
Cognitive Binary Logic - The Natural Unified Formal Theory of
Propositional Binary Logic

NICOLAIE POPESCU-BODORIN, Member, IEEE
Spiru Haret University

Dept. of Mathematics and Computer Science
13 Ion Ghica, Bucharest 3

ROMANIA
http://fmi.spiruharet.ro/bodorin/

LUMINIŢA STATE
University of Piteşti

Dept. of Mathematics and Computer Science
1 Targu din Vale, Piteşti, Argeş

ROMANIA
lstate@clicknet.ro

Abstract: This paper presents a formal theory which describes propositional binary logic as a semantically closed
formal language, and allows for syntactically and semantically well-formed formulae, formal proofs (demonstra-
bility in Hilbertian acception), deduction (Gentzen’s view of demonstrability), CNF-ization, and deconstruction
to be expressed and tested in the same (computational) formal language, using the same data structure. It is also
shown here that Cognitive Binary Logic is a self-described theory in which the Liar Paradox is deconstructed.

Key–Words: cognitive binary logic, inductive/deductive discourse, liar paradox, computational logic

1 Introduction

This paper presents a unified natural approach to
propositional binary logic, in which syntactically and
semantically well-formed formulae, formal proofs
(demonstrability in Hilbertian acception), deduction
(Gentzen’s view of demonstrability, [1]), CNF-ization
[2], and deconstruction are expressed and tested in
the same (computational) formal language - Compu-
tational Cognitive Binary Logic (CCBL), using the
same data structure: the deductive discourse.

It is also shown here that Cognitive Binary Logic
is a self-described theory in which the Liar Paradox
[3] is deconstructed.

The prerequisites of this paper are the following
concepts: formal language [4], formal theory (formal
system) [5], formal proof [6], deduction [1], resolu-
tion [2], valid argumentation [6], Gentzen’s natural
deduction system (sequent calculus) [1], completeness
[6], consistency (soundness) [6] - all of them con-
sidered in the context of propositional binary logic,
equivalence relations, modal logic [9], Lukasiewicz’s
[7] and Hilbert’s [8] classical formalizations of bi-
nary logic. Since they are so many and the space
here is limited, we would like to refer to bibliographic
sources instead of reproducing some redundant con-
tents.

Despite the vast universe of discourse, this paper
is based on a single assumption which we all know to
be true: both Lukasiewicz’s and Hilbert’s formaliza-
tions of propositional binary logic are complete and
sound formal theories.

1.1 Outline
The structure of this paper follows an imaginary pro-
cess of reverse engineering the Propositional Binary
Logic (BPL). We start by analyzing how it works in
order to see what is it made of.

Section 2 discuss the prerequisites of the pro-
posed formal theory. Cognitive implication is intro-
duced here as a natural way of modelling human logi-
cal thinking as opposite to the trivial sintactic truth ex
contradictione quodlibet.

A dual Semantic-Computational formalization of
Cognitive Binary Logic (SCBL, CCBL) is pre-
sented in the third section of the paper. It is shown
here that both SCBL and CCBL theories cover
BPL in a complete and consistent manner. Also, in
CCBL the inductive/deductive proof of any theorem
is algoritmically computable. In the end, it is shown
that even if CCBL theory qualify the language of
PBL as being semantically closed, the Liar Paradox
is still successfully deconstructed.

2 Setting the semantic framework
From the beginning we must say that present comput-
ers can only parse and evaluate data structures that are
truly meaningful only in human understanding.

Hence, our world is a semantic one, while the
computational world is defined, regulated, controlled
and described through syntactic rules. But even when
we think about syntactic rules, we still operate at
the semantic level for the simple reason that symbols
themselves are not very important to us, while their
meaning is our actual concern.

Proceedings of the 4th WSEAS International Conference on COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 135 ISBN: 978-960-474-179-3

2.1 Formalization

The symbols become important only when it comes
to formulate our semantic knowledge into something
computable by expressing our understanding into a
computational language. In case of binary logic, the
challenge is to translate human reasoning into some-
thing a little bit more sophisticated than (two-element)
Boolean algebra while achieving a certain degree of
semantic fidelity measured in terms of similitude or
analogy with human thinking. This is what we usu-
ally call formalization and the result is a formal theory
defined over a formal language.

Since we cannot formalize something unless we
are fully aware of its meanings, a formalization will
never come easy because it requires a triple effort.

