (dequantization) function will be 

performed on the matrix which starts at address 2200, as determined by x-

attribute of place p-10 and the resulting matrix is stored starting at address 

7400 because of x-attribute of the place p-17. Typical quantization matrix 

Q, which starts at address 2100 is used again. This means that the place 

p-8 is included as the fourth input of the transition t-10 because of the y-

attribute of this place. The place p-8 has the inhibitor arc to transition t-9 

and its marking is equal to 0, thus this transition becomes enabled.  

After parallel firing of transitions t-5 and t-9, the state of the UPN model 

is determined by µ(p12)=µ(p16)=1 and transition t-10 becomes enabled. 

By firing of this transition an IDCT2D (inverse-DCT2D) function will 

be applied to the matrix which starts at address 7400 and matrix which 

starts at address 7600 will be populated by resulting values. These 

addresses are determined by x-attributes of the places p-19 and p-12 

respectively. Now, the state of the UPN model is determined by 

µ(p16)=µ(p20)=1 and transition t-8 becomes enabled. A transition function 

assigned to this transition is VAAE i.e. vector absolute average error:  

∑
=

−=
N

i

iViV
N

VAAE
1

21 )()(
1

 (3.2) 

where: N is vector length, and V1 ,V2 are vectors. 

By firing of transition t-8 VAAE function will calculate average absolute 

error. Start addresses of the vectors are 7600 and 200 as determined by x-

attributes of places p-16 and p-20 respectively. Size of vectors is 

determined by x-attribute of the place p-1. And finally, x-attribute of the 

place p-18 is equal to the value of the absolute average error. After firing 

of transition t-8 a dead node is reached i.e. there is no enabled transition in 

the UPN model. 
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14.4 The Upgraded Petri Net Model Execution 

Initial marking of the UPN model is shown in Fig. 1. By executing the 

UPN model for given initial marking, according to the UPN rules of 

transition firing, the next sequence of sets of firing transitions will happen: 

{t6, t7} � {t1} � {t2} � {t3} � {t4} � {t5, t9}� {t10}� {t8} 

This sequence changes marking µ from the initial marking until dead 

node is reached. By execution of this UPN model it passes through many 

states (markings) as follows: 

• µ(0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0) = (initial marking), 

• µ(0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0), 
• µ(0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0), 
• µ(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0), 
• µ(0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0), 
• µ(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0), 
• µ(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1), 
• µ(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0) = (dead node). 

The dead node refers to the state of the UPN model where x-attribute of 

place p-18 is equal to average absolute error between original and 

decompressed image (see Eq. 3.1 and Eq. 3.2). 

14.5 The Upgraded Petri Net Model Analysis 

The described UPN model was tested on two sub-images, one from a text 

image and one from a photorealistic image. For both test sub-images 

execution of the UPN model generated matrix which represents the 

uncompressed sub-image, absolute difference per pixel and average 

absolute error between original and uncompressed sub-image. This model 

consists of parts we want to analyze and of the parts which are not 

interesting for analysis, according to the chosen parameters. In example 

model which calculates average absolute error, entropy is not interesting so 

it is represented at the high level. The functions, however, which calculate 

the matrices for the JPEG sub-image compression and decompression are 

represented at the detailed level. At the same time the model consists of 

elaborated parts essential for the analysis at a detailed level and also of 

some general parts whose details are irrelevant for the analysis at the given 

level of representation. The results of the simulation give a good insight 
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into the JPEG sub-image compression and decompression algorithm. 

These results are shown in Fig. 2. 

 

Fig. 2. Absolute difference between original and decompressed image and 

absolute average error for text image (left, VAAE=9.0313[values/pixels]) and for 

photorealistic image (right, VAAE=4.9063[values/pixels]) 

14.6 Conclusions 

Upgraded Petri nets are formal modeling tool appropriate for simulation 

and analysis of processes, particularly at the register transfer level. An 

Upgraded Petri net low level model is developed which refers to the 

detailed representation of JPEG method for image compression and 

decompression on an 8×8 8-bit sub-image. This Upgraded Petri net model 

is represented at the register level so it can be used for analyzing hardware 

implementation of the JPEG sub-image compression. 

The model can be adjusted for many different purposes, but as an 

example, it generates the average absolute error between original and 

decompressed image. It can be easily modified to generate data which can 

be used for analysis of some other parameters. Further, from this model a 

complex model can be developed at the register level, which will calculate 

JPEG compression and decompression over the large image. 

Suitability of developed UPN model was checked by execution of the 

model and the results were generated dynamically during this execution. 

Original software for modeling and simulations of Upgraded Petri Nets, 

PeM (Petri Net Manager), is developed and used for modeling described in 

this paper. The PeM has the following features: supports the UPN theory, 

graphical modeling interface, interactive simulation by single or parallel 

transition firing and reachability tree generation. This allows that the 

whole model or only some parts are examined. Also, the features enable 
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interactive monitoring of the execution of the model and gradual 

improvement from the initial phase all the way to the final version. 
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Abstract. Nowadays, wireless sensor networks (WSNs) are              

becoming increasingly beneficial, worthwhile and a challenging re-

search area. The advancements in WSN enable a wide range of en-

vironmental monitoring and object tracking applications. Moreover, 

multihop (node by node) routing in WSN is affected by new devices 

constantly entering or leaving the network. Therefore, nature in-

spired self-maintained protocols are required to tackle the problems 

arising in WSN. We proposed ant colony stimulated routing, which 

shows an outstanding performance for WSNs. In this manuscript, a 

self-optimized (ACO) routing protocol for WSN and the results are 

presented. Link quality, energy level and velocity parameters are 

used to discover an optimal route. The signal strength, remaining 

power and timestamp metrics are trade in from physical layer to 

network layer. The emitted decision through the WSN discovery 

will establish the optimal route from source to destination. The 

adopted architecture helps ACO in improving the overall data 

throughput; especially in the case of real time traffic. 

Keywords. Ant Colony Optimization, Energy, Multihop, Packet 

Reception Rate, Routing, Velocity, Wireless sensor Network. 
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15.1 Introduction 

Wireless communication plays a significant role in the telecommunica-

tions sector and has huge importance for future research. Wireless        

communications enables many new applications for sensing and monitor-

ing systems. Some infrastructure free networks like WSN serves an im-

perative task in monitoring. With the passage of time new gadgets and 

software advancements are becoming available to end-users on a frequent 

basis. The stated fast growth and the huge number of devices in the net-

work make WSN more and more complex. The deployment area for WSNs 

is mostly out of the human reach. The above mentioned challenges, such as 

growing complexity and unreachable maintenance need new solutions. 

The new self-maintained mechanism can maintain the features of WSNs 

such as multihop routing and dynamically environmental changes in a 

completely autonomous mode. In order to address autonomous capability 

for multihop WSNs, it has been visualized that self-maintained network 

applications can understand the operational objectives of the network.              

Additionally, probabilistic methods that provide scalability can be found in 

nature and adapted to technology.  

Towards this vision, it is observed that various biological principles are 

capable to overcoming the above adaptability problems. The area of             

bio-inspired network engineering has the most well known approaches 

which are swarm intelligence (ANT Colony, Particle swarm), AIS and               

intercellular information exchange (Molecular biology)[1-4]. WSN routing 

algorithms based on ANT Colony Optimization (ACO) have been                    

presented in the last few years, such as [5], Sensor-driven Cost-aware Ant 

Routing (SC), the Flooded Forward Ant Routing (FF) algorithm, and the 

Flooded Piggybacked Ant Routing (FP) algorithm [6], Adaptive ant-based 

Dynamic Routing (ADR) [7], Adaptive Routing (AR) and Improved             

Adaptive Routing (IAR) algorithm [8], and E&D ANTS [9]. 

The problem of the previous approaches is that the selected shortest 

path might not be a minimum energy cost route. Some other works        

concentrate on decreasing the energy consumption by replacing the                  

hop-count routing with minimum energy routing. They compute a mini-

mum-energy path for packet delivery in a multi-hop wireless network. 

However, the nodes on this path will get depleted soon. Radhika D.Joshi 

[10] given an idea about combination of least hops and minimum remain-

ing energy. 

This manuscript present a novel architecture by implementing the most 

well known and successful approaches. ACO method is utilized for the        

optimum route discovery in multihop WSN. Standard ACO is very com-
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plex and heavy for WSN. Consequently, we come up with an ACO that 

can perform better optimization for WSN in terms of less load, energy        

consumption and high delivery rate. Generally, the ACO algorithm is agent 

based [11] as forward ant (FA), backward ant (BA), search ant (SA) and 

data ant (DA) agents. Under BIOSARP, the ACO is based on only two 

types of ant agents, which are, search ant (SA) and data ant (DA) agents as 

shown in Figure 1.1. The agents will work in a decentralized way to collect 

data on individual nodes and carry data to the required destination through 

multihop communication. 

 

 

Fig. 1.1. BIOSARP mechanism based on Data Ant (DA) and Search Ant (SA) agents.  

The signal strength, remaining power and timestamp parameters have 

been taken from the physical layer to the network. By assigning the above 

mentioned metrics to the ACO process running on the network layer              

allows an ultra effective optimal route for WSNs. 

15.2 Related Research 

15.2.1 Outline of Ant Colony Optimization 

Dorigo et al [5] proposed the first ant colony algorithms as a multi-agent 

approach to difficult combinatorial optimization problems like the                

traveling salesman problem (TSP) and the quadratic assignment problem 

(QAP), Minimum Weight Vertex Covering Problem [12, 13], and later in-

troduced the ACO meta-heuristic by Dorigo et al [5].  

There are two types of ants applied in the algorithms, forward ants and 

backward ants. Forward ants, whose main actions are exploring the path 
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and collecting the information from the source nodes to destination node, 

have the same number as the source nodes. The paths that forward ants 

travel will construct a tree when they merge into each other or reach the 

destination and data is transmitted along the tree paths. There are two key 

factors that conduct the movement of the forward ants: one is pheromone 

trails that are deposited along the edges, and the other is the nodes              

potential. Whereas the backward ants, travelling back from destination 

node to source nodes contrary to the forward ants, perform their uppermost 

function of updating the information of their pass-by nodes. 

15.2.2 Overview of ACO Based Routing Algorithms in WSN 

Aghaei et al [8] proposes two adaptive routing algorithms based on ant 

colony algorithm, the Adaptive Routing (AR) algorithm and the Improved 

Adaptive Routing (IAR) algorithm. To check the suitability of the ADR 

algorithm in the case of sensor networks, they modified the ADR                 

algorithm (removing the queue parameters) and used their reinforcement 

learning concept and named it the AR algorithm. The AR algorithm did 

not result in optimum solutions. In IAR algorithm by adding a coefficient, 

the cost between the neighbor node and the destination node, they further 

improve the AR algorithm. 

Wen et al [9] proposed a dynamic adaptive ant algorithm (E&D ANTS) 

is based on Energy and Delay metrics for routing operations. Their main 

goal is to maximize the network lifetime while minimizing propagation       

delay by using a novel variation of reinforcement learning (RL). E&D 

ANTS results was evaluated with AntNet and AntChain schemes. 

In [14] a novel routing approach using an Ant Colony Optimization           

algorithm is proposed for Wireless Sensor Networks consisting of stable 

nodes. The probabilistic decision rule depends on pheromone value and the 

value of the heuristic related to energy. They have also implemented their 

approach to a small sized hardware component named MICAz mote as a 

router chip. 

15.2.3 Comparison between Ant Based Routing Mechanisms 

In our proposed algorithm, the best values of velocity, PRR and       re-

maining power mechanism [15] are used to select forwarding node 

because velocity alone does not provide the information about link quality. 

The best link quality usually provides low packet loss and energy efficient 
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[16]. Another novel feature is the remaining power parameter to select the 

forwarding candidate node. 

15.3 Methodology 

System design deals mainly with the development of state machine and 

flow chart diagram of the sections as power and neighbor management. 

Routing management will be dependent mostly on forwarding metric             

calculations. If any error occurred in this state, the generated error will be 

handled by the routing problem handler. 

Further onwards the most important state in this routing mechanism is 

neighbor management. Selection of better neighbors will be handled by 

this state. Common functions in the neighbor management state are               

neighbor table maintenance, neighbor discovery, insert new neighbor, 

neighbor replacement, etc. 

Our proposed self-maintained system is mainly based on route section. 

The optimal route discovery is tackled by ACO. Routing decision will 

achieved by the probabilistic decision rule described in [17]. Two                

parameters delay and battery remaining are used in [17] while acquiring 

optimal decision. 

BIOSARP is based on three metrics as, velocity, PRR and remaining 

power mechanism as given in Table 1.1. The link quality of the wireless 

medium determines the performance of WSN. In designing BIOSARP, the 

link quality is considered in order to improve the delivery ratio and energy 

efficiency. 

We have added second heuristic value ωij in probabilistic rule to             

determine the link quality of neighboring nodes while making decision. 

Jovanovic Raka discuss about heuristic previously in [18]. The               

probabilistic rule is expressed mathematically as Equation (see Eq. 1.1). 

   (1.1) 

p
k
ij(t) overall desirability for ant k located in city i to choose to move to 

city j. 

τij depends on the delay parameter. 

ηij is an heuristic evaluation of edge (i,j). 

ωij is the 2
nd

 heuristic evaluation of edge (i,j). 
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α, β and ϑ are three parameters that control the relative weight of 

pheromone trail and heuristic values. 

Table 1.1. Routing Metrics 
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While data forwarding, the node first calls the DA. DA will select the 

optimal node based on the pheromone value stored in neighbour table. DA 

will move hop by hop on the base of pheromone values for neighbouring 

nodes until the destination as shown in Figure 1.1. At the time of selection, 

if DA could not find the entry, it will invoke SA as given in Figure 1.1. 

The SA will search for new nodes and calculates their pheromone value 

through the probabilistic rule as Equation (see Eq. 1.1). 

Every ant agent is generated with a sequence ID and also is set with 

maximum time to live (TTL). By the help of assigning sequence ID, sensor 

node will not accept reappearance of the same ant agent to avoid routing 

cycles. Energy management is evolved to maintain the energy               

consumption of every sensor node in WSN. 

