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Abstract: - The aim of this paper consists in developing a model for realistic calculation, but at the same time 
not a very complicated one, in order to determine the operating parameters of a rocket motor with solid 
propellant (RMSP). The model results will be compared with experimental results and the quality of the 
model will be evaluated. The study of operating stability RMSP will be made accordingly to Liapunov 
theory, considering the system of parametric equations perturbed around the balance parameters. The 
methodology dealing with the stability problem consists in obtaining the linear equations and the verification 
of the eigenvalues of the stability matrix. The results are analyzed for a functional rocket motor at low 
pressure, which has the combustion chamber made of cardboard, motor used for fire-extinguishing rocket. 
The novelty of the work lies in the technique to tackle the stability problem for the operation of rocket 
motors at low pressure, many of them representing specific applications for civil destination.  
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 NOMENCLATURE 
λ  - Ratio between velocity in exit plane and velocity in 
throat area;  
ρ - Gas density in burning chamber; 
ψ  - Ratio between propellant mass consumed and total 
propellant mass; 
ϕ  - Erosion factor; 
σ - Ratio between instantaneous burning surface and 
initial burning surface;  
k  - Gas specific heats ratio; 

tA - Throat area; 

eA - Exit area; 
F - Motor thrust; 
ΣI  - Total impulse;  

CQ  -Heat quantity educts by burning reaction; 
p  - Gas pressure in burning chamber; 

ep  - Gas pressure in exit area; 

Hp -  Atmospheric pressure; 
R  - Gas constant in burning chamber; 
T - Gas temperature in burning chamber; 
u  - Burning rate; 

nu1 - Linear burning rate in normal conditions;  
V  - Volume of the burning chamber; 

ew   -Gas velocity in exit plane; 

tw  -Gas velocity in throat plane; 
S - Instantaneous burning surface; 

TS - Instantaneous propellant cross surface; 
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1 Introduction 
Using missiles into civilian area involve a series of 
specific measures for compliance with environmental 
restrictions like a greater degree of safety in operation, 
and person’s protection. An example of such an 
application is the fire extinguishing rocket, which has a 
motor made of cardboard, ecological, non-hazardous but 
with low operating pressure. This type of technical 
problem causes the need for a scientific approach to 
support the technological effort of achieving such a 
missile motor capable of stable operating at low 
pressure, which is the subject to approach in this work. 
Determining the functional parameters and analyzing the 
stability are one of the main challenges in designing 
rocket motor solid propellant - RMSP.  
The problems of combustion stability can be addressed 
by different ways both experimental and theoretical, a 
series of methods and models being shown in the works 
[1], [3]. Note that some papers propose a different 
approach of stability for linear and non-linear 
phenomena. Unlike this, in our work the approach will 
be unitary, being focused on a particular and difficult 
case, that of low pressure combustion. 
In our study we will develop a non linear model for 
calculus of the functional parameters of RMSP, followed 
by the analysis of the evolution of balance stability 
regarded as the basic movement. Stability analysis for 
the perturbed equations of the RMSP will be made 
according to Liapunov theory, by placing them in the 
linear form.  
Resuming, our work has two purposes:    
- Scientific one – to check the possibility of applying 
Liapunov theory [2] to analyze the stability of the 
balance parameters of RMSP at low pressure.   
- Technical one – to design the rocket motor for the fire-
extinguishing rocket 

 
2   RMSP internal ballistic model 
An important parameter in an internal ballistic model for 
a rocket motor is the burning rate of propellant. In the 
case of RMSP, the burning rate is called regression rate 
and it is given by the relation indicated in paper [1]  

           mapxu )(ϕ= ,  (1) 
where the erosion factor has been denoted with )(xϕ   
and the coefficient a  can be expressed by: 

 )( Nin TTDm
HoN epua −−=     (2) 

where )( Nin TTDe −  shows the influence of the variation of 
the initial propellant temperature and Hp  means 
atmospheric pressure. Exponent D , parameter m  and 
regression rate Nu1  are determined experimentally, under 

normal propellant temperature )( NT .  
To assess the erosive phenomenon we use the parameter 
named in [1] "Pobedonosetov" parameter: 

( ) ( )TcamT SSSSx −−= ,    (3) 
which allows us to determine the erosion factor: 

