
Artifacts Extraction Technique  
 

 

Nadim Asif 
Dept. of Computer  Science 

Islamia University of Bahawalpur  
Bahawalpur, Pakistan 

Emails: nasif@softresearch.org; infosr@softresearch.org 
 
 

Abstract:- The extractions of different types of artifacts are required from the source code for different 
maintenance activities. This paper describes a lexically based Regular Extraction Technique (RET) adapted to 
extract the artifacts from a wide variety of source codes to support the reverse engineering process. The technique 
uses the pattern specification language to specify the artifacts construct to extract the desired source code models, 
which represent the information at the implementation, functional, structural and architectural levels for 
maintenance tasks. The user design the Abstract Regular Expression Patterns (AREP) of interests using the 
specification pattern constructs to extract the source code models, which describe the required artifacts for 
maintenance tasks at hand.   
 
Key Words:-  Reverse Engineering, Design Recovery, Re-Engineering, Static Analysis and Maintenance. 
 

1. Introduction 
The useful software systems continue evolves [1][2]. 
The changes initiate the system’s evolution due to 
many reasons; by adding the new functionality into the 
system on the users request, adapting the new 
hardware and software technology and business 
decisions to improve the maintainability, reusability, 
and the quality of source code.  As the software 
systems evolve, the changes are performed in the 
source code and the other systems artifacts like design 
and documentations are drifted away from the source 
code.  The maintenance activities includes modifying 
programs to generate new output; to incorporate new 
features; to enhance existing features; to correct errors; 
and to adapt the software to different 
hardware/software environments [3][4]. The reverse 
engineering activities require source code extraction to 
represent a software system at a higher level of 
abstraction than code to perform a change in a system 
effectively [5]. The domain, functional, structural and 
implementation information is extracted from the 
source code to represent the software at the higher 
level of abstractions than code. 

 The parse based and lexical (regular expressions) 
based tools are used to extract the source code models. 
Many approaches construct parse trees from the 
system artifacts, and provide support for traversing 
and performing different types of actions on the parse 
trees. The techniques are invariably to construct the 
semantic Entity-Relationship Graph (ERG), whose 
nodes represent entities (from expression to 

subsystem) and  edges represent relationships (implicit 
or explicit) found between them in code e.g. Rigi [6], 
Datrix [7] and Columbus [8] schemas. The entities of 
the ERG are the programming language concepts of 
interest such as functions, types, and variables. What 
vary in details are the completeness and the strictness 
of adherence to a previously determined or stated 
schema. Some tools, including Rigi [9], PBS [10] and 
CPPX [11] support regular expressions match over 
parse trees. Others, such as Refinery [12], GURPO 
[13] and Acacia/CIA [14] use different approaches for 
querying and transforming parse trees. 

Software engineers extract the system artifacts 
statically using the lexical tools that include awk [15], 
lex [16] and Unix  (grep). The benefit of these lexical 
tools is their versatility; few constraints are placed on 
the kinds of artifacts to which they may be applied. 
For example, regular expressions can be applied to 
both source code and documentation. The parse based 
approaches, generally places constraints on the system 
artifacts (source code) from which the desired artifacts 
are to be extracted. For example, may require that all 
system header files be present and correct, this is an 
important constraint for compilation. Even modifying 
an existing parser to extract the new required artifacts 
from source code is quite complicated in real practice. 
This problem often drives users back towards lexical-
oriented techniques and often ad hoc approaches. 

The software systems are comprised of a variety of 
artifacts like files, data items, classes, functions and 
structures, which depend on programming languages 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 129 ISSN: 1790-5109



 
 

used to implement the system. A design artifact can be 
a logical view of the system, which is an object model, 
when an object-oriented method is used. A variety of 
interactions or relations may occur between the 
artifacts. The diversity of artifacts and relations makes 
it difficult for an engineer to extract the desired 
artifacts from the source code when performing a 
maintenance tasks.  

 

2.  Related Work 
Browsing and searching texts or structures by 
specifying patterns is of course a facility provided in 
many text editors and development environment. In 
order to be flexible and fast such facilities are almost 
without exception based on lexical structure and 
restricted to small predictable chunks of texts, 
especially lines.  