 

15.4 Real Time Experiment 

BIOSARP is verified by deploying a real time test bed of TelosB [19] 

sensor nodes. 10 wireless sensor nodes were deployed onto 15m x 10 m 

grid as shown in Figure 1.2. For the bio-inspired routing algorithm             

implementation under tinyos [20], the program is written in NesC pro-

gramming language [21]. During experimentation, by animation we can 

examine the output of network. The traffic is produced from all the nodes 

to the sink. Node 0 is connected to the laptop to collect the data as shown 

in Figure 1.3. All nodes have neighboring tables which contains the infor-

mation about the neighboring nodes. Depending on information, phero-

mone value is calculated via probabilistic rule. The parameter weights α, β 

and ϑ are adjusted to 0.6. The optimal node is selected based on the 

pheromone value. The experimental parameters used to configure the sys-
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tem according to WSN are listed in Table 1.2. Table 1.3 shows the code 

size of BIOSARP and RTLD [15] in TELOSB. The code size of 

BIOSARP routing protocol in the TELOSB is 31498 bytes of flash              

memory and 1247 bytes of RAM. 

 

Fig. 1.2. Network Testbed. 

 

Fig. 1.3. Sink Node. 

Table 1.2. System Properties 

Parameters Values 

Power Level Selected 15 (lowest 3 – maximum 23) 

Traffic 0.2, 0.25, 0.33 & 0.5 Packet rate per second 
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Table 1.3. Coding size of BIOSARP and RTLD 

TELOSB 
Comparison 

Flash memory RAM 

BIOSARP 31496 1247 

RTLD 32212 1207 

1.4.1 Performance and Analysis of Experiment 

BIOSARP is compared with RTLD routing protocol [22] because RTLD 

also makes the next hop decision based on same parameters. Also RTLD 

got the best performance results till yet over WSN. Packet delivery ratio is 

the metric used to analyze the performance of BIOSARP and the baseline 

RTLD. In experiment the impact of varying network load is accumulated 

by varying the packet rate. While the end-to-end deadline is fixed at 

250ms. The traffic load is varied from 0.2 to 0.5 packet per sec to emulate 

low data rate in IEEE 802.15.4. The results in Figure 1.4 show higher           

delivery ratio about 20% to 40% compared to the RTLD. 

 

 

Fig. 1.4. Delivery ratio of BIOSARP and RTLD. 

15.5 Conclusions 

In this manuscript, we have proposed an enhanced ant colony inspired 

self-optimized routing protocol for WSN. Our specified mechanism is 

based on link quality, energy and velocity parameters. The adopted            
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architecture helps WSN in improving the overall data throughput;             

especially in the case of real time traffic. The design also assists WSN in 

better delivery ratio. The algorithm is also capable of avoiding permanent 

loops which promotes dead lock in the running networks. Experimental re-

sults demonstrate the protocol efficiency. Finally, this autonomic routing 

mechanism will come up with better delivery ratio over WSN. Our              

immediate future work evolved to enhance our routing mechanism with 

self-protection system. 

Acknowledgement. The authors wish to express their sincere appreciation, 

sincerest gratitude to Ministry of Higher Education Malaysia for their full 

support and Research Management Center (RMC), Universiti Teknologi 

Malaysia (UTM) for their contribution. Special thanks to researchers in 

Telematic Research Group (TRG), UTM. 

References 

1. Balasubramaniam, S., Botvich, D., Donnelly, W., Foghluh, M., Strassner, J.: 

Biologically Inspired Self-Governance and Self-Organisation for Autonomic 

Networks. Proceedings of the 1st international conference on Bio inspired 

models of network, information and computing systems, Vol. 275. ACM,            

Cavalese, Italy (2006) 30 

2. Balasubramaniam, S., Donnelly, W., Botvich, D., Agoulmine, N., Strassner, 

J.: Towards integrating principles of Molecular Biology for Autonomic              

Network Management. Hewlett Packard university Association (HPOVUA) 

conference, Nice, France. (2006) 

3. Boonma, P., Suzuki, J.: MONSOON: A Coevolutionary Multiobjective        

Adaptation Framework for Dynamic Wireless Sensor Networks. In Proc. of 

the 41st Hawaii International Conference on System Sciences (HICSS), Big 

Island, HI (2008) 

4. Mazhar, N., Farooq, M.: BeeAIS: Artificial Immune System Security for            

Nature Inspired, MANET Routing Protocol, BeeAdHoc. Springer-Verlag Ber-

lin Heidelberg LNCS 4628 (2007) 370–381 

5. Chen, G., Guo, T.-D., Yang, W.-G., Zhao, T.: An improved ant-based routing 

protocol in Wireless Sensor Networks. Collaborative Computing:                 

International Conference on Networking, Applications and Worksharing, 

2006. CollaborateCom 2006. IEEE, New York, NY (2006) 1-7 

6. Zhang, Y., Kuhn, L.D., Fromherz, M.P.J.: Improvements on Ant Routing for 

Sensor Networks. M. Dorigo et al. (Eds.): ANTS 2004, Springer-Verlag             

Berlin Heidelberg 2004 LNCS 3172 (2004) 154-165 



174      Kashif Saleem, Norsheila Fisal,  M. Ariff Baharudin, Adel Ali Ahmed, 
Sharifah Hafizah, Sharifah Kamilah 

7. Lu, Y., Zhao, G., Su, F.: Adaptive Ant-based Dynamic Routing Algorithm. In 

Proceedings of the 5th World Congress on Intelligent Control and               

Automation. IEEE, Hangzhuo, China (2004) 2694-2697 

8. Aghaei, R.G., Rahman, M.A., Gueaieb, W., Saddik, A.E.: Ant Colony-Based 

Reinforcement Learning Algorithm for Routing in Wireless Sensor Networks. 

Instrumentation and Measurement Technology Conference - IMTC IEEE, 

Warsaw, Poland (2007) 

9. WEN, Y.-f., CHEN, Y.-q., PAN, M.: Adaptive ant-based routing in wireless 

sensor networks using Energy*Delay metrics. Journal of Zhejiang University 

SCIENCE A 9 (2008) 531-538 

10. D.JOSHI, R., P.REGE, P.: Energy Aware Routing in Ad Hoc Networks. In: 

(WSEAS), T.W.S.a.E.A.a.S. (ed.): 6th WSEAS International Conference on 

CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL 

PROCESSING, Cairo, Egypt (2007) 469-475 

11. Kakkasageri, M.S., Manvi, S.S., Soragavi, G.D.: Mobile agent based event 

discovery in wireless sensor networks. In: (WSEAS), T.W.S.a.E.A.a.S. (ed.): 

Proceedings of the 5th WSEAS International Conference on Applied             

Computer Science, Hangzhou, China (2006) 731-735 

12. Milan, T., Raka, J.: An analysis of different variations of ant colony       opti-

mization to the minimum weight vertex cover problem. WSEAS Trans. Info. 

Sci. and App. 6 (2009) 936-945 

13. Jovanovic, R., Tuba, M., Simian, D.: Comparison of Different Topologies for 

Island-Based Multi-Colony Ant Algorithms for the Minimum Weight Vertex 

Cover Problem. WSEAS TRANSACTIONS on COMPUTERS 9 (2010)  

14. Okdem, S., Karaboga, D.: Routing in Wireless Sensor Networks Using an Ant 

Colony Optimization (ACO) Router Chip. Sensors 9 (2009) 909-921 

15. Ali, A., Latiff, L.A., Sarijari, M.A., Fisal, N.: Real-time Routing in Wireless 

Sensor Networks. The 28th International Conference on Distributed             

Computing Systems Workshops. IEEE, Beijing, China (2008) 

16. Zhao, J., Govindan, R.: Understanding Packet Delivery Performance in Dense 

Wireless Sensor Networks. Proceedings of the 1st international conference on 

Embedded networked sensor systems, Los Angeles, USA (2003) 

17. Okdem, S., Karaboga, D.: Routing in Wireless Sensor Networks Using Ant 

Colony Optimization. In: Okdem, I. (ed.): Proceedings of the First 

NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06), Vol. 

0-7695-2614-4/06, Istanbul (2006) 

18. Raka, J., Milan, T., Dana, S.: Ant colony optimization applied to minimum 

weight dominating set problem. Proceedings of the 12th WSEAS international 

conference on Automatic control, modelling & simulation. World Scientific 

and Engineering Academy and Society (WSEAS), Catania, Italy (2010)             

322-326 

19. Chipcon: CC2420 low power radio transceiver, http://www.chipcon.com. 

(2010) 

20. UC-Berkeley: TinyOS Tutorial, 

http://docs.tinyos.net/index.php/TinyOS_Tutorials. Vol. 16/08/2010 (2009) 



BIOSARP – Bio-Inspired Self-Optimized Routing Algorithm using Ant Colony 
Optimization for Wireless Sensor Network – Experimental Performance 

Evaluation      175 

21. Gay, D., Levis, P., Behren, R.v., Welsh, M., Brewer, E., Culler, D.: The nesc 

language: A holistic approach to networked embedded systems. In: 2003, A.S. 

(ed.): Conference on Programming Language design and implementation 

(2003) 1-1 1 

22. Ali, A., Latiff, L.A., Fisal, N.: Simulation-based real-time routing protocol 

with load distribution in wireless sensor networks. Wireless Communications 

and Mobile Computing 9999 (2009) 

 

 



Chapter 16 

Characterization of all Optimal Flows in Networks 

L. Ciupala, E. Ciurea 

  Department of Computer Science, University Transilvania of Braşov, 

Iuliu Maniu Street 50, Braşov, laura_ciupala@yahoo.com 

  Department of Computer Science, University Transilvania of Braşov, 

Iuliu Maniu Street 50, Braşov, e.ciurea@unitbv.ro 

Abstract. In this paper, we describe methods for determining all    

optimal flows in a given network: all minimum flows and all             

maximum flows. The minimum flow algorithms developed until 

now determine only a minimum flow, but, usually, there is more 

than one minimum flow in a network. There are several applications 

that can be modeled as minimum flow problems in some networks 

and solved by determining all the minimum flows in those            

networks. This is the main reason for which we focus on the                

problem of determining all minimum flows in networks.  

The same problem arises when solving maximum flow problems. 

Starting with the well known labeling algorithm by Ford and                

Fulkerson, many maximum flow algorithms were developed in the 

past six decades, but they determine only a maximum flow,                    

although, most of the times, there are several maximum flows. 

 
 Keywords. Network flow, network algorithms, maximum flow, 

minimum flow, minimum cut, maximum cut. 

16.1 Introduction 

Network flow problems are a group of network optimization problems 

with widespread and diverse applications. The literature on network flow 

problems is extensive ([1, 2, 6, 9, 10]). Over the past 60 years researchers 

2 1 

2 

1 
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have made continuous improvements to algorithms for solving several 

classes of problems. From the late 1940s through the 1950s, researchers 

designed many of the fundamental algorithms for network flow, including 

methods for maximum flow and minimum cost flow problems. In the next 

decades, there are many research contributions concerning improving the 

computational complexity of network flow algorithms by using enhanced 

data structures, techniques of scaling the problem data etc. In the                

beginning of this century, the minimum flow problem starts to be studied. 

One of the reasons for which the network flow problems were studied 

so intensively is the fact that they arise in a wide variety of situations and 

in several forms. But, the network flow algorithms developed until now 

determine only an optimal solution of the problem, although, most of the 

time, there are several optimal solutions.  

We focus on determining all the optimal solutions of a network flow 

problem because there are several practical problems that can be modelled 

and solved by establishing all the maximum flows or all the minimum 

flows in a network. The problem of determining all the optimal flows in a 

network also arises as a subproblem when solving more complex network 

flows problems, for instance when solving inverse flow problems.  

16.2 Maximum flow problem 

The maximum flow problem is one of the fundamental problems in               

network flow theory and it was studied extensively. The importance of the 

maximum flow problem is due to the fact that it arises in a wide variety of 

situations and in several forms. Sometimes the maximum flow problem 

occurs as a subproblem in the solution of more difficult network problems, 

such as the minimum cost flow problem or the generalized flow problem. 

The maximum flow problem also arises in a number of combinatorial            

applications that on the surface might not appear to be maximum flow 

problems at all. The problem also arises directly in problems as far              

reaching as machine scheduling, the assignment of program modules to 

computer processors, the rounding of census data in order to retain the 

confidentiality of individual households, tanker scheduling and several 

others. 

The maximum flow problem was first formulated and solved using the 

well known augmenting path algorithm by Ford and Fulkerson in 1956. 

Since then, two types of maximum flow algorithms have been developed: 

augmenting path algorithms and preflow algorithms: 
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1. The augmenting path algorithms maintain mass balance constraints 

at every node of the network other than the source node and the sink 

node. These algorithms incrementally augment flow along paths 

from the source node to the sink node. By determining the                  

augmenting paths with respect to different selection rules, different 

algorithms were developed. 

2. The preflow algorithms flood the network so that some nodes have 

excesses. These algorithms incrementally relieve flow from nodes 

with excesses by sending flow from the node forward toward the 

sink node or backward toward the source node. By imposing                   

different rules for selecting nodes with excesses, different preflow 

algorithms were obtained. These algorithms are more versatile and 

more efficient than the augmenting path algorithms. 

All these algorithms determine only one solution of the maximum flow 

problem, although, generally, the problem has several optimal solutions.  

In [11] G. Ruhe characterized all the maximum flows in a given               

network. For many applications it is important to determine not only a 

maximum flow, but all the maximum flows in a given network. Also it is 

useful to know all the optimal solution of a network flow problem, if some 

of the original values of the network are changed or if additional                    

constraints are considered. Besides, the problem of determining all the 

maximum flows in a given network arises as a subproblem when solving 

inverse network flow problems.  

The method described by Ruhe is a decomposition method for                   

determining of all optimal solutions of a maximum flow problem. Starting 

from a nontrivial subset of the set of all minimum cuts, this algorithm           

determines a decomposition of the given graph G = (N, A) into several      

subgraphs Gk = (Nk, Ak). If all these subgraphs are trees, then the maximum 

flow problem has a unique solution, otherwise there are several maximum 

flows. All these maximum flows are described in [11] by means of feasible 

flows in the subgraphs Gk = (Nk, Ak) determined by the decomposition             

algorithm.  

16.3 Minimum flow problem 

We consider a capacitated network G = (N, A, l, c, s, t) with a nonnegative 

capacity c(i, j) and with a nonnegative lower bound l(i, j) associated with 

each arc (i, j)∈A. We distinguish two special nodes in the network G: a 

source node s and a sink node t. 
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Let n=|N|, m = |A| and C = max { c(i, j) | (i, j) ∈ A}. 

A flow is a function f : A →R+ satisfying the next conditions: 
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l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A (1.2) 

for some v ≥ 0, where  

 f(i, N) = Σj f(i, j), i∈N 

and  

 f(N, i) = Σj  f(j, i), i∈N. 