The first step is to understand the world that is to
be formalized, and this is what we do here, throughout
the second section.

The second step is to associate semantic charges
(the meanings) to the assemblies of symbols belong-
ing to a pure syntactic world while setting it up.

Last, but not least, we must test the semantic ef-
ficiency of the newly created formal system by veri-
fying its limits in terms of completeness and consis-
tency.

The second step is particularly difficult, and prob-
ably this is the reason why the syntactic rules (the
ways of constructing well-formed formulae) and the
reasoning rules (the ways of constructing well-formed
proofs) are very different in the present formal theo-
ries of the propositional binary logic.

2.2 Implication and human reasoning

Let us comment on a well-known example: I think,
therefore I am. It is inevitably true that I am, since I
know that I think and, on the other hand, I also know
that if I did not exist, then certainly I would not think.

Now, let us consider that p and q are propositional
variables with q being a tautology and p being logi-
cally false. Hence, a = (p → q) is true but still, in
human understanding a is not a valid argument for q.
Syntactically, an implication can be parsed and evalu-
ated as true, but this does not necessarily qualify that
implication as a valid argument.

It can be seen in the above examples that a valid
argument in human logical thinking is a true implica-
tion with true premise. Humans think semantically,
not syntactically, by using some implications as valid
arguments. By the way, nobody has said: I don’t
doubt or I think, I don’t think or I am.

2.3 One more challenge
We should ask ourselves why the following truth is
told surprisingly rarely: the natural logical frame-
work for analyzing the formulae of propositional bi-
nary logic language is modal logic [9].

The above assertion is true because any for-
mula within the language falls into one of the fol-
lowing three categories: formulae which are always
true (tautologies), formulae which are sometimes true
(and sometimes false) and formulae which are always
false. By reformulating in classical terminology of
modal logic, a formula could be: necessary true (an
axiom or a theorem, or, generally speaking, a tau-
tology) or possibly true (a contingent, or a formula
demonstrable under some hypotheses which give the
context of that satisfiable truth) or impossibly true (i.e.
necessary false, or contradiction).

If FORM denotes the set of formulae within
the language of propositional binary logic, then:
FORM = f̂ ∪ ĉt ∪ t̂, where f̂ is the class of neces-
sary false formulae, ĉt is the class of contextual truths
(or the class of proper variables whose truth values are
not constant) and t̂ is the class of all tautologies.

Hence, one more challenge here is to put this
three-valued state of truth in the binary framework
of the propositional binary logic and to explain what
makes this possible.

2.4 Cognitive implication
A cognitive implication is assumed here to be a for-
mula of the following type:

(
n∧

i=1

hi

)
→

(
m∨

i=1

cj

)
, (1)

where {hi}1≤i≤n and {cj}1≤j≤m are two sets of for-
mulae (hypotheses and conclusions, respectively).

The name is suggested by the fact that investigat-
ing a universe is a matter of finding a suitable col-
lection of hypotheses assumed to be simultaneously
true (hence, their conjuntion is true) and studying the
possibilities to infer some conclusions which are not
necessarily simultaneously true. To demonstrate how
suitable this structure is for describing human cogni-
tive processes, we give the following example: we
want to build a formal theory over a formal language.
But what does that mean exactly? Nothing more than
identifying a set of simoultaneously true premises (ax-
ioms and argumentation rules) that enable us to prove
or to disprove well-formed sentences (formulae) writ-
ten in that language.

Proceedings of the 4th WSEAS International Conference on COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 136 ISBN: 978-960-474-179-3

2.5 Implication as a SAT problem
A trivial cognitive implication in propositional binary
logic is that no matter the hypothesis h, the tertium
non datur is always true and so it is the implication:

h → (a ∨ ¬a) . (2)

Nothing changes if tertium non datur is replaced by
any other tautology t:

h → t, (3)

Also, no matter the conclusion c, if the hypotesis is a
contradiction, the following implication is true:

f → c. (4)

Hence, there is no doubt that formulae (2)-(4) are triv-
ial Boolean satisfiability (SAT) problems.