Paul and Prakash [17] discussed many limitations 
of regular expression matching: many regular 
expression matching implementations do not allow 
patterns to match across line boundaries and writing a 
pattern to distinguish nesting structure of 
programming language statements is difficult or 
impossible. Such problems are familiar to any 
software engineers trying to find patterns of use in 
source code files. In the case of extracting the source 
code, the solution is to extend the pattern language. 
However even though many available tools and 
frameworks GENOA [18], HSML [19], CIA [20] and 
Rigi [9] allow both browsing and searching of 
semantic information, often they are heavy weight. For 
this reason regular expressions are still the choice for 
many software engineers just because it is simple. 

 This was illustrated by Sim and Storey [21] in a 
tool demonstration. They invited teams of developers 
to bring their tools (Rigi1, PBS2, UNIX-tools grep and 
emacs, GUPRO3, Bauhaus4) to participate in structured 
demonstration. Observation was made by the 
organizers and participant tools in the structured 
demonstration is that all participating teams (except 
for the UNIX team) reported problems with their 
parsers and had to adapt them to parse the sample 
program. The xfig 3.2.1, an open source drawing 

                                                 
1  Rigi, University of Victoria. Rigi is a tool for re-documenting and 
browsing software architecture. 
2 PBS, University of Waterloo. Portable Bookshelf (PBS) is a tool suite for 
extracting, analyzing, and visualizing software architecture. 
3 GURPO, University of Koblenz, GURPO (Generic Understanding of 
PROgram) is a graph base, generic environment to support program 
comprehension based on query technology and graph algorithms. 
4 Bauhaus, University of  Stuttgart. Bauhaus is a set of tools for architecture 
recovery using static analysis. 
 

program consisting of approximately 60 KLOC of 
ANSI C code was used as a sample program in the 
demonstration. This observation lead to thesis: to 
avoid redundant work in building and adapting 
parsers, it would be beneficial to use a common set of 
robust and correct parsers. Moreover, without 
significant modification, these tools are not capable of 
extracting many of the system artifacts containing the 
relevant information such as data files and desired 
interactions of events.  

Paper presents a lightweight Regular Extraction 
Technique (RET) to extract the desired artifacts from 
the mix-mode source code, syntactically incorrect 
constructs, incomplete code or have different language 
dialects. The technique avoids the constraints and the 
brittleness of most parse-base approaches. This 
technique allows the software engineers to extract the 
different types of artifacts in a flexible way and have 
few constraints on the condition of the artifact (source 
code) from which the information is being extracted. 
The regular extraction technique is developed to 
overcome some of these limitations by retaining the 
tolerance and flexibility inherent with lexical 
approaches.  In general, the technique trades precision 
in extraction for improved efficiency in extracting the 
desired source code model and increases flexibility 
and tolerance in the automated systems for software 
maintenance tasks. The technique differs from the 
existing lexical approaches in extracting only those 
source code constructs that the user require to perform 
a maintenance task and represent the artifacts at higher 
levels of abstractions than code. The technique has 
been applied  to extract  the required artifacts for 
maintenance tasks at hand on different types of  
software systems source codes (C, C++, JAVA, 
COBOL, PASCAL) [22, 23, 24, 25, 26, 27] 
 

3. Regular Extraction Technique 
Each system is comprised of a variety of artifacts like 
classes, functions, and structures, and depends on 
programming languages used to implement the system. 
The artifacts defined for the system is not limited to 
identifiable pieces of the static system artifacts, but 
may extend to the system’s dynamic state during 
execution. A process may be considered as an artifact. 
Similarly, a variety of interaction may occur between 
the artifacts. The complexity of artifacts and relations 
makes it difficult for a user to gain an understanding 
and recovery of system artifacts from the source code 
for maintenance tasks. The user first selects the 
artifacts required for the maintenance tasks at hand. 
The artifacts extraction may be used to recover the 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 130 ISSN: 1790-5109



 
 

functional or architectural information of a system, or 
verify the available information with the source code 
for different purpose of maintenance tasks. An 
overview of the regular extraction technique is shown 
in figure 1.  