We refer to v as the value of the flow f. The minimum flow problem is 

to determine a flow f for which v is minimized.  

Although it has its own applications, the minimum flow problem was 

not dealt so often as the maximum flow and the minimum cost flow             

problem. There are many problems that occur in economy that can be               

reduced to minimum flow problems.  

The minimum flow problem in a network can be solved in two phases: 

1. establishing a feasible flow, if there is one  

2. from a given feasible flow, establish the minimum flow. 

The problem of determining a feasible flow can be reduced to a              

maximum flow problem (for details see [1]). For the second phase of the 

minimum flow problem there are three approaches:  

1. using decreasing path algorithms (see [6]) 

2. using preflow algorithms (see [3, 6]) 

3. finding a maximum flow from the sink node to the source node in the 

residual network (see [2, 4]). 

The decreasing path algorithms maintain during their executions the 

mass balances constraints (1.1) at every node of the network other than the 

source or the sink node. These algorithms identify decreasing path and            

decrease flows on these paths until the network contains no such path, 

which means that the flow is a minimum flow. By establishing different 

rules for determining the decreasing paths, one obtains different decreasing 

path algorithms for minimum flow (see [6]).  

The preflow algorithms pull flow along individual arcs. These                 

algorithms do not satisfy the mass balances constraints (1.1) at intermediate 

stages. In fact, these algorithms permit the flow leaving a node to be fewer 
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than the flow entering the node. Any preflow algorithm for the minimum 

flow problem proceeds by pulling flow from the neighbor nodes of the sink 

node, creating deficits in these nodes. The basic step in any preflow                

algorithm is to select a node with deficit and to try to eliminate its deficit by 

pulling flow to its neighbors which are closer to the source node. Any               

preflow algorithm ends when all the intermediate nodes have no deficits, 

which means that a minimum flow was obtained. By establishing different 

rules for selecting the nodes with deficit, one obtains different preflow                  

algorithms for minimum flow (see [3, 6]).  

The minimax algorithm determines a minimum flow from the source 

node to the sink node by establishing a maximum flow from the sink node 

to the source node in the residual network (see [2, 6]). 

All these algorithms determine only one solution of the minimum flow 

problem, although, generally, the problem has several optimal solutions.  

 

16.3.1 Notation and definitions 

Let f be a flow from the source node s to the sink node t in the network G = 

(N, A, l, c, s, t). 

For the minimum flow problem, the residual capacity  r(i, j) of any arc 

(i, j)∈A, with respect to a given flow f,  is given by  

 r(i, j)  = c(j, i) - f(j, i) + f(i, j) - l(i, j). 

By convention, if (j, i)∉A then we add arc (j, i) to the set of arcs A and 

we set l(j, i) = 0 and c(j, i) = 0. The residual capacity r(i, j) of the arc (i, j) 

represents the maximum amount of flow from the node i to node j that can 

be canceled. The network Gf = (N, Af) consisting only of the arcs with posi-

tive residual capacity is referred to as the residual network (with respect to 

flow f). 

A cut is a partition of the node set N into two subsets S and S  = N - S; 

we represent this cut using the notation [S, S ]. We refer to a cut [S, S ] as a 

s-t cut if s∈S and t∈ S . We refer to an arc (i, j) with i∈S and j∈ S  as a for-

ward arc of the cut, and to an arc (i, j) with i∈ S and j∈S as a backward 

arc of the cut. Let (S, S ) denote the set of forward arcs and let ( S , S) de-

note the set of backward arcs of the s-t cut [S, S ]. 

For the minimum flow problem, we define the capacity c[S, S ] of an s-t 

cut [S, S ] as the difference between the sum of the lower bounds of the 

forward arcs and the sum of the capacities of the backward arcs. That is,  

 c[S, S ] = l(S, S ) - c( S , S). 
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We refer to an s-t cut whose capacity is maximum among all s-t cuts as 

a maximum cut. 

The residual capacity of an s-t cut [S, S ] is defined as 

 r[S, S ] = f(S, S ) - l(S, S ) + c( S , S) - f( S , S). 

 

Theorem 1. (Min-Flow Max-Cut Theorem) [6]. If there is a feasible 

flow in the capacitated network with nonnegative lower bounds G = (N, A, 

l, c, s, t), the value of the minimum flow from the source node s to the sink 

node t in is equal to the capacity of the maximum s-t cut. 

 

A forward consequence of the Min-Flow Max-Cut Theorem if the fol-

lowing: 

 

Theorem 2. Let [S, S ] be a maximum cut in the network G = (N, A, l, c, s, 

t). Then for any minimum flow f hold the following relations: 
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Theorem 3. If f  is a flow of value v in the network G = (N, A, l, c, s, t), if 

[S, S ] is a s-t cut and if f’  is a flow of value v’, with v’≤ v then v – v’ ≤ 

r[S, S ]. 

 

Proof. From Theorem 1 it follows that 

 v’ ≥ c[S, S ] = l(S, S ) - c( S ,S). 

But v = f(S, S ) - f( S , S). Consequently, 

 v – v’ ≤ f(S, S ) - f( S , S) - l(S, S ) + c( S , S) = r[S, S ]. 

 

16.3.2 Determining all minimum flows 

Generally, the minimum flow problem in a network has more than one              

optimal solution. For many applications, it is important to determine all the 

minimum flows in a given network. There are also several optimization 

problems that can be solved if all the minimum flows are determined. But, 

the minimum flow algorithms developed until now determine only a 

minimum flow. We will describe a decomposition method for determining 

of all optimal solutions of a minimum flow problem. 
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Let K the set of all maximum cuts in the network G = (N, A, l, c, s, t). 

The method of determining all the minimum flows in a network is a             

decomposition method based on Theorem 2. We can apply this method 

only if a nontrivial subset K1 of K is known. This restriction implies no 

loss of generality because we can identify two maximum cuts in the fol-

lowing manner: 

1. We can determine a maximum cut and a minimum flow by                     

applying a modified version of Ford-Fulkerson algorithm for the 

minimum flow problem. A description of this algorithm can be 

found in [6].  

2. For determining a second cut, the minmax algorithm, described in 

[4], can be used. The main idea of this approach is to reverse the 

arcs in G and to compute a maximum flow from the sink node to 

the source node. 

If these two cuts are the same, then there is only a minimum flow in the 

network; otherwise we can determine all the minimum flows through the 

use of the following algorithm: 

 

Decomposition algorithm; 

begin 

 let N1 = ∩
1],[ KSS

S
∈

; 

 K2 = {N1}; 

 p = 2; 

 while there is S∈ K1 \ K2 such that ∃ S'∈ K2 and S'⊂ S do 

 begin 

  let S be the minimal set such that  

           S∈ K1 \ K2 such that ∃ S'∈ K2 and S'⊂ S; 

  let S' be the maximal set such that S'∈ K2 and  S'⊂ S; 

  Np = S \ S'; 

  K2 = K2 ∪ {Np}; 

  p = p +1; 

 end; 

 Np = N \ ∪
2KN

i

i

N
∈

; 

 K2 = K2 ∪ {Np}; 

end. 

 

Let K2 = {N1,...,Np} be the set of node sets determined by the                 

decomposition algorithm. 
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Let Gk = (Nk, Ak) be the subgraph of G induced by the node set Nk, for 

each Nk∈ K2. 

 

Property 4 The graphs Gk = (Nk, Ak), Nk∈K2 satisfy the following                  

properties: 

 Nk ∩Nl = ∅, for all k, l∈{1,...,p}, k ≠ l 

 ∪
2KN

k

k

N
∈

 = N 

 Ak ∩Al = ∅, for all k, l∈{1,...,p}, k ≠ l 

 If A’ = A \ ∪
2KN

k

k

A
∈

 then A’ ⊂ A \ ∪
KSS

SS
∈],[

),( . 

 

Let f be a flow in the network G = (N, A, l, c, s, t). We associate to f a 

set of flows F(f) that contains all the flows gk satisfying the flowing              

constraints: 

gk(i, Nk) - gk(Nk, i) = 0, i∈Nk (1.4) 

l(i, j) - f(i, j) ≤ gk(i, j) ≤ c(i, j) – f(i, j), (i, j)∈Ak (1.5) 

 

for all Nk∈K2. 

 

Theorem 5. Let f* be a minimum flow in the network    G = (N, A, l, c, s, 

t). Then all the minimum flows in G have the form 





∈

∈∈+
=

'),(),,(

)(,),(),,(),(
),(

*

*

Ajiifjif

fFgAjiifjigjif
jif kkk

 

 

Proof. This theorem can be proved in the same manner as the Theorem 2 

in [11]. 

 

Remark If all the subgraphs Gk = (Nk, Ak) induced by the node sets Nk, 

Nk∈ K2 contain no cycles then set of flows F(f) is an empty set and the 

minimum flow problem has an unique optimal solution. 

16.4 Conclusions 

In this paper we focused on characterizing all optimal flows in a network 

because this problem has several practical applications and because it 
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arises as subproblem when dealing with more complex network flow       

problems, such inverse network flow problems. Although minimum flow 

problem has generally several optimal solutions, the algorithms developed 

until now determines only one of them. We described a decomposition 

method for determining all the optimal solutions of a minimum flow              

problem. Starting from a nontrivial subset of the set of all maximum cuts, a 

partition of the node set N is determined. In this way, the given graph G = 

(N, A) is decomposed into several subgraphs Gk = (Nk, Ak). In theorem 5, 

we characterized all the minimum flows by using the flows gk in those      

subgraphs. 

 

References 

1. Ahuja R, Magnanti T, Orlin J (1993) Network flows. Theory, algorithms and 

applications. Prentice Hall, Inc., Englewood Cliffs, New Jersey  

2. Bang-Jensen J, Gutin G (2001) Digraphs: Theory, Algorithms and                

Applications, Springer-Verlag, London 

3. Ciupală L (2006), A deficit scaling algorithm for the minimum flow problem. 

Sadhana 31 (3):1169-1174 

4. Ciupală L, Ciurea E (2001) An approach of the minimum flow problem, The 

Fifth International Symposium of Economic Informatics, pp. 786-790. 

5. Ciurea E, Deaconu A (2009) Minimum Flows in Bipartite Networks with Unit 

Capacities. In N. Mastorakis et al.(eds) Recent Advances in Computers,              

Proceedings of the 13th WSEAS International Conference on COMPUTERS 

(part of the 13th WSEAS CSCC Multiconference) Rodos, Greece, July 23-25, 

2009, pp. 313-315 

6. Ciurea E, Ciupală L (2004) Sequential and parallel algorithms for minimum 

flows. Journal of Applied Mathematics and Computing 15 (1-2): 53-78 

7. Deshpande A, Patkar S, Narayanan H (2005) Submodular Theory Based 

Approaches For Hypergraph Partitioning. WSEAS Transactions on Circuit 

and Systems 6 (4): 647-655. 

8. Guo M, Qu H (2009) Constrained Optimization Evolutionary Algorithm. In 

N. Mastorakis et al.(eds) Applied Computer & Applied Computational            

Science, Proceedings of the 8th WSEAS International Conference on Applied 

Computer and Applied Computational Science (ACACOS '09), Hangzhou, 

China, May 20-22, 2009, pp. 446 -450 

9. Mazlack L (2009) Graph Weaknesses in Commonsense Causal                           

Representation. In N. Mastorakis et al.(eds)  Recent Advances in Computers,                

Proceedings of the 13th WSEAS International Conference on COMPUTERS 

(part of the 13th WSEAS CSCC Multiconference) Rodos, Greece, July 23-25, 

2009, pp. 435-440 



Characterization of all Optimal Flows in Networks      185 

10. Patkar S, Sharma H, Narayanan H (2004) Efficient Network Flow based 

Ratio-cut Netlist Hypergraph Partitioning. WSEAS Transactions on Circuits 

and Systems 3 (1): 47-53 

11. Ruhe G (1985) Characterization of all optimal solutions and parametric 

maximum flows in network. Optimization 16 (1): 51-61 

12. Zerovnik J (201`0) Edge Fault-Diameter of Graph Product. In N. Mastorakis 

et al. (eds) Latest Trends on Computers, 14
th

 WSEAS International                  

Conference on Computers, Corfu Island, Greece, July 23-25, 2010,                  

pp.630-635 

13. Zerovnik J (2010) Fault Diameter of Graph Products and Bundles. In N.             

Mastorakis et al. (eds) Latest Trends on Computers, 14
th

 WSEAS Interna-

tional Conference on Computers, Corfu Islands, Greece, July 23-25, 2010,      

pp. 636-641. 



Parameterization to avoid the Gibbs Phenomenon  

E. Chicurel-Uziel 

Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. 

Universidad 3000, Coyoacan, 04510 México, D. F., México, 

ecu@pumas.ii.unam.mx 

Abstract. Series expansions of functions with discontinuities are plagued by spu-

rious oscillations, this is the well known Gibbs phenomenon. A simple parame-

terization scheme is proposed to circumvent this phenomenon. The original dis-

continuous function is represented by parametric equations, with a special 

parameter such that this representation is continuous, exact and closed. Since the 

cause of the spurious oscillations are the discontinuities and they are removed, the 

Gibbs phenomenon simply does not ever arise. There is no significant change in 

the nature of the original function.  Furthermore, it is possible to reconvert the pair 

of parametric equations into a single non-parametric equation in terms of the 

original independent variable.  

Keywords. discontinuous functions, piecewise continuous, Gibbs phenomenon, 

spurious oscillations, Fourier series. 

17.1  Introduction 

In many applications it is convenient, and often necessary, to represent a 

discontinuous function by a series expansion. It is frequently required that, 

in addition, the representing equation be expressed in terms of                 

transcendental functions, i.e., a Fourier series. The discontinuities,                 

however, give rise to spurious oscillations, the magnitude of which                

remains essentially constant no matter how much the number of terms of 

the series is increased. This is the well known Gibbs phenomenon. 

Many schemes have been proposed to diminish the effect of the Gibbs 

phenomenon, for instance: the classical Fejer and Lanczos averaging 

methods [12]; and, in recent times: the Gegenbauer polynomials direct 

Chapter 17 
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[1,5,6] and inverse methods [1,14], variations of the Lanczos σ factors 

[11,15], Padé methods [2,9], method associated with the sharp transition 

FIR filter [13], Jacobi, Laguerre and Hermite polynomial methods[6], 

wavelet methods [7,8], to mention only a few. Apparently, in all of these 

methods the original function is first expanded in series, and after this       

expansion the series is reconstructed to diminish the effect of the Gibbs 

phenomenon.  

