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Abstract: Because of the fact that vehicle crash tests are complex and complicated experiments it  
is advisable to establish their mathematical models. This paper contains an overview of the kinematic and 
dynamic relationships of a vehicle in a collision. There is also presented basic mathematical model 
representing a collision together with its analysis. The main part of this paper is devoted to methods of 
establishing parameters of the vehicle crash model and to real crash data investigation i.e. – creation of a 
Kelvin model for a real experiment, its analysis and validation. After model’s parameters extraction a quick 
assessment of an occupant crash severity is done. 
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1 Introduction 
 
The main objective of this project is to establish a 
mathematical model of a vehicle collision. The purpose of 
this task is to simulate how the crash looks like – i.e. what 
are the main parameters describing the collision – without 
performing any real test. Real world experiments are 
difficult to realize – there are needed appropriate 
facilities, measuring devices, data acquisition process, 
qualified staff and of course – a car. Therefore it is 
justified to propose a mathematical model of a collision 
and analyze it instead of a real experiment to approximate 
its results.  
In our main interest it is to analyze in details a Kelvin 
model. Having knowledge concerning one such a system 
we are able to extend the model e.g. to a couple of Kelvin 
elements in order to obtain a more accurate response (we 
can represent car elements and connections between them 
exactly by multiple spring – mass – damper models). 
Many researches have been done so far in the area of 
vehicle crash modelling.  
Yang et al. [1] presented a feasibility study of using 
numerical optimization methods to design structural 
components for crash. The presented procedure required 
several software, which included parametric modeling 
(Pro/ENGINEER), automatic mesh generation (PDA 
PATRAN3), nonlinear finite element analysis 
(RADIOSS), and optimization programs. It was found 
that crash optimization was feasible but costly and that 
finite element mesh quality was essential for successful 
crash analysis and optimization.  
Mahmood et al. [2] have described in detail a procedure 
for rapid simulation and design of the frame of an 
automotive structure. They developed a simplified 

program, called V-CRUSH, for rapid simulation of the 
structure. Correlation between the experimental and 
simulation results was very good. 
Huang et al. [3] described Ford’s Energy Management 
System that used CRUSH (Crash Reconstruction Using 
Static History) lumped mass modelling capability. Using 
the system, barrier loads and passenger compartment 
loads were calculated and compared to the test results in a 
frontal crash. 
Above brief overview of the literature has been done 
according to Kim et al. [4]. 
In this paper we cover the spring – mass – damper 
modeling of the vehicle crash. We start with an overview 
of Kelvin model – an element in which mass is attached 
to spring and damper which are connected in parallel. 
Subsequently we give information about factors which 
determine crash severity for an occupant during collision. 
The largest part of this work is devoted to answer the 
following question – how to establish a model from real 
crash data? After presenting two methods for solution of 
this problem we proceed to analysis measurements from 
real collision. 

2 Vehicle collision simulation – Kelvin 
model 
 
A Kelvin model is shown in Fig. 2.1. It contains a mass 
together with spring and damper connected in parallel. 
This model can be utilized to simulate the vehicle-to-
vehicle (VTV) collision, vehicle-to-barrier collision 
(VTB) as well as for component impact modeling. In 
majority of cases the response of the system is 
underdamped therefore we focus on this type of behavior. 
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Fig. 2.1: Kelvin model 

2.1 Underdamped system (1>ζ>0) 
 
Equation of motion (EOM): 
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Transient responses of the underdamped system are: 

)1sin(
1

)( 2

2
0 tevt e

e

te

ωζ
ωζ

α
ζω

−
−

=
−

                                    (2.2) 

displacement (dynamic crush)  
        

)]1sin(
1

)1[cos()( 2

2

2
0 ttevt ee

te ωζ
ζ

ζωζα ζω −
−

−−= −
•     (2.3) 

velocity   
        

)]1sin(
1

12)1cos(2[)( 2

2

2
2

0 ttevt ee
te

e ωζ
ζ

ζωζζωα ζω −
−

−
+−−= −

••

    
(2.4) 

deceleration 
 
We see that above closed – form results are complex. To 
obtain the responses of the Kelvin model we use Matlab 
Simulink software. 
In the analysis of the crash pulse (deceleration) alongside 
with velocity and displacement graphs we are able to 
observe specific relationships between them and between 
two timings: tm – time of dynamic crush and tf – time of 
rebound (or time of separation velocity). Those 
dependences are shown in Fig. 2.2. The values on the 
graph below are just for presenting the principle – they do 
not come from any experiment. 