 In the next step, user examines the system artifacts 

and writes lexical specifications, which describe the 
information to extract the required source code model. 
Then these specifications are used to design the 
abstract regular expression patterns and extract the 
required source code models from the system artifacts. 
A user may refine the specifications and abstract 
regular expression patterns and reapply to extract the 

new artifacts from the abstract source code models or 
system artifacts. 
 

3.1 The RET Specification Language 

The language for specifying the source code model 
extractions has three parts: patterns, actions and 

analysis. The patterns of interest describe the 
constructs to search in system artifacts, actions to 
execute after the pattern is matched to a portion of 
system artifacts, and analysis operations that extract a 
source code from an intermediate representation by 
applying the patterns and actions. 
 
 

Iterate 

User 

Lexical Specification 

RET 

Tool 

 Artifacts 

 

System Artifacts 

Writes 

Examines 

Examines 

Figure. 1.   Regular Extraction Technique (RET) 

Abstract Source Code 

Models 

Design Abstract Regular 

Expression Patterns 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 131 ISSN: 1790-5109



 
 

3.1.1 Patterns 

The user specifies the information to extract from the 
system artifacts as patterns. Each pattern uses regular 
expressions to describe the artifact construct that may 
be found within the system artifacts. The RET tool use 
these patterns and match to the system artifact files 
and extract the required artifacts. 

For example the regular expression pattern 
"(class)\s*\w+\s*" is used to extract the name of all the 
classes defined in the Mozilla5 HTML Parser source 

code. This pattern specifies that every class definition 
consists of reserve word class, followed by the name 
of the class. The \s* represent a zero or more spaces 
after the reserved word class and \w+ represent any 
character word (alphanumeric) including underscore, 
which represent the class name. The RET tool scanner 
used this pattern and matched to the system artifact 

                                                 
5 The M8 source code used in this study. 
 

files and extracted all class names as shown in figure 
2. 

 
3.1.2 Actions 

A user may attach the action to the pattern to be 
executed when a pattern is matched in the source code. 
The action code performs operations such as 
controlling the matching of the constructs in the source 
code to particular patterns. Specifically, a user may 
reject matches to a particular pattern by invoking the 
regular expression within the action. This control is 
used to reject matches when patterns are too general. 

Analysis Operations 

In certain cases, the desired source code model cannot 
be extracted directly during the scanning of the source 
code. The required source code model can be extracted 
at the conclusion of extraction from multiple types of 
information extracted from the system artifacts. A user 
defines the desired extraction pattern in an analysis 
section of the specification and further extraction is 
performed on the intermediate results produced from 
previous extraction. 
 
3.2  Abstract Regular Expression Pattern 

The Abstract Regular Expression Pattern (AREP) 
represents the regular expressions of high-level 
concepts or artifacts. The user designs the abstract 
regular expression pattern by using the regular 
expressions and use the reserve words to name the 
abstract regular expressions. The abstract regular 
expression patterns allow the user to define the 
complex patterns required by the maintenance tasks 
for different languages and dialects using the pattern 
specification. 

Some of the examples of abstract regular 
expression patterns are presented which are designed 
to extract the artifacts from source code for different 
maintenance tasks. The regular expressions are used as 
patterns to design and abstract the complex patterns to 
represent the different artifacts of interest. More 
Abstract regular expression patterns can be designed 
using these patterns. For example, in the given below 
Types abstract regular expression pattern, the word 
“Types” is a name of the pattern and it is separated by 
special character ‘ –’ from the regular expression, 
which represent the types used in the source code.  
Ansi-\s|\w|\d|/|"|!|\(|\)|\\|@|#|\$|%|&|\*|\^|:|;|'|\,|\.|\?|\+|-
|\=|~|`|\||\[|\]|<|>|_|{|} 
Vartypes- char||int|void|float|static|double|long|short| 
Types-public|private|protected 

Figure 2.  Pattern is applied to extract 
the Mozilla HTML parser classes 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 132 ISSN: 1790-5109



 
 