17.2  Concept 

An entirely different concept is proposed in this paper. A very simple 

scheme is established to represent the original discontinuous function by 

continuous, closed and exact parametric equations and this parametric 

representation is then expanded into a Fourier series. But neither the 

original function nor the series expansion are ever reconstructed.  Since 

the discontinuities are the cause of the Gibbs phenomenon, and they are 

removed, the Gibbs phenomenon simply does not arise.  

But there are additional advantages: there are no reconstruction               

distortions and the number of terms in the series that are required to obtain 

an acceptable convergence is significantly reduced. 

Incidentally, this approach made possible the establishment of exact, 

closed parametric equations to represent the Dirac delta [4] as well as the 

equations to represent rotational mechanical elements [3]. 

17.3  Procedure 

This paper deals with piecewise continuous functions, PCF´s, i.e.,               

composite functions made up of continuous component functions with 

jump discontinuities between them, and possibly, at the beginning of the 

first and the end of the last component functions. 

The value of the PCF at a jump discontinuity is usually undetermined 

and therefore, in a plot, it should be associated with a vertical gap. Such a 

representation will be assumed in this paper. In many books and in several 

software, however, the jump discontinuity is improperly represented 

graphically by an analytically non-existing vertical line segment.  

The vertical gap associated with a jump discontinuity may be removed 

geometrically by simply drawing a vertical line segment to link the             

adjacent ends of two consecutive component functions. The analytical           



188      E. Chicurel-Uziel 

existence of this line segment may be established by a suitable parametric 

representation.  

It is worth pointing out that the modified, i.e., linked PCF is                

multi-valued at the junction point and, therefore, it is not continuous there 

with respect to the independent variable and thus the gap has been re-

moved but the discontinuity, or rather, the lack of continuity remains. The 

parameter, however, may be chosen so that both the dependent variable 

and the independent variable are continuous functions of the parameter 

and thus the parametric equations of these functions constitute an exact, 

closed, continuous representation of the discontinuous unlinked original 

PCF. It is convenient that the parameter be as simple as possible, of 

course.  

The addition of the vertical links is a step in the process of obtaining a 

continuous representation but it does not alter the original function in any 

other way. 

17.3.1  Example 

The parametric Fourier series expansion will be determined for the PCF 

defined by the following two component functions: 

1174)(
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xxy
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The Heaviside unit step function : 
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≥=

<=
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 (2) 

is used in this work in order to “switch in” or  “switch out”  functions 

which are valid only on a finite interval.  In accordance with this, all six   

relations (2) may be expressed as a single equation, without the need of 

inequalities, as follows: 

[ ] [ ])11,()7,(
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xhxhxy −+
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



 −
+−=  (3) 

See Fig.1a.  

The first step in the procedure is to eliminate the vertical gaps at the jump 

discontinuities, i.e. at  7,3 == xx  and 11=x  by drawing vertical line 



Parameterization to avoid the Gibbs Phenomenon      189 

segments to link the adjacent component functions, Fig 1b. Parameteriza-

tion will be used to represent these line segments analytically.  

 

 

Fig. 1  (a) Piecewise continuous function, PCF, Eq. (3),  (b) Linked PCF, the              

result of adding vertical line segments to eliminate the vertical gaps of the jump 

discontinuities. The letters refer to the junction points. 

17.3.2  The chosen parameter 

The special parameter chosen for the proposed representation is u: 

⋯+∆+∆+∆+∆= decdbcabu  (4) 

where:  

..










−

−

=∆

linkverticalaisjkifyy

function

componentaisjkifxx

jk

jk

jk  
 

(5) 

Thus, for instance for  5=x ,  Fig. 2a:        

bab xxyyu −+−=       

43502 =−+−=u  

(6) 

for  7=x ,   6=y , Fig. 2b: 
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cbcab yyxxyyu −+−+−=  

101063702 =−+−+−=u  

 

(7) 

 

In this case the start point chosen was point a, but any convenient point 

could have been chosen instead, for instance, the origin.  

 

 

Fig. 2. Values of u for:(a) x=5,  Eq. (6), (b) x=7, y=6, Eq.(7). 

-By reference to Fig. 1b, the parametric relations may now be easily de-

termined graphically, Figs 3a and 3b. 

 

 

Fig. 3. These plots refer to the continuous parametric representation of the given 

discontinuous function. (a) The independent variable vs. the parameter u, plot of 

equation (8a),   (b) The dependent variable vs. the parameter u, plot of equation 

(8b).   

From these Figs. (3a) and (3b) the following parametric equations are es-

tablished: 
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(8b) 

Equations (8) are the continuous, closed and exact parametric equations 

of the given discontinuous function. As a matter of fact, Fig. 1b is actu-

ally a parametric plot of Eq.(8a) as abscissa and  Eq.(8b) as ordinate. 

17.3.3  Fourier series expansion 

We now proceed to expand the parametric function y(u) as a Fourier sine 

series. The coefficients are: 
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or equivalently: 
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,20=L  see Fig. 3b 
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Fig.4. Fourier series expansion plots superimposed on the plot of the original 

function . On the left side: plots of the direct expansion of the original                

discontinuous function.  On the right side: plots of Eqs. (11), the expansion of the 

continuous parametric representation of the function.                

17.4  Results 

Thus, the following pair of equations constitute the Fourier sine series     

expansion of the parametric representation of the original function:  
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Eq. (11b) is the same as Eq. (8a), of course. 

    The plots of the direct expansion in Fourier series of the original           

function, Fig. 4, left side, show greater amplitude in the oscillations next to 

the jump discontinuities which means that these are the spurious               

oscillations characteristic of the Gibbs phenomenon. All three curves             

deviate considerably from the original PCF, as expected. As it is well 

known, the error will never be smaller than about 9% no matter how many 

terms are included in the series expansion [9].  

In the plots of the expansion in Fourier series of the parametric,                

continuous representation, Eqs. (11), Fig.4, right side,. the plot for 10 terms 

of the series is the only one that shows any significant deviation from the 

original PCF but the oscillations in each component curve have constant 

amplitudes, so, it must be concluded, that no Gibbs phenomenon is present. 

The curves for 30 and 100 terms of the series practically coincide with the 

original PCF except for the vertical line segments.   

Furthermore, it is obvious that considerably fewer terms are required for 

convergence in the Fourier series expansion of the linked parametric             

representation of the PCF than in the conventional Fourier series                

expansion. 

But it is possible to reconvert the parametric representation into a single 

(nonparametric) equation in terms of the independent variable x . 

From Fig. 3a and Eq.(8a), for the first component function, in the             

interval, 2≤u< 6, we have: 1−= xu ; for the second component function, 

in the interval, 12≤u<16, we have: 5+= xu . Substituting these relations 

into equation (11a) yields: 
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which is the single equation representing the Fourier sine series expansion 

of the given function in terms of the independent variable.  The plots of Eq. 

(12) are exactly the same as those of the right side of Fig. 4 except for the 

fact that there are no vertical links. 

17.5 Conclusions 

A simple procedure has been established to represent a function with jump 

discontinuities by continuous, closed and exact parametric equations. This 

is accomplished by closing the gaps of the jump discontinuities by means 

of vertical lines which may be established analytically by a specific         

parameterization of the function. The function in terms of the parameter is 

free of discontinuities. Since in the series expansion of the function, the 

jump discontinuities give rise to the Gibbs phenomenon, eliminating them 

prevents the Gibbs phenomenon from arising. 

Furthermore, the parametric Fourier series expansion converges with 

significantly fewer terms than those required by the conventional, direct 

Fourier series representation. 

It is worth emphasizing that, since in the proposed methodology there is 

no reconstruction of the series, the series expansion is, obviously, also free 

of the distortions introduced by the reconstruction methods such as:              

convergence to a deviated value of the function and decreased steepness at 

the points of discontinuity. To be sure, in the proposed procedure the series 

converges to the value of the original function and the rise, or fall, at the 

points of the jump discontinuities is vertical.  
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Abstract. The potency of data mining tools to discover useful rules 

among large data inspires the companies to share their data to be 

mined. The big problem of these companies is trusting to a third 

party miner. Currently, the issue of Multi Party Computation (MPC) 

tries to solve this conflict using cryptographic tool. In this paper, we 

propose a secure summation algorithm for online transactions, 

where the users will send the data to the miner, stepwise. The             

algorithm emerges the excessively useful response time, so the              

execution time of summation for 1000 users’ data is only 0.9s. 

Keywords. Multi Party Computation, Privacy Preserving, Secure 

Counting Algorithm, Distributed Data 

18.1   Introduction 

Today, the large amount of data will be used among the large number of 

companies. There exist a lot of valuable patterns and roles which are hided 

between wooded data. Data mining tools has been developed to discover 

these worth facts. It is sophisticated where the data has been distributed 

among number of parties because of privacy of their sensitive data. Each 

company leans to gain the advantage of data mining tools, but he does not 

propend to share his sensitive data. Multi Party Computation (MPS) has 

been solved this conflict. MPC ensures the privacy preserving of data              



Multi Party Computation using Infinite Product Series over Distributed Data    197 

using cryptographic tools as well as precious aggregation over the                    

distributed data. 

In this paper, we propose a cryptographic method that allows a Miner 

system to compute aggregation of respondents’ data. As we mentioned            

before, it is important that content of data should not be revealed. In this 

algorithm, each client only sends a message to Miner system and there is 

no need to any inner interaction between clients. The algorithm ensures 

that no extra information is revealed to Miner System except the                    

summation of respondents’ data.  

Our algorithm could be used as basic fundamental for data mining tools. 

It is also useful for implementing an E-Voting system or calculation of 

web pages poll result. 

First, we will briefly introduce some related work and basic                           

cryptographic method in section 1.2, respectively and then we will fully 

explain the base algorithm in section 1.3. We explain the problem and         

proposed algorithm in section 1.4 and we represent our result in section 

1.5. The paper will ends with a discussion about the earned result and              

precise conclusion in section 1.6. 

18.2   Background and Related Work 

The secure multi-party computation also known as (MPC) is one of the 

main results of the theory of cryptography. First, Yao’s [2] introduced the 

multi-party computation and nowadays many authors have attend many 

optimizations and extensions to the basic concept, for two main branch; 

the two-party (2PC) and the multi-party (MPC)  [6,7,9,10,14,15]. Most of 

recently papers on secure multi-party computation area have been focused 

on theory of multi-party computation and there is no much applicable                 

implementing of MPC, although, in the few last year some practical             

implementation of multi-party computation has been appeared 

[1,3,11,12,21]. 

There exist many algorithm and techniques for secure multi-party                

computation. We have focused on more practical and high speed                      

algorithms which have been published.  

Secure multi-party computation essentially comes in two flavors [16]. 

The first approach is typically based upon secret sharing and operates on 

an arithmetic circuit representation of the computed function, such as in 

the BGW (Ben-Or, Goldwasser and Wigderson) or CCD (Chaum, Crepeau 

and Damg°ard) protocols [5,13]. This approach is usually applied when 

there is an honest majority among the participants (which can only exist if 

more than two parties participate in the protocol). An alternative approach 
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represents the function as a binary circuit. This approach was used in the 

original two-party garbled circuit construction of Yao [2], and in the 

GMW (Goldreich, Micali and Wigderson) multi-party protocol [7]. 

Our proposed algorithm is secure within the semi-honest model. The                

algorithm is secure under Diffie-Hillman DDH assumption and uses                   

ElGamal encryption for increasing robustness and speed.  

 

18.2.1 ElGamal Cryptosystem 

The ElGamal cryptosystem is a part of public encryption systems. The 

public key is (h, G, q, g) where G is a cyclic group of order q with the          

generator g, h=g
x
 and x is the private key which is randomly chosen from 

[1, q]. All computation in the ElGamal scheme is done in the group G. 

Under the public key (h, G, q, g), the ciphertext of a message m (which 

is the representation of an element of G) is encrypted as E(m)=(c1, c2) 

where c1=m.h
r
, c2=g

r and r is randomly chosen from [1, q].  To decrypt the 

ciphertext (c1, c2) with the private key x, the plaintext message m can be 

decrypted as m=c1(c2
x
)
-1

. It clearly is true because 

c1(c2
x
)

-1 
= m.h

r
(g

rx
)

-1 
= m.h

r
(h

r
)

-1
 = m (1) 

ElGamal encryption is semantically secure under the Decisional                

Diffie-Hellman (DDH) assumption [4]. One family in which DDH is                

believed to be intractable is the quadratic residue subgroup Qp of Zp* 

where p, q are two primes and p=2q+1. 

In the ElGamal encryption, one cleartext has many possible ciphertexts 

because of the random value r. ElGamal supports rerandomization: a new 

ciphertext E′(m) of m can be computed from a ciphertext E(m)=(c1, c2) as 

E′(m)=(c1.h
r′
 ,c2.g

r′
) where r′ is randomly chosen from [1, q]. 

 

18.2.2 Secret Sharing 

Secret sharing is the method of sharing a secret by multiple parties, so that 

no one and no party know the secret, but the secret could be constructed by 

combing some parties’ shares. 

For example, in a two-party case, Alice and Bob share a value x modulo 

some appropriate value N, in such a way that Alice holds a, Bob holds b, 

and x is equal to (a+b) mod N. This is called additive secret sharing. An 

important property of this kind of secret sharing is that if Alice and Bob 

have shares of a and b, then they can each locally add their shares modulo 

N to obtain shares of a+b. 
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Shamir secret sharing is a threshold scheme [19]. In Shamir secret               

sharing, there are N parties and a polynomial P of degree k-1 such that 

P(0)=x where x is a secret. Each of the N parties holds a point in the              

polynomial P. Because k points (xi, yi) (1≤i≤k) uniquely define a               

polynomial P of degree k-1, a subset of at least k parties can reconstruct 

the secret x. But, fewer than k parties cannot construct the secret x. This 

scheme is also called (N, k) Shamir secret sharing. 

18.3   Aggregation Algorithm 

In our scenario, there are n clients, so we call them C1, . . . ,Cn;                  

respectively. Each client owns his private data di. The aim of the Miner 

System is to calculate the sum  with ensuring the privacy of di.  

In our model, because of its practicability, the clients do not need to 

know about other clients and they never communicate themselves. So there 

is no communication channel between different clients. Moreover, each 

client only sends one encrypted message to the Miner. So, they do not need 

multi round interaction between clients and the Miner System. 