⎩
⎨
⎧

≤
>−×+

=
−

1001
;100)100(102,31

)(
3

xfor
xforx

xϕ  (4) 

In order to obtain surface burning area, we define the 
parameter: 

( ) pVVV /0−=ψ       (5) 
For burning area and propellant cross-section the 
quadratic fitting can be used: 
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This results in: 
)()( 0 ψσ=ψ SS ;                 (8) 

)()( 0 ψσ=ψ TTT SS .                   (9) 
Altogether, by simple geometrical reasoning, volume 
variation in time is given by: 

mapxSV )()( ϕψ=&  ,      (10) 
relation which represents volume equation. 
Using the continuity equation, the variation of the mass in 
the burning chamber is the difference between the mass 
produced in time unit by burning the propellant and the 
mass that exits the motor through the nozzle in time unit: 

( )
outin mm

t
V

&& −=
∂

∂ ρ
,    (11) 

where V  is the volume of the burning chamber, and ρ  is 
gas density inside the burning chamber, inm&  is the input 
mass generated by the combustion of propellant inside 
the motor chamber and outm&  is the output mass ejected 
through the nozzle of the rocket motor. The input mass 
per time unit is given by the propellant input:  

pin mm && = ,        (12) 
and the output mass in time unit is expressed by the exit 
through the nozzle: 

ρΛ= pAm tout& ,   (13) 

where tA  is the throat area, p  is chamber pressure,  ρ  
is gas density,  and 

( )( )( ) ( )1112 −++=Λ kkkk .   (14) 
Taking into account that the propellant consuming mass 
in time unit is:  

Vm pp
&& ρ= ,       (15) 
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developing relation (11) we obtain density equation: 

 ( ) ρ
Λ

−ρ−ρ=ρ p
V
A

V
V t

p

&
&  .   (16) 

 From equation (10) the density equation becomes: 
( ) 2/12/111 ρΛ−ϕρ−ρ=ρ −− pVApaVS t

m
p&     (17) 

Beside the volume equation (10) and density equation 
(17), the third equation expressing the change in 
temperature or pressure of the combustion products we 
need. 
 We consider the input energy for the system is given by 
the heat quantity CQ  inserted by burning reaction of pm  
solid propellant.  
Also, we take into account that the specific heat at 
constant volume VC  can be obtain from the relation: 

( )1−= kRCV .    (18) 
where k  is  the ratio of specific heats and R  is the gas 
constant in burning chamber. 
To build the temperature equation, we start from the 
following relationship of energy balance: 

4321 ddddd UUUUU +++= ,  (19) 
where the reaction energy of the propellant, given by:  

 pC mQU dd =  ,       (20) 
is converted into: 
- internal energy growth due to additional gas from 
the combustion chamber: 

( ) ρ−=ρ= − d1dd 1
1 TVkRTVCU V ;   (21) 

- energy in gas from the combustion chamber 
increased due to temperature variation: 

( ) TVkRTVCU V d1dd 1
2 ρ−=ρ= − ;   (22) 

- kinetic energy due to gas flow: 
( ) outmRTkkU d1d 1

3
−−= .   (23) 

- loss of energy due to the disposal of heat through 
the chamber walls: 

tqU dd 4 = ,       (24) 
where q  is the amount of heat transferred to the 
combustion chamber in time unit (heat flow) [ ]sJ / .                                    
If we take the derivative of (19) with respect to time and 
then simplify it, we obtain: 

VoutVpC CqmkTTVTVCmQ ++ρ+ρ= &&&&     (25) 
hence we obtain the temperature equation: 
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Taking into account that the state equation can be written 
in form: 

TTpp &&& +ρρ= ,      (27) 
we transform the temperature equation (26) into the 
pressure equation: 
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Having differential equations (17) and (28) solved, for 
temperature we can use the state relation: 

( )ρ= RpT .      (29) 
Regular paper, for the rate between throat area tA  and 
exit area of the nozzle eA  propose the relation: 
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with the relative pressure is given by: 
ppp ee =

~  ,   (31) 
where ep  is gas pressure in exit area. 
If we take into account that the gas velocity in the exit 
plane is: 
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and the gas velocity in throat plane is: 