 
Arg-\s|\w|\d |_|,|+|-|/ 
Args-(Arg)* 
Stm-
\s+|\w+|\d|/|"|!|\(|\)|\\|@|#|\$|%|&|\*|\^|:|_|;|'|\,|\.|\?|\+|-
|\=|~|`|\||\[|\]|<|> 
Stms-(Stm)* 
Structs-(struct\s*\w*\s*\{(Arg)*\s*\}) 
Enum-(enum\s*\w*\s*\{Stms\}\s*(Arg)*\s*;) 
IncludeFiles-#\s*include(.*)[<|"""](.*)[>|"""] 
Define-#\s*define\s*(Arg)* 
CfunDef-(((\w+)\s+|(\w+))(\((\w+)*\)\s*(Arg)*\{)) 
CFunCalls-
(((Types)|(\w+))\s*(\w+)\s*\(\s*(Arg)*\s*\) \s*;)) 
Class-((class)\s*(\w)+\s*\{) 
IndependentClass-(class)\s*(\w)+\s*\{ 
Deriveclass-((class)\s*(\w)+\s*:\s*(Arg)*\s*\{) 
Bothclasses-(Class | Deriveclass) 

As shown in figure 3, in  Bothclasses Abstract 
regular expression pattern, the words "Class" and 
"Deriveclass" are the reserve words, which represent 
the abstract regular expression patterns in (b) for the 
classes and derived classes. The (b) contains the 
abstract regular expression patterns "ClassName" and  
"Types", which further represent the regular expression 
patterns in (c) for the class name and class type in this 
case. This pattern is applied to HTML parser source 
code to extract all the classes as shown in figure 4. 

 
 

3.3  Abstract Source Code Model 

A source code model is developed by extracting the 
required information from the available source code or 
extracted artifacts. Extracting the required artifacts 
from the source code models develop abstract source 
code models.  There are three types of Abstract source 
code models: basic source code model, functional 
source code model and architectural source code 
model, which represent the artifacts at the 
implementation, functional and architectural level. 

Basic source code models are extracted from the 
system artifacts and contain the entities like classes, 
functions calls, function names, structures, 
enumerations etc. The functional source code models 
are extracted from the basic source code models, 
which represent the functional artifacts of the system 
e.g. relations and logic among programs and concepts. 
The functional artifacts of the system help to describe 
the functionality of the system.  Further extraction of 
source code models help to produce the architectural 
source code models, which represent the modules and 
components of the system and help to represent the 
information at the architectural level. 

As shown in figure 5, the RET tool scanner reads 
the abstract regular extraction pattern, action and 
analysis definitions, and applies these on the artifact 
files in a sequence and generates a source code model. 
Sometime, for instance when determining the call 
relation between the C files, the desired source code 
model must be extracted by combining information 
scanned from individual files.  Other times, for 
instance when determining the import relation between 

                
      (Class | Deriveclass)                                      

 

                                                                            (a)              

 

 

 

 

 

                           ((class)\s*ClassName\s*\{)                          ((class) \ s*ClassName\ s*: \ s* Types \s*  ClassName\s*\{)      

                                                                        

                                                                           (b) 

 

 

 

                            (\w)+                                                   (\w)+                                                 (public|private|protected)        (\w)+                          
  (c) 

 

Figure 3. Abstract Regular Expression Pattern used to extract the HTML Parser 

Classes 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 133 ISSN: 1790-5109



 
 

the packages, the desired source code model may 
produce by simply scanning the individual files. When 
information must be combined, the output from a 
scanner may be an intermediate representation. 

The analyzer uses the optional analysis third part of 
the specification; the post processing operations and 
read an intermediate representation stream produced 
by scanner and extracts the desired source code model. 
 

4. Zip Application Source Code 
To elaborate the technique, the function names, 
function calls, header files, structures and enumeration 
artifacts extraction from the Zip6 public domain 
application source code is described. Zip is 
implemented in C language. The Table 1 shows the 
details of the Zip source code used in the study.   