The implemented algorithm [17] is based on the homomorphism              

property of mentioned ElGamal encryption [8,20]. The DDH assumption 

and the ElGamal cryptosystem ensure the privacy of the algorithm. The     

algorithm also uses the exponentiation’s mathematical properties for              

converting multiplication to desired sums. We also use modular arithmetic 

operation to speed up the computing time of big prime numbers. It is 

surely affect on algorithm time. 

Let G be a group where (|G|=q for a large prime q), and let g be a           

generator of G. The group G is assumed for all computations in this paper. 

Suppose that each respondent Ci has two pairs of keys: ((xi modq), (Xi 

modq=(g
x
i modq)), ((yi modq), (Yi modq=(g

y
i modq)). We also define 

  
(2) 

  
(3) 

The values xi and yi are private keys; Xi and Yi are public keys. All          

respondents need to calculate the values of X and Y from public keys. 

First, each respondent Ci try to encrypt his value di using his private key 

xi , yi and shared public key X , Y in ElGamal encryption system as              

described below 
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(4) 

Then all clients send their encrypted message to Miner. The Miner             

System gathers all encrypted data together and computes m, h as: 

  
(5) 

The Miner will use m, h for decrypting the d as sum of di. Then the 

Miner tries to find correct d between all possible values. It means that the 

miner tries to calculate (g
d
 modp) for all possible of d values. This stage is 

more time consuming step and will continue until there exist any d as  

  
(6) 

This value is the desired summation of respondents’ votes. Mathematic 

demonstration is shown in [18]. The Miner cannot take discrete            

logarithms; the Miner must use trial and error to learn d. The time              

consumption parameter of algorithm returns to the range of possible values 

of d. In case of Boolean votes the range of d is the number of respondent’s 

n.  

18.4    Problem Explanation 

Base on the mentioned algorithm, before the process starts, the miner 

should ensure that all clients are ready to send their data and the Miner 

knows the number of clients. It means that the system is semi-offline            

system. This condition avoids us to use the algorithm in real world online 

problems like as E-Voting or web page’s poll result. Because in this cases, 

the clients are not ready at the beginning time and the time of user’s          

appearance is optional. The miner does not have any knowledge which 

how many clients could join to system and when they will appear. So the 

Miner could not able to compute the secret shared between the clients. As 

we mentioned before, the secret shared between the users is the product of 

their public keys as we called X, Y. All clients should be present their            

public keys to compute the shared secret key X, Y before aggregation 

started. Moreover, all users should send their data; therefore the Miner 

could compute the summation. 

So, in most online cases the algorithm will fail and is inapplicable. Due 

to the Miner, likewise, clients cannot assess the product of user’s public 

keys that do not join yet.  
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In this paper, infinite product series have been used as shared secret key 

instead of X, Y. The final amounts of these series do not change with               

increasing the number of elements. An infinite product series define as 

  
(7) 

18.4.1 Proposed Algorithm 

The proposed algorithm also is based on the homomorphism property of 

mentioned ElGamal encryption. We note that the security of ElGamal              

encryption depends on new random values being used for each encryption. 

Same as before, each client Ci has two pairs of keys: ((xi modq), (Xi 

modq=(g
x
i modq)), ((yi modq), (Yi modq=(g

y
i modq)) as private and public 

keys, respectively. Remember that the xi and yi values cannot be reused in 

different uses of the running algorithm. Here, we are not able to compute 

the X, Y. So we use two infinite series Ω, Ψ instead of X, Y.  

  
(8) 

  
(9) 

The client Ci encrypt his value di in ElGamal encryption system using 

Ω, Ψ as described below 

  

(10) 

and send his encrypted message in assition to his public keys Xi, Yi to 

the Miner. The Miner System computes m, h, X, Y as before: 

  
(11) 

  
(12) 

The Miner tries to find desired d to satisfy below  

  
(13) 

The desired d is the summation of clients’ data. 
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18.4.2 Algorithm Demonstration 

In this section, we prove that the algorithm represented in 4.1 correctly 

computes the summation of respondents’ data. Suppose that the Miner 

finds a d so 

 

(13*) 

We will show that .  
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18.5     Experimental Result 

We implemented our algorithm in Delphi.  All cryptographic operations 

use the OpenSSL and FGBigInt libraries. The OpenSSL library is                      

accessible at www.openssl.org website. The IIS HTTP Server has been 

used for network simulation under windows Vista on a PC with a 2.4GHz 

processor and 2GB memory. We choose the 512 bits as the length of each 

cryptographic key. The main parameters of experiment are: Number of 

Clients and the range of d. Moreover, the time of computing di in each             

respondent will affect on final time. The key generation also is time               

consuming process, but these parameters are ignored in our experimental 

result. Because, as we mentioned before, these values can be precomputed 

offline before the protocol starts. 

In our result, we propose the time consumption of algorithm as the main 

factor. The algorithm’s stages are: 

• Sending Encrypted message to Miner 

• Computing m, h, X, Y on Miner 

• Finding desired d across its’ possible values 

We define two different phase of result. In first phase, each client owns 

a Boolean data. In sooth, we are counting the users’ data. This case is          

similar to E-Voting systems that each client is free to select an option and 

the Miner aims to know how many users do vote the idea. The final result 

of phase 1 is shown in Fig. 1.1. In this experiment, the respondents send 

the Boolean data to Miner. In this condition, the range of d is equal to 

number of clients. We use 50, 100, 200, 500 and 1000 users in our                      

experiment and the earned time is base on the average of five algorithm 

runs. As you can see, the time offers a linear behavior related to number of 

users. For example, Miner computation takes 952 milliseconds for 1000 

voters. 
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Fig. 1.1. Total time of Protocol related to Number of respondents 
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Fig. 1.2. a) Total time related to Number of Voters and Range of d- b) 3d view 

In second phase, we have focused on non Boolean cases. In this case, 

the time is highly related to range of d. The range of d is not a simple               

parameter and return to many conditions. The Fig. 1.2 shows the time of 

algorithm execution related to number of clients and range of d. We earn 

the algorithm takes less than 0.5 second for 1000 voters with d in range of 

1 to 1,000,000. 

18.6    Discussion and Conclusion 

In this paper, we proposed a secure aggregation algorithm. Our proposed 

algorithm ensures the confidentially of sensitive respondents’ data.                  

Furthermore, it does not need communication channels between different 

respondents or multi round interaction between any respondent and the 

Miner Systems. 

The mathematical demonstration ensures the accuracy of data’s                    

aggregation. On the other hand, The DDH assumption and the ElGamal 

cryptosystem ensure the privacy of the algorithm and respondents’ data, so 

the Miner system can not reveal respondents’ data. Our experimental              

results also show significantly desirable response time. The time                         

increasing is derived from high security of algorithm, because the Miner 

could not able to decrypt the message, so the Miner should use trial and      

error to find the result. The algorithm can also be used for any model               

enabled by counting values. Our both theoretical analysis and proof in              

addition to experimental results show that the algorithm is very efficient 

and runs in desirable time.  
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Chapter 19 

A Method of Extended Linearization for 

Polynomial Periodic and Autonomous Systems  

V. G. Melnikov 

Department of Theoretical and Applied Mechanics, The National Research 

University of Information Technologies, Mechanics and Optics,               

Sablinskaya 14, 197101, St.- Petersburg, Russia, melnikov@mail.ifmo.ru  

Abstract. This paper presents a new method of making an                    

approximately equivalent extended linear systems for autonomous 

nonlinear systems with polynomial structure. This method is based 

on the method of extended model. The Chebyshev economization is 

used to obtain higher accuracy. The method is extended on                

polynomial systems with periodic coefficients. Two examples are 

given to illustrate the developed method. 

Keywords. Chebyshev economization, Chebyshev polynomials, 

telescoping power series, nonlinear systems, approximation,             

extended systems, autonomous systems, periodic systems. 

19.1 Introduction 

The problem of has received much attention in recent years [1-12]. In this 

paper we consider a system of autonomous dynamic equations in the           

normal form with a polynomial right side [1],[5],[6]. We apply a method 

of extending of an object by introduction of a countable set of additional 

phase coordinates, that transforms the nonlinear equations of perturbed 

motion into the linear infinite system of equations [2], [3], and then we   

apply Chebyshev economization method [4], [7] to obtain higher accuracy 

of the finite linear extended system.  
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19.2 Initial and extended systems 

Suppose a nonlinear system can be defined or approximated up to desired 

accuracy as below: 

0 0

1 | | 2

, ( )
n m

ji
i j i j j

j

dx
a x x a x t x

dt

ν
ν

ν= =

= + =∑ ∑  (1) 

where  ija are constant coefficients, 1( ,..., )nν ν ν=  are vector indexes, 

1

1 ...
n

nx x x
νν

ν =  are monomials of the degree 1| | ... nν ν ν= + + , ja
ν  are                 

constant coefficients with vector indexes ν , 2m n= , 1,...,i n= , 

[0,...,0,1,0,...,0]ej ≡  - unit indexes, j ej

i ia a≡ - constant coefficients of the 

linear forms. 

By definiton put 

1{ [ ,., ] , | | , 1,..., }n

n jD x x x x r i n= = ∈ ≤ =ℝ  (2) 

where D  is a finite region of the state-space. We assume  that the                 

nonlinear terms in (1) are small ( )ia Oν ε= , and that we have applied a       

linear change of independent and dependent variables to normalize the             

region D , 

As it is known [2], [3]  systems with polynomial nonlinearity of the 

form (1) can be transformed to the infinite set of linear equations using the 

object extension method. 

Let us introduce the modified method. First we add a finite set of              

additional variables 

1

1 ... , | | 2,3,..., , 2 .n

nx x x m m n
νν

ν ν= = =  (3) 

Note that each homogeneous form of the power | | kν =                            

includes (( 1)( 2)( 1)) / (( 1)!)kN k k k n n= + + + − −  monomials. As a whole 

we add 2 3 ... mN N N N= + + +  new variables. Let us redenote these vari-

ables as follows 

1 2{ ,| | 2,3,..., } [ , ,..., ].n n n Nx m x x xν ν + + += ⇒  (4) 

Differentiating (3), taking into account (1) and using vector indexes we 

obtain 

( )
i i

j

i i e i e j i i

i i j

x x x x x a x aνν ν ν ν
ν

ν ν ′
′− −

′

= = +∑ ∑ ∑ ∑ɺ ɺ  (5) 
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Fig. 1.1. Solutions of the nonlinear and extended linear systems 
 

By (2, )mX  denote the polynomials with terms of the power 2,3,...,m  and 

by ( 1,2 1)m mX + −  denote the remainder polynomials. We obtain 

(2, ) ( 1,2 1)

,

.
i j

j m m m

i i e e

i j

x a x X Xν ν νν + −
− += + +∑ɺ  (6) 

Since every term of the remainder polynomials has at least one variable 

to the power 3k ≥ , we can apply a Chebyshev economization method [4], 

[7] as follows: 

3 2 (3) 3

4 2 2 4 (4) 4

5 2 3 4 (5) 5

3 1
, , 1

4 4
1 1

, ,
8 8

5 5 1
, ,

4 16 16

s s

s s

s s s

x r x r r

x r x r r

x r x x r r

δ

δ

δ

≈ ≤ ≤

≈ − ≤

≈ − ≤

 (7) 

where  δ  is the economization error. Note that for some cases it is more 

convenient to use the alternative approximations 4 3 2 23

4
s s s sx x x r x= ≈ ,              

although they have higher error (3)δ δ= . 

Then using this method repeatedly, we finally get the following                

approximation of the remainder polynomials ( 1,2 1)m mXν
+ −  by polynomials 

(2, )mXν
ɶ  and additional linear and constant terms 
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( 1,2 1) (2, )m m i m

i

i

X c x b Xν ν ν ν
+ − ≈ + +∑ ɶ  (8) 

Substituting (8) for (6), we get the extended linear system in a matrix 

form 

1 1

| |

1 |

, [ ] , [0,0,..., ,., ], ,

{ [ ,., ] : | | , 1,2,..., , | }

n N

ij n n N

n N i

dy
yB C B b C c c y D

dt
D y x x x r i n x r ν

ν

+
+ +

+

= + = = ∈

= = ≤ = ≤

ɶ

ɶ
 (9) 

with the initial conditions 

1

0 0 0 0 10 10( ) , 1,..., , ( ( ) . , |.. | 2,3,... ),n

i ix t x i n x t x x x m
νν

ν ν ν= = = = =  (10) 

Note that in (9) we neglected small quantities. Therefore the solutions of 

the extended system (9)-(10) will satisfy (1) with some residual error. 

19.3 Transformation of polynomial nonlinear systems 
with periodic coefficients 

Suppose a nonlinear system with periodic coefficients is defined as below: 

2

0 0

1 | | 2

, 1,..., 2, ( )
n m

ji
i j i j j

j

dx
A x x A x t x

d
j n

t

µ
µ

µ

−

= =

−= + = =∑ ∑ ɶ  
(11) 

where 1 2( ,..., )nµ µ µ −= , 1 2| | ... nµ µ µ −= ++ , 1 2

1 2... n

nx x x
µµ

µ
−

−=ɶ , 2m n≥ .  

Let the coefficients of the polynomials in (11) be 2π - periodic               

functions of time and let these coefficients be defined as power                

polynomials of the two trigonometric functions 1 cosnx r t− = , sinnx r t= : 

For instance, it could be partial sums of Fourier series, that approximate 

2π  - periodic functions (12). By definiton put 

2

1 1 2{ [ ,..., ] , | | 1, 1,..., 2}, 0n

n iD x x x x r i n t−
−= = ∈ ≤ ≤ = − ≥ɶ ℝ  

where 1D  is a finite region of the state-space, where this system is defined 

1

1

1 1

| | 1
| |

1

| | 1

, , ( , ) 1,..., 2; ,

, | |

n n

m
k kj j jk

i i k i k n n n n

k
m

k

ii k i n n

k

A a A x x k k k i

a A k k

j n

A k
µ

µ µ µ

ξ ξ

ξ

−

−

− −
=
−

−
=

= + = =

+ =

= −

= +

∑

∑
 (12) 



A Method of Extended Linearization for Polynomial Periodic and Autonomous 
Systems      211 

Substituting (12) for (11), we get the system (1)-(2) with the last two 

equations  

1
1 1, , (0) , (0) 0n n

n n n n

dx dx
x x x r x

dt dt

−
− −= − = = =  (13) 

We obtain the united monomials of the form 
2 1 11

2 1 11 ... ...n n n n

k n n nnx x x x xx x x
µ µ µ νµ ν

ν µξ − −
−−== ≡ . Finally, using the developed 

method, we get the extended linear autonomous system (9). As a result, we 

can estimate the solution of the initial periodic system (11), (12) by the             

solution of the extended linear system (9), at (13). Note that two equations 

(13) are linear. 