 
Fig. 2.2: Relationships between tm, tf and acceleration, 
velocity, displacement 

At tm the corresponding velocity is zero and the dynamic 
crush reaches its maximum value. At tf the corresponding 
deceleration is zero and velocity reaches its maximum 
value. Please note that tf is twice as long as tm (in Fig. 2.2 
tf=0.5s and tm=0.25s). 

2.2 Coefficient of restitution (COR) 
 
In the impact of the dynamic system the coefficient of 
restitution (COR) is defined as the ratio of relative 
separation velocity to the relative approach velocity. 
During the deformation phase, the relative approach 
velocity decreases from its initial value to zero due to the 
action of the deformation impulse, as shown in Fig. 2.3. 

 
Fig. 2.3: Deformation and restitution phase during a 
crash 

At the time when the relative approach velocity is zero, 
the maximum dynamic crush occurs. The relative velocity 
in the rebound phase then increases negatively up to the 
final separation (or rebound) velocity, at which time the 
two masses separate from each other (or a vehicle 
rebounds from the barrier). At the separation time, there is 
no more restitution impulse acting on the masses, 
therefore, the relative acceleration at the separation time 
is zero [5]. To derive the relationship between the 
coefficient of restitution and damping factor of the system 
we use (2.4). 
At the time of separation (t=tr=tf) the relative deceleration 
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There are three special cases:  
1. No damping in the system ζ=0, then COR = 1. 
2. Critically damped system ζ=1, then COR = 

0.135. 
3. Highly overdamped system ζ=∞, then COR = 0. 
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We can simplify (2.6) by substituting 
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3 Bases of occupant – vehicle modeling 
 
In this section we present basic notions and terms needed 
to asses the crash severity for an occupant. As the crash 
pulse approximation we use an ESW (Equivalent Square 
Wave). Fig. 3.1 shows an unbelted occupant in a vehicle 
during a collision. 

 
Fig. 3.1: Occupant during collision [5] 

v0 – initial vehicle rigid barrier impact velocity 
v*– occupant to interior surface contact velocity 
δ – occupant free travel space (restraint slack) 
c – vehicle dynamic crush at time t 
t* – time when occupant contacts restraint 
tm – time of dynamic crush 
 
EOM for vehicle: 
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EOM for occupant: 
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restraint contact time 
 

3.1 Prediction of occupant deceleration using 
DAF 
 
Let us define dynamic amplification factor as the ratio of 
maximum occupant chest deceleration to the ESW: 
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where fπω 2= and f is restraint natural frequency. 

Since 2*)2(11 ftDAF πγ ++==  and we approximate the 
crash pulse by ESW we can write that the maximum 
occupant chest deceleration is given by: 
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It is a common practice to install in trucks pretensioners. 
This is because of the fact that the ESW of a truck is 
higher that that of a car. Therefore if we want to decrease 
the occupant deceleration we need to decrease the 
restraint slack and that is justified by the DAF 
relationship. 

4 Obtaining parameters of the Kelvin 
model from tests 
 
Fig. 4.1 presents a Kelvin model of a vehicle-to-barrier 
impact. 

 
Fig. 4.1: VTB collision – Kelvin model 

k – spring stiffnes 
c – damping coefficient 
m – mass of the vehicle 
v0 – barrier initial impact velocity 
 
4.1 Method 1 - analytical 
 
To obtain structural parameters k and c first we need to 
determine two other parameters: ζ – damping factor and f 
– structure natural frequency. Before we do that let us  
first remind the centroid time concept. 
Centroid time – it is a time at the geometric center of area 
of the crash pulse from time zero to the time of dynamic 
crush. We define it as follows: 

0v
Ctc =                      (4.1) 
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We define normalized centroid time and angular position 
at dynamic crush as: 
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where αm is the maximum dynamic crush. 
 