RT
k

kwt 1
2

+
=  ,   (33) 

the velocity report becomes:  
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From (30) and (34) we can obtain the rate surfaces 
formula: 
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The relation (35) leads to the transcendental equation: 
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We can observe that the right member of the relation 
(36), satisfies the inequality: 

1
d

)(d
>

λ
λf

,            (37) 

which means that relation (36) considerate like iterative, 
does not converge. In this case, we put this relation in 
Newton-Raphson form: 

i
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     Assuming constant ratio of specific heats throughout 
the expansion process, one finds the thrust force relation 
indicated in paper [1]: 
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where Hp  is atmospheric pressure, and cσ  is overall 
loss of thrust by nozzle. The simplest nozzle is the 
conical one with a divergence cone half angle of 10-18 
degrees. For such nozzles, part of the force of exhaust 
gases is orientated transversally and thus does not 
produce any thrust at all. In order to correct this 
phenomenon one can use a correction factor related to 
the divergence cone half angle. Also other loses can 
appear, all of these can be taking into account using 
coefficient cσ .  
 
3   Balance parameters 
The studying of stability in operating a RMSP will be 
made according to Liapunov theory, considering the 
system of parametric equations perturbed.  
This means that one has to consider the system of 
parametric equations perturbed around the balance 
parameters. This involves a disturbance applied shortly 
on the evolution of balance, which will produce a 
deviation of the state variables. Developing in series the 
perturbed parametric equations in relation to status 
variables and taking into account the first order terms of 
the detention, we will get linear equations which can be 
use to analyze the stability in the first approximation, as 
we proceed in most dynamic non linear problems. 
Thus, for defining the evolution of balance, we consider: 

0=p&  0=ρ& ; ctSapV m ==&  .     (40) 
Using these, from relations (16) and (28) we obtain: 

( ) 02/12/1 =ρΛ−ρ−ρ pAV tp
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from which we obtain: 

p
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where we denote: 
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Finally the balance equations become: 
2

1
3 kp=ρ ;    02
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The pressure equation can be arranged in transcendental 

form: 
abpp −= −2 ,       (48) 

where  

13kka = ; 2
2

1 kkb =  .    (49) 
This can be solved using iterative Newton-Raphson 
method: 
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In order to help our analysis we will use dimensionless 
parameter ψ  defined by relation (5). 
 
4   Linear equations 
In the context of the balance parameters established 
above, the operating equations (10), (17) and (28)  can be 
put in linear form: 

paVaV p
V

V
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ρρ& ;            
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p ∆+ρ∆+∆=∆ ρ& ,                 (51) 

where, neglecting erosion factor, the coefficients of the 
equations are: 
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Finally we can put the linear system in regular form: 
Axx =& ,          (53) 

where the state vector is: 
[ ]TpV ρ=x  ,        (54) 

the stability matrix is: 
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From the previously relation one can observe that all the 
stability coefficients j

ia  are dependent by volume. 
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5 Input data 
For exemplifying the method, we will build a study 
model out of motor test. 
 
5.1 Propellant geometry 
First we describe the geometry of propellant which is a 
cylinder, with a cylindrical hole inside, non insulated, so 
burning simultaneously on all surfaces (fig. 1). 
Denoting instantaneous sizes:  
R - Outside radius of the cylinder; r - inside radius of the 
cylinder; l - cylinder length,  
the burning area, terminal area and propellant volume are 
given by: 

))((2 lrRrRS +−+π= ; ))(( rRrRST −+π= ; 
lrRrRlSV T ))(( −+π== .        (56) 

If we denote  x  the linear burning distance, which at the 
time t is given by integration of burning rate:  

∫=
t

tux
0

d ,    (57) 

the main geometric quantities are rewritten as it follows: 
xRR −= 0 ; xrr += 0 ;  xll 20 −= ,          (58) 

from which the combustion areas and volume become: 
xrRSS )(4 000 +π−= ; xrRSS TT )(2 000 +π−= ;

2
0000000 )(4])([2 xrRxlrRSVV T +π++π+−=  ,   (59) 

where we denoted with index “ 0 ” the initial values for 
length, surfaces and volume.  
After processing we obtain: 
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For the application the main geometrical quantities are: 
mmR 330 = ; mmr 70 = ;  mml 3190 = . 

In this case, the initial areas are: 
  286708 mmS0 = ;     22673 mmST0 = .  