19.4 Examples 

Consider the equation of holonomic systems with stationary nonlinear           

resistance: 

2 3 22 0, [( , ) :| | 1] ,y ny k y ay D y y y r, y r, r R+ + + = = ≤ ≤ < ⊂ɺɺ ɺ ɺ ɺ ɺ  

or 

2 3

1 1 2 1 2 1 1 2 12(2 ) , , [( , ) :| | ]x nx k x ax x x D x x x r= − + − = = ≤ɺ ɺ  (14) 

Then 1 6[ ,., ]X x x=  is the extended phase row vector of the system and  

10 60(0) [ ,., ]X x x=  is its initial phase, where 

3 2 2 3

3 1 4 1 2 5 1 2 6 2 1 10 2 20
3 2 2 3

3 10 4 10 20 5 10 20 6 20

, , , , (0) , (0) ,

(0) , (0) , (0) , (0)

x x x x x x x x x x x x x x

x x x x x x x x x x

= = = = = =
= = = =

We apply the following economizations  for additional monomials: 

5 2 3 4 4 2 2 4 3 2 2 25 5 1 3
, , ,

4 16 8 4
s s s s j s j j s j s jx r x r x x x r x x r x x x r x x≈ − ≈ − ≈  (15) 

where 1,2.j =  For example here is how we get  the first additional              

equation using (14) and (15) 
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2 2 5 2 2 4

3 1 1 2 1 3 4 3 1

2 4 2

3 3 3

5 5
3 (2 ) 3 6 3 3 ( )

4 16
15 15

[ ,0, , 3 ,0,0] , , 6 .
16 4

, T

x x nx k x ax nx k x a r x r x

x XB B b c k b ar c n ar

= − + − = − − − − ⇒

⇒ = = − − = = +

ɺ

ɺ

Finally, we get the extended linear system X XB=ɺ , where B  be as 

follows: 

2

2

2

2

2 1 0 0 0

0 0 0 0

0 1 0 0
,

0 0 3 2 0

0 0 0 2 3

0 0 0 0 0

n b

k e

a c
B

k g

k h

k

− 
 − 
 − −

=  
− − 

 − −
 

−  

 

where 4 2 2/ 4, 4 2 , 2 3 / 4e ar g n ar h n ar= = + = + . 

Now we can estimate the stability of the initial nonlinear system by the 

eigenvalue spectrum of the extended system, i.e. by the six roots of the 

characteristic equation for B . For example, for 0.8, 0.1, 1,r n k= = =  

0.8a =  we get [ 0.156 0.988 , 1.167 0.936 , 1.041 2.736 ]i i iλ = − ± − ± − ± . The 

error and the initial conditins are defined as                                                      

follows: 1 1 2 2,x y x y∆ = − ∆ = −ɺ , 0 10 0 20 1 2, (0) (0) 0y x y x= = ⇔ ∆ = ∆ =ɺ . 

Two plots are shown in Fig. 1:1 one - of the solution of initial nonlinear 

system ( ( ) at (0) 0.8, (0) 0, [0,10])y t y y t= = ∈ɺ and another one - of the                

solution of the extended linear system 2 ( )x t  with the corresponding initial 

conditions. As it could be seen, these two graphs almost merged. That 

proofs a good accuracy of the proposed linearization method. 

Now consider another example - Van der Pol equation 

2( 1) 0x x x x+ − + =ɺɺ ɺε  (16) 

Substituting  2k x  for x  and 1k x  for xɺ  in (16) we obtain 

2

1 1 2 1 2

2 1 1| | 1, |, | 1,n

x x x x x
x x x x k

µ
µ

= − −
= ≤ ≤ =
ɺ

ɺ

ε

ε

 (17) 

Let us introduce additional variables as follows 

2 2 3 3

3 1 2 4 1 2 5 1 6 2, , ,x x x x x x x x x x= = = =  (18) 
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Fig. 1.2. Van der Pol equation solution and the extended linear system solution on 

the phase plane 
 

Adding (18) to (17) and taking into account Chebyshev economization 

(19) 

4 2 2 3 2 3 2 2

1 2 1 2 1 2 1 2 1 2 1 2

1 3 3
( ), ,

8 4 4
x x x x x x x x x x x xµ µ µ µ µ µ≈ − ≈ ≈  (19) 

we obtain 

1 1 2 3 2 1 3 1 3 4 6

4 3 4 5 5 3 4 5 6 3

1
( )

8
3 9

2 2 3 3 3

, 2

,
4

,

,
2

xx x x x x x x x x x

x x x x x x x x x x

µ µ µ

µ
µ

= − − = = − − −

 = − − − + = − − + = 


+



ɺ ɺ ɺ

ɺ ɺ ɺ

ε ε

ε ε

(20) 

where kµ = ε . The initial conditions for this system are 

2

1 10 2 20 3 10 20
2 3 3

4 10 20 5 10 6 20

(0) (0) (0)

(0) (0) (0)

, ,

, ,

x x x x x x x

x x x x x x x

= = =
= = =

 (21) 

The results of comparative simulation of the initial nonlinear system 

(16) and the extended linear system (20)-(21) at 

0 00.1, 0, 1, 0.1x x k= = = =ɺ ε  are shown in (Fig.1.2). Two graphs almost 

merged in one, so we achieve a high accuracy of the approximation. Note 
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that for the phase trajectory in outside of the periodic cycle we need the 

extended linear system, constructed for the increased area of linearization. 

19.5 Conclusions 

In this paper the new method of making an approximately equivalent              

extended linear systems for autonomous nonlinear systems with                       

polynomial structure is presented.  It is based on the method of extended 

model. The Chebyshev economization is used to obtain higher accuracy. 

The example illustrates the developed method and shows good accuracy of 

the approximation. Using the developed method we can estimate the                  

stability and transient time of the nonlinear system (1) by the spectrum of 

eigenvalues of the matrix B  of the extended linear system. Reliable                 

estimates of stability of motion can be obtained by the method constructing 

a linear inhomogeneous differential inequality for positive definite                 

quadratic Lyapunov function for the extended system variables, including 

error estimates economization. 
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Abstract. The influence of phase-sequence orientation for                
transposed and untransposed phasing overhead power lines on                 
surrounding magnetic field is studied based on Finite Element 
Method analysis.  All available combinations for double circuit 
overhead power line phase arrangements were considered. The soil 
under the lines and a simplified model of human body complete the 
analyzed configurations. The magnetic field distributions and 
strengths and the    outlined The paper presents the Finite element 
analysis of the magnetic field around a 110 KV, double circuit             
overhead power line for different phase arrangements. have been 
evaluated in each case, the results demonstrating that the is an                
important factor that influences the electromagnetic field                      
distribution around the transmission line and some recommenda-
tions. Also some aspects concerning the human exposure are 
pointed, using the same computer based simulation on a simplified. 

Keywords. Electromagnetic compatibility, Overhead power lines, 
Electromagnetic fields, Finite element method, Human exposure. 

20.1 Introduction 

The electromagnetic fields (EMFs) have effects on humans. At high field 
levels, bigger than we usually meet in the environment, the effects are well 

1 1 

1 

1 1 
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understood and there are exposure guidelines in place to protect against 
them. Over the past 20 years, scientists have linked exposure to everyday 
levels of EMFs with various health problems, ranging from headaches to 
Alzheimer's disease. The most persistent of these suggestions relates to 
childhood leukaemia. But the evidence is not straightforward, [1]. 

ICNIRP 1998, [2], guidelines specify, for occupational exposures at 
power frequencies, the basic restriction of 10 mA/m2. For the general            
public, is applied an extra factor of 5, giving a basic restriction of 2 
mA/m2. They also give investigation reference levels for EMFs: 500 µT 
and 10 kV/m for workers and 100 µT and 5 kV/m for the public. The fields 
required to produce the basic restriction are higher.  

One of the most import sources of EMFs are the overhead power lines 
due to their high levels of current and voltages. There are a variety of ways 
to reduce the EMFs around lines, some imply expensive measures, but 
there are others costless, simple and efficient. One option is outlined in this 
paper, namely phase arrangements.  

For the calculation of EMFs produced by overhead power lines, the              
Finite Element Method (FEM) was used. FEM is the most popular, precise 
and developed tools for numerical analysis in engineering. It provides easy 
way to accomplish the non linearity and the complicated structure of the 
materials, great accuracy of the simulation, reduced costs, and speed of 
analysis.  

20.2 Problem formulation 

In this work a double circuit line 110 KV at a load of 500 A with              
architecture dictated by steel pylons SN 110.252 type is considered [3]. In 
Fig. 1.1 is shown the geometry of the line:  

 

Fig. 1.1. The 110 KV double circuit overhead line geometry 
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The Romanian standards in overhead power lines call for transposed 
phasing only for long lines. This measure is due to the conflict between 
equal impedances (equal voltages drop) of each phase and the exploitation 
safety and simplicity.  For double circuit lines, the transposing is applied 
both for the phases of each circuit and for circuits, one to another. To 
achieve the same impedances, the phases have to be placed alternately in 
each possible location on the total length of the line. The problem is more 
complex if the line is with double circuit. So each phase has to take hold 
these location but not neglecting the entire circuit mutual influences.            
Possible solutions imply to create 3 or more equal parts with transposed 
phases. The most common principle is to put one’s phases of each circuit 
in corresponding position and the other 2 in inverse disposal. In these cases 
there are 3 possibilities of phase architectures, shown in Table 1.1 and 
named I.1, I.2, I.3. Other ways are to avoid any correspondence between 
phases, II.1 and II.2, or to transposing only the phases from circuits, both 
having the same arrangements, III. For untransposed phases it can be take 
any combinations corresponding to 1/3 line length, from Table 1.1applied 
to entire line. 

Table 1.1. Transposing principle 

 Circuit 

 1 2 1 2 1 2 1 2 1 2 1 2 

R T R R R S R T R S R R 

S S S T S R S R S T S S 1/3 line length 

T R T S T T T S T R T T 

T S T T T R T S T R T T 

R R R S R T R T R S R R 1/3 line length 

S T S R S S S R S T S S 

S R S S S T S R S T S S 

T T T S T S T S T R T T 1/3 line length 

R S R T R R R T R S R R 

Name I.1 I.2 I.3 II.1 II.2 III 

In Fig. 1.2 are shown some examples of phases transposing, e.g. I.1, III 
and untransposed I.1 and III: 

   
transposed I.1     untransposed I.1 
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transposed III    untrasposed III 

Fig. 1.2. Phase transposing examples of double circuit overhead line 

20.3 Finite Element Method solutions 

The Finite Element Method analyses were done using David Meeker Finite 
Elemet Method Magnetics FEMM® for 2D configurations. In FEMM® 
the mathematical model of time harmonic magnetic problems is defined as 
follows [4]: the electric field intensity, E, and the current density, J, obey 
the constitutive relationship: 

EJ ⋅=σ  (1.1) 

Substituting the vector potential, A, form of magnetic flux density, B, 
into Faraday’s Law: 

0=
∂
∂

+×∇
t

B
E  

(1.2) 

yields: 

t

A
E

∂
∂

×−∇=×∇  
(1.3) 

In the case of 2-D problems, (1.3) can be integrated to give: 

gradV
t

A
E −

∂
∂

−=  
(1.4) 

and the constitutive relationship, (1.1) goes to: 

gradV
t

A
J ⋅−

∂

∂
⋅−= σσ  

(1.5) 

Substituting into Maxwell-Ampere law, written in terms of vector             
potential: 
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( )
JA

B
=







×∇×∇

µ
1

 
(1.6) 

yields the partial differential equation: 

( )
gradVJ

t

A
A

B
SRC ⋅−+

∂
∂
⋅−=








×∇×∇ σσ

µ
1  

(1.7) 

where Jsrc represents the applied currents sources. 
FEMM® considers (1.7) for the case in which the field is oscillating at 

one fixed frequency. For this case, a phasor transformation yields a       
steady-state equation that is solved for the amplitude and phase of A. This 
transformation is: 

( )[ ] ( )tjeatjtaA ωωω ⋅⋅=⋅+= ResincosRe  (1.8) 

Substituting into (1.7) and dividing out the complex exponential term 
yields the equation that FEMM® solves for harmonic magnetic problems: 

( )
gradVJaja

B
SRC ⋅−+⋅⋅⋅−=








×∇×∇ σσω

µ
1  

(1.9) 

All phase arrangements from Table 1.1 were considered in the 110 KV 
double circuit overhead line geometry, showed in Figure 1, where d1 = 6 
m, d2 = 8 m, d3 = 6 m, h1 = 20 m, h2 = 16 m, h3 = 12 m. The 500 A current 
trough phases is closed to maximum load for 300/50 mm2 Aluminium-steel 
reinforced conductor type. The load is considered symmetrically, and then 
the currents of each phase have the expressions: 











⋅+−⋅⋅=











⋅−−⋅⋅=

⋅=

2
3

2
1

2500][

2
3

2
1

2500][

2500][

jAi

jAi

Ai

S

S

R

 
(1.10) 

The resulted configurations including the soil under the line, having a 
0.05 S/m conductivity and a simplified model of human body                            
(a homogeneous 0.2 m radius sphere with a conductivity of 0.2 S/m [1]) 
placed at 1.6 m above ground are analyzed on FEMM®. 
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20.4 Results 

The time-varying magnetic field effect on humans is caused by generates 
circulating tissue currents, which are basic restrictions in ICNIRP              
guidelines. Because these currents are very hard to be measured, the value 
of the magnetic fields is considered as reference levels. The resulted values 
of magnetic flux density around the overhead double circuit line, for all 
phase arrangements, corresponding with notations from Table 1, were       
plotted in Fig. 1.3. It is obviously that I.3 and III arrangements create more 
intense field under the line, than the others. Also a symmetric distribution 
can be observed in 4 analyzed configurations. So some explanatory             
inferences can be drawn, but a final clarification need values to be                 
compared.  