Since formula (4) is by default a tautology, it fol-
lows that there is only one type of implication that de-
serves to be studied in binary logic:

st → c, (5)

where st ∈ ŝt and:

ŝt = ĉt ∪ t̂, (6)

2.6 SAT problem vs. cognitive implication
Let a ∈ FORM = f̂ ∪ ĉt ∪ t̂ an arbitrary formula.
Its corresponding SAT problem can be stated as a de-
cision problem as follows:

(a ∈ t̂)⊕ (a ∈ ĉt)⊕ (a ∈ f̂), (7)

where ⊕ denotes exclusive disjunction. On the other
hand, ∀(a, f, t) ∈ FORM × f̂ × t̂:

[(t → (a ∨ f)) ↔ a] ∈ t̂ (8)

In other words, the formulae (7), (8) tell us that
the demonstration of the truth or of a contextual truth,
and also the resolution of a contextual truth (the pro-
cess of finding a context which makes a formula sat-
isfiable), all of them can be carried out by parsing the
same data structure, which is syntactically a cognitive
implication and, semantically, is an attemp to find a
valid argument for that truth.

Also, all three modal states of truth (t̂, f̂ , ĉt) are
decidable in propositional binary logic using the same
test: a cognitive implication (8).

3 Cognitive Binary Logic
A dual formalization of Cognitive Binary Logic
(CBL) is defined here as a pair of formal theories
given over the same language (propositional binary
logic), using the same set of axioms (tertium non
datur) and two different sets of valid arguments which
still produce the same set of theorems.

3.1 The axiom
There is a single axiom in CBL: tertium non datur,
considered in the classical form:

a ∨ ¬a, (9)

or in the simplest form of a cognitive implication:

a → a, (10)

or in a more general form:
[
a ∧

(
n∧

i=1

hi

)]
→

[
a ∨

(
m∨

i=1

cj

)]
. (11)

where the meanings of symbols appearing in (9)-(11)
are already introduced in the previous subsections.

3.2 Semantic formalization of CBL
The first set of valid arguments used here to define a
first formalization of CBL is meaningful in human
understanding. It is further denoted as A1 and
contains the following equivalences:

1. The law of double negation:

a ⇔ ¬¬a. (12)

2. The law of the contrapositive:

(a → b) ⇔ (¬b → ¬a) . (13)

3. The law of deduction-resolution:

[(h ∧ a) → b] ⇔ [h → (a → b)] . (14)

4. Distributivity law:

{h → [c ∨ (a ∧ b)]} ⇔

⇔ {[h → (c ∨ a)] ∧ [h → (c ∨ b)]} . (15)

Proceedings of the 4th WSEAS International Conference on COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 137 ISBN: 978-960-474-179-3

Let us denote the semantic formalization of the CBL
as being the triplet formed with the language of propo-
sitional logic (L), tertium non datur axiom (TND)
and the set of valid arguments A1 from above:

SCBL = {L, TND,A1}. (16)

Let LBL be Lukasiewicz’s classical formaliza-
tion of propositional binary logic:

LBL = {L,Axiom, MP}, (17)

where L denotes the formal language of proposi-
tional binary logic, MP stands for Modus Ponens, and
Axiom is the following set of axioms:

p → (q → p), (18)

[p → (q → r)] → [(p → q) → (p → r)], (19)

(¬p → ¬q) → (q → p). (20)

Since TND and the formulae of A1 are theorems
in LBL, it is clear that all theorems of SCBL will
be theorems in LBL, i.e. SCBL is a sub-theory of
LBL, fact that will be denoted as:

SCBL ⊂ LBL. (21)

SCBL is an inductive (Hilbertian) theory. Writ-
ting a formal proof in SCBL is a matter of experi-
ence and intuition. We ‘guess’ what axioms and what
substitutions we must use in order to prove a theorem.
This approach is not suitable for algorithmic computa-
tion because from this point of view, ‘guessing’ means
an exhaustive search in an infinite set of axiom in-
stances. Still, the formulae within the second set of
valid arguments (A2, given below) are very easy to
prove using SCBL formalization.

In the computational formalization of the CBL,
we aim to make any formal proof algorithmically
computable. The general ideea is to use formula 8,
i.e. the fact that any formula a is equivalent to a cog-
nitive implication (t → (a ∨ f)), which is further
decomposable as a conjunction of cognitive implica-
tions. Therefore, the set of valid arguments will be
appropriate for this purpose, more redundant, and less
intelligible at a first glance.