After transforming above two equations we get relative 
centroid location: 
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Once we find the relative centroid location by 
determining tc and tm we can get damping factor ζ from 
(4.2). 
After deriving damping factor ζ and knowing time of 
dynamic crush tm we obtain the value of structure natural 
frequency from (4.3). 
 
Having already values of ζ and f we determine structural 
parameters of the model – k and c: 
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m
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In order to estimate the parameters of the Kelvin model 
basing on the real crash pulse data we just need main 
information concerning the collision: time of dynamic 
crush tm, initial impact velocity v0, dynamic crush C and 
mass of the vehicle m. Taking into consideration the 
complexity of the collision phenomena it is a significant 
advantage – we can e.g. asses the stiffness and damping 
of a frontal structure of a car using simple data mentioned 
above. 
 
4.2 Method 2 – Using Matlab Identification 
Toolbox 
 
This Toolbox allows us to obtain the parameters of the 
system according to the input and output data. As an 
example we are going to use the Simulink model of the 
second order differential equation (second order 
oscillating element). The forcing factor is the external 
force over mass (acceleration) – initial conditions 
(velocity and displacement) are set to zero.  
 
Data: 
F = 300N; k = 100N/m; c = 5N-s/m; m = 3kg; v0 = d0 = 0 

Equation of second order oscillating element is [6] 
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where y(t) – output and x(t) – input. 
 
By taking Laplace transform of (4.6) with zero initial 
conditions we get: 
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Therefore the transfer function of the system given by 
(4.7) is: 
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From the EOM of the Kelvin model we have: 
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input u(t) is an acceleration. 
                 
By taking Laplace transform of (4.9) with zero initial 
conditions we obtain the following transfer function: 
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(4.8) and (4.10) are describing the same model. Therefore 
they are equal to each other if and only if: 

k
mT =    and   

k
mK =    and   

em
c
ω

ζ
2

=    and   
m
k

e =ω  

With this knowledge we proceed to Identification 
Toolbox. We select the appropriate type of estimation – in 
our case – since we use Kelvin model - an underdamped 
system with two poles. 
Parameters obtained from estimation are shown in Fig. 
4.4. 

 
Fig. 4.4: Identification Toolbox - results 

After obtaining the values which are describing the 
estimated model we check what are the values of T, K and 
ζ for our reference model – and we compare them with 
those ones from the estimated model. 
 
For k = 100 N/m, c = 5N-s/m, m = 3kg we have: 
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k
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The results of approximation are perfect. Time constant T, 
damping coefficient ζ and gain K for both models – 
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reference and our estimated – are the same. It means that 
we can use Identification Toolbox to precisely determine 
what are the coefficients of the Kelvin model when we are 
given an input and an output of the system and the initial 
conditions are set to zero.  

5 Investigation of real crash data 
 
Let us now analyze data from the experiment.  
 
5.1 Experiment procedure [7] 
 
In the experiment conducted by UiA [7] the test vehicle, a 
standard Ford Fiesta 1.1L 1987 model was subjected to a 
central impact with a vertical, rigid cylinder at the initial 
impact velocity v0 = 35km/h. Mass of the vehicle 
(together with the measuring equipment and dummy) was 
873kg. Scheme of the experiment is shown in Fig. 5.1. 

 
Fig. 5.1: Scheme of the test collision [7] 

Vehicle accelerations in three directions (longitudinal, 
lateral and vertical) together with the yaw rate at the 
center of gravity were measured. Using normal-speed and 
high-speed video cameras, the behavior of the obstruction 
and the test vehicle during the collision was recorded. 
 
5.2 Data processing 
 
Since we are given the accelerations in 3 directions 
(longitudinal – x, lateral – y, vertical – z) we are able to 
propose 3 different Kelvin models for every direction. 
Because of the fact that we are mostly interested in what 
happens in the direction in which a car hits the obstacle, 
we are going to analyze x – direction (longitudinal).  
To approximate the crash pulse we use Curve Fitting 
Toolbox with Gaussian approximation as it is shown in 
Fig. 5.2. 