 
Fig. 1 Propellant geometry 

 
Developing the relations (60) in a numerical form related 
on the parameter x  result the dependences between the 
no dimensional areas Tσσ, and the burn parameterψ . 
By quadratic fitting we obtain:  

200614672.0069120.0999951.0)( ψ−ψ−≅ψσ ; 
20815622.0917169.0999352.0)( ψ−ψ−≅ψσT  (61) 

 
5.2 Motor geometry 
For the test considered, the motor geometry elements are: 
-Combustion chamber cross surface: 27393 mmAcam = ; 

- Flow area at the throat:              2490mmAt = ; 

-Flow area at nozzle exit plane:   21206 mmAe = . 
-Burning chamber volume:            31924555 mmVcam =  

 
5.3 Propellant and process features  
The features for the used propellant are:  
- Propellant mass: kgmp 834.1= ; 

- Propellant density: 3/1790 mKgp =ρ ;   
- Adiabatic gas coefficient of the combustion products 

1.4   k = ;  
- Gas constant: J/Kg/K     R 336.7= ; 
- Linear burning rate in normal conditions: 

smmu n /6.41 = ;  
- Pressure exponent of burning law: 180.m = ; - 
Coefficient of variation of burning rate with temperature: 

10038.0 −= KD ;  
- Heat quantity educts by burning reaction of 1 kilogram 
propellant: KgJQC /109.4 6×= ; - The quantity of heat 
transferred to the combustion chamber in time unit (heat 
flow) sJq /1000= ; 
 - Ratio between igniter gas mass and the propellant mass 

0011.0=γ ; 
 - Overall coefficient of thrust loss by nozzle: 71.0=σc ; 
 
6     Results 
Figure 2 presents the comparison between pressure 
produced by the relationship (28) and the experimental 
pressure of the test motor, and figure 3, shows the 
influence of initial propellant temperature for pressure. 
Further on we will analyze the balance parameters and 
the dynamic stability of the operating RMSP.  
Henceforth, setting the basic trend, we can evaluate, 
using the matrix (55), the parametric stability of the 
operating motor. To do this in figure 4 there are given the 
real part of eigenvalues for the matrix corresponding to 
the stable balance parameters.  
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Fig. 2 Comparative pressure diagram 
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Fig. 3 Influence of initial propellant temperature for 

pressure 
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Fig. 4 Real part of eigenvalues for stable RMSP 

7   Conclusions 
As we resumed in the introductive part, our work 
followed two purposes:   
Scientific one – to check the possibility of applying 
Liapunov theory to analyze the stability of the balance 
parameters of RMSP at low pressure. With this reason we 
obtained: 
- A flexible parametric expression of the propellant 
surface which allows to use different propellant 
geometries without major modification of the input data 
structure ;     
- A good concordance between  parametric non- linear 
equations of the RMSP and the  experimental results  as 
we can see in figure 1 where is shown the comparative 
pressure diagram; 
- An algorithm to define the balance parameters and 
stability matrix; 
Technical one – to design the rocket motor for the fire-
extinguishing rocket, which was successfully 
accomplished, as we can see in figure 5. 
 

 
Fig. 5 RMSP for fire-extinguishing rocket 

 
References: 
[1] ŞAPIRO IA.,M., MAZING,G., IU., 
PRUDNICOV,N.,E., Teoria raketnovo dvigatelia na 
tverdom toplive , Ed.  Min. Voenizdat, Moscova 1966. 
[2] Chelaru T.V., Coman A.V., The Stability of the 
Operating Parameters of Rocket Engine with Solid 
Propellant for Low Pressure WSEAS TRANSACTIONS 
on HEAT and MASS TRANSFER, , ISSN: 1790-5044, 
Issue 3, Volume 3, July 2008. 
 [3] De Luca, L.,Price, E.,W.,Summerfield, 
M.,“Nonsteady Burning and Combustion Stability of 
Solid Propellants”-  Theory of Nonsteady Burning and 
Combustion Stability of Solid Propellant by Flame 
Models, Progress in Astronautics and Aeronautics, Vol. 
143, AIAA., Wasington DC, 1992, pp. 519-600 
 

Proceedings of the International Conference on ENERGY and ENVIRONMENT TECHNOLOGIES and EQUIPMENT

ISSN: 1790-5095 195 ISBN: 978-960-474-181-6