3.3 Computational formalization of CBL
Computational formalization of Cognitive Binary
Logic (CCBL) is defined by a second set of valid ar-
guments, denoted A2, any argument being an equiv-
alence and also a rule of syntactic and semantic sim-
plification/complexification (elimination/introduction
rule for a logical connective):

1. First distributivity law (Right-side conjunction
elimination / introduction rule):

{h → [c ∨ (α ∧ β)]} ⇔

⇔ {[h → (c ∨ α)] ∧ [h → (c ∨ β)]} . (22)

2. Second distributivity law (Left-side disjunction
elimination / introduction rule):

{[h ∧ (α ∨ β)] → c} ⇔

⇔ {[(h ∧ α) → c] ∧ [(h ∧ β) → c]} . (23)

3. First reformulation of deduction-resolution law
(Left-side negation elimination / introduction
rule):

{[h ∧ (¬α)] → c} ⇔ {h → [c ∨ α]} . (24)

4. Second reformulation of deduction-resolution
law (Right-side negation elimination / introduc-
tion rule):

{h → [c ∨ (¬α)]} ⇔ {[h ∧ α] → c} . (25)

5. Third reformulation of deduction-resolution law
(Left-side implication elimination / introduction
rule):

{[h ∧ (α → β)] → c} ⇔

⇔ {[(h ∧ β) → c] ∧ [h → (c ∨ α)]} . (26)

6. Generalized deduction-resolution law (Right-
side implication elimination / introduction rule):

{h → [c ∨ (α → β)]} ⇔

⇔ {[h ∧ α] → [c ∨ β]} . (27)

The formulae within A2 are theorems of SCBL,
hence we get:

CCBL ⊂ SCBL ⊂ LBL. (28)

Definition 1 CCBL Formal Theory (N. Popescu-
Bodorin):
Let L = (B, V,C, S, GL, FORM) be the classical
formal language of propositional binary logic, and let
LBL = {L,Axiom, MP} be the Lukasiewicz for-
malization of propositional binary logic, where:
• B = {0, 1} is the set of binary truth values;
• V is the set of propositional variables;

Proceedings of the 4th WSEAS International Conference on COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 138 ISBN: 978-960-474-179-3

• C is the collection of logical connectives, C =
{¬,∧,∨,→,↔}, which are all defined using
truth tables (logical gates);

• S = {(,)} is the list of separators;
• GL is the formal grammar which qualifies the

strings from V ∪C ∪ S as well-formed formulae
(the elements of FORM , i.e. syntactically valid
sentences) through recursive structural complex-
ification with logical connectives from C and
symbols (propositional variables) from V .

• FORM = t̂∪ ĉt∪ f̂ is the set of all well-formed
formulae classified by their modal state of truth:
tautologies, contextual truths and contradictions.

Let L = (B,R,V, C, S,GL, CI,D, D) be the
formal language of CCBL, where:

CCBL = {L, TND,A2}, (29)

and:
• A2 is the set of valid arguments (22)-(27);
• TND stands for tertium non datur (9)-(11);

• B = {t̂, ĉt, f̂}, i.e. the discourse in L is focused
on tautologies, contextual truths and contradic-
tions;

• R = {t, ct, f} is the list of reserved symbols
used to refer a generic variable from t̂, ĉt and
f̂ , respectively;

• V = FORM , i.e. the discourse in L is a meta-
discourse on L asserting something about the
formulae within L;

• GL is the formal grammar that qualifies the cog-
nitive implications (units of discourse, like sim-
ple sentences in natural language) as the sim-
plest well-formed formulae within L using a sin-
gle rule of immersion of FORM in CI:

{α ∈ FORM} ⇔

⇔ {αci = [t → (α ∨ f)] ∈ CI}. (30)

GL also recursively qualifies more complex struc-
ture of discourse (like complex sentences in nat-
ural language) as being well-formed by using six
rules of phrasal grammar, namely formulae (22)-
(27) from the set A2;

• CI contains the simplest formulae of the lan-
guage which are cognitive implications and con-
junctions of cognitive implications;

• The full deductive discourse about a cognitive
implication αci within L is defined as a tree hav-
ing the following properties:
- The root is labeled with αci, or else, α is the

label of the root and the expansion rule to be
applied is the immersion law (30) and, conse-
quently, the outer degree of the root is 1 and the
only descendant of the root is labeled with αci;
- Starting with the vertex labeled with αci, tree
expansion is conducted by the rules of A2 (ap-
plied from the left to the right), up to the point
where they are no longer applicable;
Any partial expansion is simply called a deduc-
tive discourse about αci. We denote by D, the set
of all possibles deductive discourses about the
formulae within V = FORM .