   

   

   

I.1 I.2 

I.3 II.1 

II.2 III 
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Fig. 1.3. Magnetic flux density distributions around line 

For deeper investigations, the graphical variations of magnetic flux            
density at 1 m above the ground, Fig. 1.4, respectively at 1 m under the 
lowest conductor, Fig. 1.5, are very useful instruments: 
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Fig. 1.4. Magnetic flux density at 1 m above the ground 

Again I.3 and III reveal that they are the most powerful sources of 
EMFs, followed by I.2 and II.1 and II.2. It is easily seen that without any 
other measure to limit the EMFs, but the phase arrangements, the field can 
be reduced twice time. 
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Fig. 1.5. Magnetic flux density at 1 m under the lowest conductor 

A proper phase arrangement do not guaranties a smaller value in           
conductor vicinity. It ensures a faster depreciation of field with increasing 
of distance from center line. 

To link the field with the effects on humans, a simplified model is                  
introduced under the overhead power line. The induced currents are               
computed via FEMM® in the body and also in the soil. As results were 
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graph the modulus of total induced current density, for al phase                          
arrangements and having on the horizontal axis the vertical coordinate, see 
Fig. 1.6. The coordinate between 0 and 0.4 m means the human model,             
between 0.4 m and 1.8 m is the air space (where the induced current is       
oviously 0) and over 1.8 m is the soil. 

Induced peripheral current density in human body has the maximum 
value for III phase arrangement, i.e. 0.06185 mA/mm2. For homogenous 
sphere in its centre the current is zero. The value is lower then public                
reference value of ICNIRP. In the soil for same power line configuration 
maximum induced current density is 0.79473 mA/mm2. The current in the 
ground is evaluated until 10 m below surface where it has a diminution          
until 0.33941 mA/mm2. 

It has to be mentioned that in FEMM® all values computed in time 
harmonic regime are maximum values and not the rms values. Interpreting 
the EMFs effect on biodiversity by using these values offer a safety               
comparison, but in case of exceeding the imposed values, the rms can             
simply be computed via √2 factor 
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Fig. 1.6. Induced current densities in body and in soil 
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20.5 Conclusions 

This paper has studied magnetic field distribution resulting from 6 typical 
phase-sequence orientations of 110 KV double circuit overhead power 
lines supported on steel pylons SN 110.252 type. Every line type can be 
considered with or without transposed phases trough entire length, see 
Figure 2. The 2D time harmonic FEM analyses were perform to reach the 
magnetic field around lines and the induced currents in a simplified human 
model. 

All the computations were verified by implementing in FEMM®             
environment the problems with the results reported in [1], [5]. Also the 
specific values obtaining here were compared using interpolation, with          
results of overhead power lines EMFs evaluations [3], [6].  

It was clearly outlined that the phase-sequence orientation is one of the 
key factors that influence magnetic field distribution in electric power 
transmission and distribution lines. The magnetic field strengths can be             
reduced either underneath the lines or far from the lines by changing phase 
arrangement 

The magnetic flux density at height of 1 m above ground level                  
underneath a 110 KV double circuit power lines with rms phase currents of 
500 A does not exceed 5.1 µT, which is 19 times lower than ICNIRP                
public reference value. At 1 m below the lowest conductor the magnetic 
flux density is under 64 µT. 

Induced peripheral current density in human body has the maximum 
value of 0.06185 mA/mm2, which is also a value below the public                 
reference value of ICNIRP. In the soil maximum induced current density is 
0.79473 mA/mm2.  

Even the values are not exceeding the imposed values for public                 
exposure, a costless, simple and efficient measure to reduce the double           
circuit overhead power lines EMFs is to use the phase arrangements (in 
transposed or untransposed phases mode) named in this paper I.1, see Fig. 
1.7 and Table 1. This ensure the minimum field strength at public level       
access (≤ 2.5 m above ground) and of course in direct relation the                
minimum induced current in exposed body. The worst phase sequence         
orientation, having the same distribution of phases for both circuits, Fig. 
1.7, is very used in distribution system, especially for short lines length. 
The ratio between magnetic flux densities corresponding to these 2                   
arrangements is 0.43. 

Because the sources of magnetic field are the currents trough conductors 
and not the voltages, these results have applications at any higher and 
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lower voltage double circuit overhead lines. For different pylon types the 
same algorithm can be applied and a solution will be distinguished. 

  
I.1 = optimum   III = worst 

Fig. 1.6. Optimum and worst phase arrangements 
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Abstract. Iris segmentation is the principal task of Iris based                  

biometric identification systems. Always the low contrast between 

pupil and iris always affects on accuracy of detecting boundary               

between them. In order to increasing the accuracy of boundary         

detecting, we propose a new technique using a difference function 

and a factor matrix. We also enhance the technique to detect the             

pupil and iris as ellipse instead of circle. Experiments show that the 

proposed technique can segment the iris region and pupil region           

precisely. Based on our result, 99.34% of eyes have been segmented 

accurately in 1.24s averagely. 

Keywords. Daugman’s method, Average Square Shrinking,                   

Difference Function, Contour Factor Matrix 

21.1 Introduction 

Iris is the most reliable biometric in secure transaction proposals. Iris in an 

eye image is situated between sclera and pupil. Before iris can be utilized 

for a specific application, it has to be localized first. Iris localization is a 

challenging ordeal due to several reasons such as occlusions to the               

presence of eyelids and eyebrows and also due to the uneven texture            
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contrast [12; 19]. The textural contrast between sclera and iris is high; 

conversely the textural contrast between iris and pupil is low [6-8]. The 

problem is further aggravated with the presence of light reflection in the 

pupil. Hence, an accurate algorithm is desired to detect the subtle               

difference between the two regions.  In this paper, we propose a new                  

algorithm to capture a maximum difference value of both, inner and outer 

iris boundaries. 

This paper next describes related work, followed by new algorithm in 

section 1.3. The paper then continues on result in section 1.4. The paper 

ends with a conclusion in section 1.5. 

21.2 Related Work 

Iris is between sclera and pupil. Sclera region and iris region is easier to 

differentiate due to higher texture contour contrast between the two               

regions. However, there is a lower texture contrast between iris region and 

pupil region. Hence, it is difficult to automatically detect the edge between 

iris and pupil [9].  

Daugman [9] uses a differential operator for locating the circular iris, 

pupil regions and the arcs of the upper and lower eyelids. The differential 

operator is defined as 

( )
( ) ( )

∫∂
∂

∗
00

00

,,
,, 2

,
max yxr s

ryxr

d
r

yxI
rG

πδ  
(1) 

Where I(x, y) is the gray level of image in pixel (x, y), Gδ(r) is Gaussian 

smoothing filter, s is the counter of circle represented by (x0, y0) as center 

and r as radius. The operator searches for the circular path where there is 

maximum change in pixel values, by varying the radius and centre x and y 

position of the circular contour. However, if there is noise in the image, the 

algorithm can fail, such as reflection. When the iris is dark and the image 

is under natural light, the contrast between iris and pupil is low and it 

makes the segmentation process more difficult [4]. 

An automatic segmentation algorithm based on the circular Hough 

transform is employed by Wildes et al. [3; 18]. They also make use of the 

parabolic Hough transform to detect the eyelids, approximating the upper 

and lower eyelids with parabolic arcs, which are represented as; 

( ) ( )( ) ( ) ( )( )jjjjjjjjj kyhxakyhx θθθθ sincoscossin
2 −+−=−+−−  (2) 

Where aj is the controls of the curvature, (hj, kj) is the peak of the                 
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parabola and θj is the angle of rotation relative to the x axis. For edge              

detection in this method we need to choose threshold values.  

Camus and Wildes [3] use similar method to Daugman’s method [5]. 

Their algorithm, finds three circumference parameters (centre (x, y) and 

radius z) by maximizing the following function 

( )∑ ∑= += 
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
−−−−=

n n r

rrr
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,,,
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θ θφ

θ
φθθ

 

(3) 

Where n is the total number of directions and Iθ,r and gθ,r are the image 

intensity and derivatives with respect to the radius in the polar coordinate 

system respectively. 

The performance of algorithm degraded for noisy iris images and when 

there is reflection in the image.  

Daugman’s operator is based on the fact that the illumination difference 

between inside and outside of pixels in iris edge circle is maximum [16]. It 

means the difference values of pixel’s gray level in iris circle are higher 

than any other circles in image. This fact is based on color of iris and color 

of sclera.  

We are not able to calculate Daugman Operator for all feasible circles of 

an image. Therefore, we should restrict the space of potential circles. 

Many researchers assume that the center of iris is near the center of image. 

But in many cases, the center of iris does not fit to the center of image.           

Also they find a range of radius which is based on the size of image. 

In our first paper, we proposed a new Average Square Shrinking (ASS) 

Approach [14] for initializing the range of potential centers. Therefore, we 

restricted the algorithm to a range of (x, y) as potential centers and a range 

of r as potential radiuses. The ASS approach is based on this fact that all 

eyes’ pupils are black and therefore the center of iris must be black.              

Gaussian Blur or other smoothing method is applied to find dark integrated 

pixels in image processing methods. Therefore we used the darkest place 

to detect the center of the iris. We had broken the image to some small 

squares. Each square in a source image will be converted into one pixel in 

shrunken image during ASS process. The size of square and the stages of 

shrinking are related to shrinking (smoothing) factor Sf and number of 

shrinking stages N respectively. The values of all pixels inside the square 

will be averaged in the shrunken image. The darkest pixel (x0, y0) in the 

last image is the pupil center. The range of [x0 ± Sf] × [y0 ± Sf] will be used 

for potential centers of Daugman operator.  

We had converted the Daugman’s environmental integral to a discreet 

summation of a simple difference function on circle’s contour to be             

computable by computer programming. The difference function is 
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( ) ( ) ( )αααα ∆−∆−−∆+∆+= yxIyxIyxdiff ,,,  (4) 

We showed that the difference function also should be computed              

approximately, because we had only integer values for coordinates (x, y) 

and we could not calculate exact difference values. We had only the values 

of top, bottom, left, right and diagonal pixels. Due to this, we converted 

the Daugman operator as follows:  
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However, our previous method worked very well, but it did not compute 

the difference value correctly. The performance of our algorithm degraded 

for low texture contrast eye’s image. 

21.3 Proposed Algorithm 

We use the Average Square Shrinking Process to find the potential           

centers and the estimated range of radius. Then, we apply the Daugman 

operator for improving the iris center and radius. The higher value of 

Daugman operator corresponded to the exact center and radius of iris. 

These steps will be continued iteratively on higher shrunk image to find 

the final center and radius. 

21.3.1 Ellipse Segmentation 

The experiment was conducted on many eyes’ images; it has been             

observed that so many irises are not exactly circle. So an ellipse view will 

improve the accuracy of iris segmentation. We have made a slight             

modification to Daugman’s operator to make it desirable for ellipse              

function. The new operator is: 
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Two parameters ra, rb have been replaced by radius parameter r. The 

new operator is able to look for any feasible ellipse around the iris to find 

the best match. 

21.3.2 Improving Difference function 

The Daugman Operator tries to compute the difference gray level value 

between inside and outside pixels of iris circle. Daugman demonstrated 

that this value is the greatest one between all feasible circles of an eye            

image [17].  

There are discrepancies in the difference function created in our first         

algorithm as described next. The difference function computes the              

difference value by subtracting the opposite pixels. These opposite pixels 

are right and left pixels, top and bottom and two pair of diagonal pixels. 

Fig 1.1.a shows the problem of this assumption that should be removed. 

The outside and inside pixels of difference function are colored in Fig 

1.1.a. The gray rectangles are outside pixels set and hatched rectangles are 

inside pixels. Let us highlight the problem by an example. If you focus on 

Octad5, the gray rectangles are really inside the circle, whereas they are     

assumed as outside pixels in difference function. 
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                 Octad4                 Octad2 
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Fig. 1.1. a)The Wrong Pixel Setting. b) Correct Pixel Setting 

The correct adjustment of outside and inside pixels around the circle’s 

contour is shown in Fig 1.1.b.  

We have only eight pixels around the main pixel. So we divide the circle 

to eight regions, because the outside and inside states of pixel in each              

region are the same. This fact is shown in Fig 1.1.b. Each region covers 

2π/8 or π/4 which is equal to 45°. First the center degree of each region is 
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computed, because each region corresponds to its center. The center of 

each region is represented as θj with 22.5° offset as follows: 



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We proposed a new factor matrix with 3×3 dimension. The matrix is 

multiplied by the neighbors of the main pixel correspondingly. The factor 

matrix values are selected from (-1, 0, 1). The multiplication factors for 

outside pixel is 1 and for contour and inside pixels are 0 and -1,                 

respectively. By adding the values of pixels after applying the factors, we 

obtain the real difference between outside and inside pixels. The factor 

matrix is: 
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Some examples of factor matrix are shown below. 
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The factor matrix ensures the correct setting for outside and inside              

pixels as shown in Fig 1.1.b. So the new difference function, diff(x, y) is: 
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We delete the number of stages parameter N that is required to be input 

manually. This is accomplished by adopting a threshold for the size of the 

last shrunken image.  The image is shrunk until the size of image is less 

than the threshold. Consequently, the range of radius parameter can also be 

ignored, since in an eye image with width 10 pixels, the radius can be               

estimated by 2 pixels.  
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21.4 Experimental Result 

The algorithm is developed using Delphi programming language. It is 

tested on 2.4 GHz CPU with Windows Vista and 2 GB Ram. Two famous 

iris databases have been selected for experiments. CASIA-IrisV3 [1]            

includes three subsets which are labeled as CASIA-IrisV3-Interval, 

CASIA-IrisV3-Lamp, CASIA-IrisV3-Twins. CASIA-IrisV3 contains a          

total of 22,051 iris images from more than 700 subjects. All iris images are 

8 bit gray-level JPEG files, collected under near infrared illumination. 

MMU iris database [2] contributes a total number of 450 iris images.                 

Subjects come from Asia, Middle East, Africa and Europe. Each of them 

contributes 5 iris images for each eye. 