 
Fig. 5.2: Curve Fitting Toolbox – preparation of 
measured data 

To obtain the velocity curve we integrate the 
approximated pulse – the result is shown in Fig. 5.3. 

 
Fig. 5.3: Velocity obtained from measured acceleration 

We see in Fig. 5.3 that the initial velocity is not equal to 
35km/h as it was stated in the experiment’s description 
but is 5km/h higher. This discrepancy is a result of using 
raw data – without filtering. From this plot we read the 
value of time of dynamic crush tm = 0.11s. 
To get the displacement graph we proceed in the manner 
described above – we approximate and integrate the 
velocity curve from Fig. 5.3. The plot of displacement is 
shown in Fig. 5.4. 

 
Fig. 5.4: Displacement obtained from measured 
acceleration 

From the plot we determine maximum dynamic crush C = 
0.84m at time of dynamic crush = 0.11s. 
 
5.3 Comparison between model and real data 
according to method 1 
 
Knowing values of v0 = 11m/s,  tm = 0.11s, C = 0.84m and 
m = 873kg from the real test, using method described in 
Section 4.1 we determine parameters: tc, tc/tm, ζ, f, k, c: 
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We calculate the parameters of the Kelvin model: 
mNkgHzmfk /166809873)2.2(44 2222 =⋅== ππ   

spring stiffness 
msNkgHzmfc /120787305.02.244 −=⋅⋅⋅== πζπ  

damping coefficient 
 
Having parameters of the Kelvin model we investigate its 
response using the Simulink diagram with the initial 
velocity v0 = 11m/s. The result is shown in Fig. 5.5. 

Proceedings of the 4th EUROPEAN COMPUTING CONFERENCE

ISSN: 1790-5117 198 ISBN: 978-960-474-178-6



 
Fig. 5.5: Velocity and displacement vs time of the Kelvin 
model with estimated parameters 
 
That is the response of the mass for 10 seconds. It is a 
typical one for the second order oscillating element – also 
Kelvin model. 
In Fig. 5.6 you see the response in time interval used in 
the test data analysis (a magnified part of above plot). 

 
Fig. 5.6: Final analysis – velocity and displacement vs 
time of the Kelvin model with estimated parameters in the 
crash interval  

Although the approximation of the velocity curve is not 
quite exact – we do not see e.g. a rebound, still the 
accuracy of approximation is very good. Time of dynamic 
crush tm obtained from the model is exactly the same as in 
experiment: tm = 0.11s and maximum dynamic crush C = 
0.74m is about 12% less than that from the real test. 
 
5.4 Estimation of maximum chest 
deceleration of occupant 
 
Knowing initial impact velocity v0 = 11m/s, maximum 
dynamic crush C = 0.84m, time when it occurs tm = 0.11s 
and distance between an occupant and vehicle (restraint 
slack) δ = 0.6m we calculate: 
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6 Conclusions 
 
We have managed to prepare the crash data for analysis 
and extract the mathematical model from it. Challenges 
here were to choose an appropriate test data 
approximation and time interval in which we want to 
investigate the collision. Having this done we can 
determine maximum crush of a car, when it occurs, how 
the velocity changes and what are the changes in 
acceleration of a car during a crash. What is more – we 
have also estimated the maximum occupant deceleration – 
that is one of the main tasks in the area of crashworthiness 
study. 
When it comes to the further work, we plan to extend our 
simple spring – mass – damper model to multiple Kelvin 
elements system. Then we will obtain more accurate 
results and – what is also important – for particular car 
components, not for a car as a one element. The other 
thing which could improve the results is using a Maxwell 
model (a mass together with a spring and damper 
connected  in series) for a vehicle to rigid pole crash 
simulation. This system gives better approximation of 
offset impacts and localized pole collisions because it 
provides more accurate response for longer times of 
maximum dynamic crush. The last improvement is to 
filter the accelerometer measurements and to use more 
accurate type of curve approximation. 
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