• The summary of a full deductive discourse (with
n leaves) expanded for a formula a ∈ FORM
can be written as:

a ↔
n∧

i=1

t →

m∨

j=1

cj
i

 , (31)

where the variables cj
i may contain negation but

no other connective. Let D be the set of all pos-
sible summaries of this kind.

• If α and αci are defined by (30), then α ⇔ αci.
Hence, it is true that a deductive discourse about
αci is also a deductive discourse about α;

3.4 Inductive (Hilbertian) and deductive
(Gentzen) discourse in CCBL

This section aims to show the analogy between deduc-
tive/inductive thinking and deductive/inductive logi-
cal computing in CCBL.

Let us consider an axiom of Lukasiewicz’s for-
malization of propositional binary logic:

α = {[p → (q → r)] → [(p → q) → (p → r)]}, (32)

Human/Computational deductive discourse about α
try to equivalate α with (to ‘decompose’ α as) a con-
junction of simpler formulae with reduced structural
complexity, up to the point where any component of
this conjunction can be easily proved, or tested, or re-
duced to a true hypothesis. An example is given in
Fig.1. The deductive discourse presented there is not
a full deductive discourse because it still contains an
expandable (a non-closed) leaf:

{[t ∧ (p → |q → r|) ∧ p]→(p ∨ r ∨ f)}

on which the expansion rule (26) is still applicable.
All of the other leaves are closed (non-expandable).
All leaves are instances of TND axiom (see formulae
9-11).

Proceedings of the 4th WSEAS International Conference on COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 139 ISBN: 978-960-474-179-3

Figure 1: A deductive discourse for one of Lukasiewicz’s axioms. From top to buttom, the following expansion
rules (valid arguments) are applied: 8, 27, 27, 27, 26, 26, 26. Bold-face is used to mark instances of TND.

Definition 2 Elements related to the deductive dis-
course in CCBL:

• A node within a deductive discourse is a termi-
nal node / a closed node/ a closed leaf if the ex-
pansion rules of A2 are no longer applicable for
that node, or else, it is an expandable node (a
continuation/non-terminal point of the deductive
discourse).

• A deductive discourse is full if all of its leaves are
closed.

• A deductive proof in L (a demonstration in
CCBL) is a full deductive discourse inL in which
all leaves are instances of TND.

• A formula α (within L or L) is said to be de-
ductively provable (or, simply demonstrable in
CCBL) if there is a deductive proof for α.

• A deconstruction in L is a full deductive dis-
course in L in which some leaves are logical but
mutually irreconcilable, or some leaves are non-
logical.

• An illegal syntax or a logical nonsense (in L, L,
LBL, or CCBL) is a string whose full deductive
discourse is a deconstruction.

• A contextual truth (in L, L, LBL, or CCBL) is
a well-formed formula whose full deductive dis-
course is neither a deductive proof, nor a decon-
struction.

At a first glance, the expression ‘closed leaf ’ used
above does not seem to be necessary, but in fact, it

is mandatory, because in any partial expansion of a
tree there are always current leaves. Some of them are
expandable (becoming non-terminal nodes), or else,
the expansion is full, not partial. The quality of being
closed is not a geographic/pictographic attribute, but
a semantic one.

A deductive proof of a formula is a failed de-
construction attempted for that formula which, in the
end, instead of being deconstructed, proves to be a
conjunction of true formulae (axiom instances). In a
genetic view, a deductive proof of a formula shows
that the formula carries only the logical genes of the
truth, while a successful deconstruction reveals irrec-
oncilable and contradictory meanings (logical genes
of the false) and possibly non-logical genes of the
given ‘formula’ (see the Liar Paradox example in sec-
tion 3.9). But generally speaking, the deductive dis-
course is neutral: it could be a deductive proof, or a
successful logical deconstruction, or it could be none
of them. The deductive discourses of the contextual
truths fall into the latter category: their genes (the
leaves) are reconcilable under certain hypotheses.

A demonstration in Hilbertian acception is given
by what we call a formal proof, i.e. an inductive way
of increasing semantic and syntactic complexity start-
ing with some instances of the axioms, ending with
the given formula and using a set of inference rules
(valid arguments). In a way, a formal proof is the op-
posite of deduction.