The maximum value of difference function for edge between sclera and 

iris (outer boundary) and for edge between iris and pupil (inner boundary), 

are computed using the previous algorithm and the current algorithm. The 

results are depicted in Fig 1.2, 1.3. In addition, we investigate the effect of 

circle sample (CS) on the maximum value of difference function. It is           

noticed that, as the circle sample increases, so does the maximum value of 

difference function. Hence, the circle sample is relatively proportional to 

maximum value of difference function. The results show that with the low 

value of CS both algorithms display a similar performance and there is no 

significant variation between difference values. However, by increasing 

CS, the distinction of difference value on the new algorithm will be              

extremely improved. The amount of circle contour sample (CS) versus             

detection accuracy and time consuming has been studied in [14; 15]. With 

choosing correct amount of CS, the manual inference of user decreases. 
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Fig. 1.2. Maximum Value Related to CS for Iris Circle 
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Fig. 1.3. Maximum Value Related to CS for Pupil Circle 

It is noticed that the maximum difference value is doubly increased in 

the new algorithm for both outer and inner iris boundaries when compared 

to our previous algorithm. The maximum difference value is bigger for 

outer boundaries as compared to inner boundaries. This is due to the high 

texture contrast between sclera and iris. Conversely, the small difference 

value for inner boundary is due to the low texture contrast between iris and 

pupil. 

The result of ellipse operator has been shown in Fig 1.4. It is disclosed 

that the ellipse operator redounded to better segmentation and accuracy has 

been extremely increased. But, due to increasing one more radius                        

parameter, we expect that the processing time increases, respectively. So 

we compare the performance and processing time of our new algorithm 

with other  algorithms obtained from [13]. Table 1 shows the boundary        

detection rate of various algorithms in comparison to our algorithm. 

   

Fig. 1.4. The Original image and result of Ellipse operator vs. Circle operator   
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Table 1. Detection Rate of Proposed Algorithms 

Algorithm Time (s) Detect Rate 

Daugman [11] 5.36 98.58% 

Daugman [10] 0.984 54.44% 

Wildes [11] 6.34 99.82% 

Wildes [10] 1.35 86.49% 

Masek [10] 7.5 83.92% 

Proposed Algorithm 1.24 99.34% 

With regards to Table 1, it is noticed that our new algorithm shows the 

highest rate of iris boundaries detection related to its execution time in 

comparison to existing algorithms.  Based on these findings, we are              

confident that the subsequent step of feature extraction will aid us to                

produce good quality textural features for further analysis. 

21.5 Conclusion 

The detection of iris boundaries is a difficult task in iris recognition                     

systems. This is due to the low texture contrast between pupil region and 

iris region. In this paper, we hybrid summation function and factor matrix 

to be able to detect the iris boundaries. Both theoretically and our                    

experimental results show that the proposed new algorithm strongly                

improved the Daugman Operator Difference Function and the detection 

accuracy has been significantly improved by new algorithm. The                    

segmentation rate using this algorithm is 99.34%. 

In future, we shall improve the texture contrast on iris boundaries by 

applying the high contrast image processing technique to obtain better             

results. 
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Abstract. We present an innovative adaptive, model following            

control technique for single-input nonlinear systems and apply it to 

control a chaotic system with unknown parameters. The same idea 

is used to solve three important problems: suppression of chaos,          

anticontrol of chaos and chaos synchronization. We propose to use 

‘approximators’ linearly parameterized by adaptive parameters. 

‘Approximators’ may be constructed as an neural network, fuzzy 

system or may be build using a simplified description of the                

unknown part of the plant. We illustrate the proposed approach with 

control of Duffing oscillator problem. 

Keywords. Adaptive control, model-following control, chaotic            

systems, Duffing oscillator. 

22.1 Introduction 

Recently, as more and more knowledge is gained about the nature of chaos 

and number of possible applications of chaotic system increases, scientific 

interests are directed to problem of controlling a chaotic system [1]. In the 

beginning, the goal of controlling chaos was to eliminate the harmful             

chaotic motion, usually by steering the trajectory of a chaotic system to a 

periodic one. This operation is usually called ‘suppression of chaos’ [1]. 

Another control problem is to synchronize two chaotic systems (‘chaos 
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synchronization’). It is utilized in applications in digital communication, 

and save data transition [3]. Since lots of applications of chaos are found 

significant attention has been focused on problem of chaos generation and 

a new notion ‘chaotification’ was proposed. One of possible approaches is 

to control a system (linear or nonlinear, chaotic or free of chaos) to follow 

chaotic movement of a ‘master’ system (‘anticontrol of chaos’). All these 

control tusks (suppression of chaos, chaos synchronization and anticontrol 

of chaos) may be consider as a nonlinear tracking or model following 

problem, and so several nonlinear control techniques were used to find a 

solution [1,2]. Integrator backstepping and adaptive integrator                  

backstepping ware found as useful and effective [4,5,7].  

In this contribution we propose a model-following adaptive technique 

based on utilization of linearly parameterized ‘approximators’ of plant 

nonlinearities. The proposed method is applied for suppression,                           

synchronization and anticontrol of chaos in Duffing oscillator – a                 

two-dimensional chaotic forced system wildly discussed in the literature of 

chaos research [1,4,5,8]. We assume that parameters of the controlled              

system are unknown. The results may be easily transit to another chaotic 

systems and used in many applications [9,10].  

22.2 Adaptive model-following control  

Motivated by a structure of many chaotic systems we consider a single            

input n-dimensional system in a canonical form described by:  

(1.1) 

where x=[x1,...,xn]
T
 are state variables u – control input,  describes 

the known part of the plant and - the unknown one. The desired              

behavior of the system is described by a model with state xd=[xd1,...,xdn]
T
 

and control ud:  

 

(1.2) 
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The control goal is to make the state variables of the plant (1.1) to follow 

the state of the model (1.2) in sense of upper ultimate boundness of the            

error. The first aim is to capture the unknown function F(x) in the plant         

description. We accomplish it constructing a special system to                         

approximate F(x) over a compact domain. 

 

22.2.1 Nonlinear ‘approximators’ 

Consider a nonlinear function F and assume that on a compact subset DF 

of its domain we are able to approximate F by a model described by:  

 
(1.3) 

where  is a vector of parameters to be changed during adaptation and  

is a nonlinear mapping of inputs . At this point it is not necessary 

to precise number of parameters, but of course dimensions of  and  

agree. An ‘approximator’ of the presented type may be constructed as an 

artificial neural network, fuzzy system or may be build using a simplified 

description of F. The nature of the ‘approximator’ is not important as long 

as it possesses the structure defined by (1.3) and we may assume existence 

of ‘optimal’ parameters:  

 

(1.4) 

The model corresponding to the ‘optimal’ parameters will be denoted by:  

 
(1.5) 

We assume that the upper bound for the modeling error exists:  

 
(1.6) 

Finally the difference between ‘optimal’ and actual parameters will be            

denoted by: 

 
(1.7) 
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22.2.2  Model-following by ‘approximate system’ 

Consider a dynamical system utilizing the ‘approximator’ constructed for 

 – the unknown function in the plant description (1.1):  

 

(1.8) 

The design parameters  will be defined in the next    

section. If we apply control law satisfying condition:  

 
(1.9) 

we will obtain 

 

(1.10) 

so design parameters  will be used to decide speed of 

convergence , as the characteristic equation of (1.10) is 

 . 

Equation (1.9) gives open expression for u if f(x,u) is linear in u with               

invertible gain b(x):  

 
(1.11) 

In this case:  

(1.12)

22.2.3 Adaptation 

Adaptive laws will be used to ensure that .  

After denoting , under condition (1.9) and taking into                

account (1.6) and (1.7) we get:  



Adaptive, Model-Following Chaos Suppression and Synchronization      241 

 

(1.13) 

Let us choose such , that 

 is stable and let us solve Lyapunov             

equation: 

 
(1.14) 

with a positive definite matrix Q. As E is stable P is positive definite. We 

choose Lyapunov function:  

 
(1.15) 

where  is positive definite design parameter. After calculation of              

Lyapunov function system derivative we get:  

 
(1.16) 

where  is the last column of P. Choosing adaptation law  

 
(1.17) 

with a small positive  we are able to prove that  is negative outside the 

set  

 

(1.18) 
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where  is the minimal eigenvalue of matrix  and so the bound  

decreases with increasing eigenvalues of  and increases with growing 

. 

According to the well known generalization of Lyapunov theorem due 

to LaSalle and Lefschetz [6] the tracking errors e1 and e2 are uniformly    

ultimately bounded. Adaptation laws (1.17) describe a response of stable 

linear system to a bounded input, so adaptive parameters are bounded.  

We are able to modify the tracking errors by proper choice of design                

parameters. Adaptation speed is influenced mostly by Γ and final                 

parameters value by σ.  

We have to stress that the number of adaptive parameters is not decided 

yet. If approximators are more accurate the tracking error bound will be 

smaller and the control effort will be lower. Increasing the number of 

adaptive parameters results usually in improvement of model accuracy, but 

each parameter means one more differential adaptive law to be solved          

on-line, so we should compromise between these criteria. Sometime, if fast 

adaptation is possible just one adaptive parameter in a model is enough. 

22.3 Duffing oscillator 

We consider a second-order chaotic system described by the Duffing’s 

equation:  

 

(1.19) 

where t is time, ω - external force frequency, q- it’s amplitude, p, p1, p2 are 

real constants. The control variable is u. For p1>0 Duffing oscillator can be 

interpreted as a forced oscillator with a spring, whose restoring force is 

. When p2>0, we have a ‘hardening spring’, and when 

p2<0 - a ‘softening spring’ although this interpretation is valid only for 

small x. For p1<0, the Duffing oscillator describes the dynamics of a point 

mass in a double well potential, and it can be a model of a periodically 

forced steel beam deflected toward the two magnets. Solutions of (1.19) 

may display complex phenomena, including various limit cycles and             

chaotic behaviors. The uncontrolled system has different chaotic                  

trajectories for different values of q, as it is demonstrated in fig. 1.1 and 

1.2.  
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Fig. 1.1. Duffing oscillator phase-plot. 

Chaotic behavior,  p=0.4, p1=-1.1,  

p2 =1, q=2.1, ω=1.8, u=0 

Fig. 1.2. Duffing oscillator phase-plot. 

Limit cykle,  p=0.4,  p1=-1.1,  

p2 =1, q=4, ω=1.8, u=0 
 

For numerical experiments let us consider Duffing oscillator with               

parameters  p=0.4, p1=-1.1, p2 =1, q=2.1, ω=1.8. The uncontrolled system 

demonstrates chaotic behavior (fig. 1.1). We assume that all system                 

parameters are not known exactly. The unknown part of the plant is                 

described by:  

  
(1.20) 

while the known one is just . We consider two possible                

approximators for F. The first one with one adaptive parameter:  

  

 

(1.21) 

and the second with four adaptive parameters:  

  

  

(1.22) 

where  denotes nominal, known value of the parameter which differs up 

to 20% from the actual one.  

During all numerical experiments parameters  responsible for 

speed of convergence of  were chosen to place eigenvalues of             

linear system described in equation (1.10) in -5 and -8. Parameters  

responsible for speed of convergence of  were chosen to place            

eigenvalues of linear system described in equation (1.13) (matrix E) in -10 

and -12. Matrix Q in Lyapunov equation was . The                     

remaining parameters were  and  = 1 or 5.  
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The first control tusk is to synchronize the plant output x with a limit 

cycle described by: 

 

(1.23) 

Tracking error is kept into the bound, which may be controlled by design 

parameters. All adaptive parameters remain bounded. The number of              

adaptive parameters is not a critical factor for tracking accuracy – using 

one parameter we were able to obtain better results than for four                         

parameters. System performance is illustrated in fig. 1.3-1.5. 

During the second test Duffing oscillator with parameters p=0.4, p1=-

1.1, p2 =1, q=4, ω=1.8, (slave), which uncontrolled converges to a limit 

cycle (fig. 1.2) will be forced to follow (master) chaotic Duffing system 

with parameters p=0.4, p1=-1.1, p2 =1, q=2.1, ω=1.8, u=0, (fig. 1.1) – it is 

chaos anticontrol problem. Control performance is illustrated in fig. 

1.6,1.7,1.8. Again we notice that using one parameter we were able to              

obtain better or similar results than applying four parameters. 

In the third experiment two first state variables of 3-dimensional              

chaotic Ameodo system (master): 

 

(1.25) 

with parameters a0=-5.5, a1=3.5, a2=1, a3=-1, x1(0)=3 will generate de-

sired trajectories for chaotic Duffing system with parameters p=0.4, p1=-

1.1, p2 =1, q=2.1, ω=1.8, u=0, b=0.8(1+0.2cos2t) (slave). Results are 

presented in fig. 1.9,1.10. Again tracking performance is satisfactory and 

adaptive parameters remain bounded. In this case tuning the system with 

four adaptive parameters was significantly more difficult than with one 

adaptive parameter. 
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Fig. 1.3. Phase plot of controlled Duffing Fig. 1.4. Tracking error during suppres-
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oscillator. One adaptive parameter. Red – 

desired, blue – Duffing oscillator. 
sion of chaos. Blue – 1 adaptive parame-

ter, black – 4 adaptive parameters. 
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Fig. 1.5. Adaptive parameters during sup-

pression of chaos. Blue – 1 adaptive pa-

rameter, black – 4 adaptive parameters. 

Fig. 1.6. Chaos anti-control of two 

Duffing oscillators. One adaptive pa-

rameter. Red – master, black – slave 
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Fig. 1.7. Tracking error during chaos anti-

control. Blue – 4 adaptive parameters, 

black – 1 adaptive parameter. 

Fig. 1.8. Adaptive parameters during 

chaos anti-control. Blue – 4 adaptive pa-

rameters, black – 1 adaptive parameter. 
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Fig. 1.9. Synchronization of Ameodo 

(red) and Duffing (black) chaotic systems. 

One adaptive parameter 

Fig. 1.10. Tracking terror during syn-

chronization of Ameodo and Duffing 

chaotic systems. One adaptive parameter. 
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22.4 Conclusions 

We present an innovative adaptive, model following control scheme and 

apply it to control a chaotic system with unknown parameters. Although 

presented controller derivation techniques are general or may be easily 

generalized to a wide class of nonlinear plants we illustrate them with             

control of Duffing oscillator. The same approach is used to solve three        

important problems: 

• chaos stabilization to a given orbit or point (suppression of chaos), 

• anticontrol of chaos, 

• chaos synchronization. 

The main idea of adaptive control was to use ‘approximators’ linearly             

parameterized by adaptive parameters. Such approximator may be                 

constructed as an artificial neural network, fuzzy system or may be build 

using a simplified description of the unknown part of the plant as it was 

done in this study. 

It is important that number of adaptive parameters is not stiffly imposed 

by the design procedure and for all tested control problems one adaptive 

parameter for one approximate model was sufficient. It makes the                     

controller simpler and easier applicable. 

Comparing the presented approach with the adaptive backstepping 

technique developed in [7] we find several similarities, although                   

backstepping controllers were slightly easier to tune. 
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