Since the valid arguments within A2 are equiva-
lences, nothing could prevent us from reading them
from the right to the left (as collapsing rules instead
of expansion rules). Therefore, we can also consider
CCBL to be an inductive (Hilbertian) formal theory.

Proceedings of the 4th WSEAS International Conference on COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 140 ISBN: 978-960-474-179-3

Fortunately, the inductive formal proof can be parsed
as a buttom-to-top traversal of the deductive proof.
Consequently, in CCBL, inductive and deductive dis-
courses of a formula perfectly match each other. This
is why the distinction between the terms ‘deductively
provable’ and ‘inductively provable’ is no longer nec-
essary here.

3.5 Completeness and Soundness of CCBL
The deductive discourse presented in Fig.1 can be
easily expanded to a deductive proof. Modus Po-
nens and Lukasiewicz’s axioms (18-20) can be deduc-
tively proved by following the expansion rules of A2.
Hence, Lukasiewicz’s formal theory of binary propo-
sitional logic is a sub-theory of CCBL, and therefore
(see formula 28):

LBL ⊂ CCBL ⊂ SCBL ⊂ LBL. (33)

Hence, CCBL and SCBL theories are sound
and complete.

3.6 CNF-ization
Definition 3 A Cognitive Conjunctive Normal Form
(CCNF) is a conjunction of cognitive implications:

n∧

i=1

t →

m∨

j=1

cj
i

 , (34)

where the variables cj
i may contain negation but no

other connective.

A full deductive discourse of a well-formed for-
mula of CCBL describe a conversion of that formula
into a CCNF , i.e. a CNF -ization procedure.

D is the set of all equivalences (31) between for-
mulae within FORM and their corresponding CNF .
Any element of D is the summary of a full deductive
discourse.

3.7 Semantic Closure of Propositional Bi-
nary Logic

Ultimately, binary logic is a study of two-element
Boolean algebra and also a study of all the possible
worlds which are compatible with logical formaliza-
tion - a process of abstraction in which the facts and/or
the rules within a universe are represented as elements
of a logical formal language, namely: logical con-
stants, logical variables and logical formulae. In this
context, one may be led to believe that a logical vari-
able and a logical formula are two different things.
But, in fact, it is shown below that they aren’t.

Let us recap what we have so far: B = {0, 1}
- the set of binary truth values, V - a set of truth-
functional variables, FORM - the set of well-formed
formulae, CI ⊂ FORM - the set of cognitive im-
plications, D - the set containing the summaries of
the deductive discourses. But, what exactly is V ?
V is a collection of symbols (labels) representing all
kind of things which are true or false, but never si-
multaneously true and false. Therfore, in CCBL:
FORM ⊂ V and D ⊂ V , or in other words, CCBL
is the natural unified universe of discourse about bi-
nary truth values, truth-functional variables, logical
formulae, deductive/inductive discourses and CNF -
ization.

In other words, the vocabulary of propositional
binary logic is rich enough to express its meanings.
Since the vocabulary of L contains all the elements
of its meta-language L, it is clear now that CCBL
formalization is nothing but an instrument meant to
make obvious the semantic richness of binary logic
and the structural complexity hidden behind the defi-
nition of V . We started by thinking that V was a sim-
ple set of propositional variable and, at the end, we
saw that the ways of reasoning about elements of V
belong in V . This is why we said that the (vocabulary
of) propositional binary logic is semantically closed
(or self-described). Hence, there is no need to cre-
ate/use a markup language for describing the mean-
ings of propositional binary logic.

3.8 The fundamental property of binary
logic vocabulary

If p belongs to the vocabulary of propositional binary
logic (p ∈ V), the following formulae are deductively
provable in CCBL:

t → [(t → p) → (¬(p → f))] (35)

t → [(¬(p → f)) → (t → p)] (36)

The proof is that both formulae (35),(36) admit a de-
ductive proof and the consequence is that, for any log-
ical variable p, the following formula holds true:

(t → p) ↔ ¬(p → f), (37)

or, in other words, for any p ∈ V , the following for-
mula is false:

(t → p) ∧ (p → f) (38)

Of course, the fact that formula (38) is false can be
proved directly in CCBL. Fig.2 shows a deductive
discourse (easily expandable to a deductive proof) of
CCBL formula:

((t → p) ∧ (p → f)) → f (39)

Proceedings of the 4th WSEAS International Conference on COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 141 ISBN: 978-960-474-179-3

Figure 2: A deductive discourse for formula (39)

3.9 There is no Liar Paradox in CCBL!
One might believe that the Liar Paradox gives an ex-
ample of a well-formed formula of propositional bi-
nary logic which does not have a truth value. This is
completely wrong. Let us investigate the existence of
a true propositional variable p ∈ V which says about
itself that it is false. Since CCBL is a complete and
sound theory, if such a propositional variable exists,
then it should be reachable through a proof or a reso-
lution.

Let us assume that there is such a propositional
variable p ∈ V so that it is true and says about itself
that it is false. Let us translate from natural language
- ‘it is true that p is true and p claims that it is false’,
to the language of CCBL:

t → {[(t → p) ∧ (p → f)] ∨ f} (40)

The deductive way to disprove the existence of p is
to expand and to analyze the full deductive discourse
of (40). It should be clear that the full deductive dis-
course of (40) is a succesful deconstruction revealing
that p 6∈ V , and more precisely that ‘formula’ (40)
carries genes of a paraconsistent logic [10].

On the other hand, the existence of p can be dis-
proved in an inductive manner: by showing that as-
suming (40) will rapidly lead to contradiction. Indeed,
by applying the syllogism principle it is clear that, if
(40) is assumed to be true, the following four equiva-
lent formulae should also be true:

t → {(t → f) ∨ f}; t → (t → f); t → f ; f ∨ f. (41)

But obviously, they aren’t. Hence, the assumption
that p ∈ V is false and consequently, even if ‘for-
mula’ (40) apparently seems to be well-formed (as a
pictogram), it is not semantically (hence, nor sintacti-
cally) well-formed because it contains a symbol extra-
neous to V . Consequently, ‘formula’ (40) is a string
which confuses us with its pictographic mimetism, but
nothing more.

Hence, in propositional binary logic, the so called
Liar Paradox is just an abuse of formalization, a
wrong attempt to apply logical principles beyond the

boundaries of the vocabulary of classical proposi-
tional binary logic, a dangerous way to claim that clas-
sical binary logic (classical logical thinking) should be
applicable to the vocabulary of a paraconsistent [10]
logical theory.

In CCBL theory, the so-called Liar Paradox is
totally and definitely deconstructed. An important
consequence is that any formal theory in which the
Liar Paradox is a well-formed true formula doesn’t
contain a sufficient amount of binary logic. More
precisely, if the Liar Paradox, the syllogism prin-
ciple, and formula [(t → α) ↔ α] are theorems
within a theory, then that theory is inconsistent be-
cause, as shown above, in such a theory, the false for-
mula (t → f) is provable.

4 Conclusion
Tarski held that the possibility of formulating para-
doxically self-reference sentences belongs to seman-
tically closed languages. He thought that a distinction
between the language and the metalanguage is needed
in order to avoid such faults. CCBL formal theory
gives a relevant counter-example. Humans can make
mistakes but a deterministic machine can only do what
is designed to do.

References:
[1] M. E. Szabo, The collected papers of Gerhard

Gentzen, North-Holland Publishing Company, Am-
sterdam, 1970.

[2] J. H. Gallier, Logic for computer science: foun-
dations of automatic theorem proving, Harper &
Row Computer Science And Technology Series, New
York, 1985.

[3] R. M. Sainsbury, Paradoxes, Cambridge University
Press, 2009.

[4] W. J. M. Levelt, Introduction to Theory of Formal
Languages and Automata, John Benjamins Publish-
ing Company, 2008.

[5] H. B. Curry, A Theory of Formal Deducibility, Uni-
versity of Notre Dame (Indiana), 1950.

[6] R. Bornat, Proof and Disproof in Formal Logic, Ox-
ford University Press, 2005.

[7] R. Stansifer, Completeness of Propositional Logic
as a Program, Technical Report, Department of
Computer Sciences, Florida Institute of Technology,
March 2001.

[8] D. Hilbert, W. Ackermann, Principles of Mathemati-
cal Logic, Chelsea Publishing Company, 1950.

[9] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic,
Cambridge University Press, 2000.

[10] J. Woods, Paradox and paraconsistency: conflict res-
olution in the abstract sciences, Cambridge Univer-
sity Press, 2003.

Proceedings of the 4th WSEAS International Conference on COMPUTATIONAL INTELLIGENCE

ISSN: 1790-5117 142 ISBN: 978-960-474-179-3