The following specification is designed to extract 
the function calls from the Zip source code.  
Pattern Specification:<FunctionName> \( [<Args>] \) 

 

    
Source 

Code 

Size 

Kilo 

Bytes 

Total  

Files 

C 

Files 

Header  

Files 

Total  

LOC 

 
Zip 

 
428 

 
25 

 
17 

 
8 

 
10529 

                
 

Table 1.  Zip Source Code Statistics 

 
This pattern specification specifies that a function 

call consist of function name, a left parenthesis, an 
optional list of arguments and a right parenthesis. The 
names appear in the angle brackets in the pattern 
introduce the scanner the abstract regular expression 
pattern, which can further be represented by another 
abstract type or simple regular expressions. For 

                                                 
6 Zip 11.0 source code was used in the study 

example, the function name represents the regular 
expressions [A-Za-z0-9] or \w, which means match 
any character word including underscore. The 
backslash represent reserved single character. 
The pattern for extracting the function calls may also 
match the control constructs such as if, while, switch 
etc. The following action pattern is used to reject the 
control structures for the matched patterns of the 
function calls. 
Action:  (if|while|switch|for) 

The pattern output may contain any of the above 
control structure it will be rejected and not appeared in 
the local output. The vertical bar " | " represent the 
alternation. The parenthesis "( )" matches pattern to 
capture the match. The capture match can be retrieved 
from the resulting matching collection. After applying 
the pattern and action, the output may contain the built 
in C functions. The following analysis pattern is used 
to analyze the extracted function calls to verify the 
built in functions, and only function calls will appear 
in the output. 
Analysis pattern : (return)|(sizeof)|(system)|(time)| 
(exit)|(strlen)|(strcpy)|(strcmp)|(strcat)|(printf)|(scanf)  
|(fflush) (clrscr)|(sqrt)|(atoi)|(abort)|(read)|(write)| 
(open)|(close) |(eof)|(abort)) 

The following pattern specification is designed to 
extract the required function definitions from the Zip 
source code. 
Pattern Specification: [<Type>] <FunctionName> 
\([<Args>] \) (<Types> <Declaration> ;)* \{ 

This pattern specify that a function definition 
consist of an optional type specification followed by 
the name of the function, a left parenthesis, an optional 
list of arguments, a right parenthesis, an optional list of 
declaration of type of arguments each of which is 
terminated by a semicolon. A function body then starts 

System 

 Artifacts 

S 

c 

a 

n 

n 

e 

r 

Source Code 
Model 
 

Regular Extraction Technique 
Specifications 

Patterns 

Actions 

Analysis 
 

Analyzer 

                                 Figure 5.  RET Tool Architecture 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 134 ISSN: 1790-5109



 
 

with an open curly bracket.  
The names appear in the angle brackets in the 

pattern introduce the scanner the abstract types which 
can further be represented by another abstract type or 
simple regular expressions. For example, the function 
arguments are   represented by the abstract regular 
expression pattern “(Arg)*”. It means match multiple 
arguments in function definition. The following 
regular expressions are written to represent the above 
pattern specification. 
(((Vartypes))\s*(\w+)\s*\(\s*(Arg)*\s*\)\s*(Arg)*\s*\{)) 

By applying the above abstract regular expression 
pattern on one of the file (zipup.c) of the Zip source 
code, the required functions definitions extracted are 
shown in figure 6. The Table 2 shows the total 
numbers of functions definitions were extracted from 
the Zip source code and other artifacts. 

The following abstract regular expression patterns 
are used to extract the structures and enumerations 
from the zip source code. In the Structs and Enum 
abstract patterns, the \s* represents the spaces zero or 
more times after the C language reserve word “struct”. 
The (Stm)* is an abstract regular expression pattern and 
it represents the statements between the curly brackets. 

Structs- (struct\s*\w*\s*\{(Arg)*\s*\}) 
Enum-(enum\s*\w*\s*\{Stms\}\s*(Arg)*\s*;) 
In addition to the example described above, the 

Regular Extraction Technique (RET) has been used to 
extract several different kinds of source code models 
from a variety of types of system artifacts. The 
technique has been used to extract classes, inheritance, 
event information, functions, variables, calls and also 
relations among different entities information from 
public domain programs: Mozilla and Apache7. The 
extraction is heavily dependent upon the patterns in a 
specification and the contents of the artifacts being 
scanned. Since these two factors affect the size of the 
search space explored. The tables 2 and 3 present the 
RET tool time taken to extract the different artifacts on 
a Intel PIII 800 MHz machine with 128MB RAM. 

The Apache C call graph extraction and different 
artifacts extracted form zip source code time exhibited 
that the regular extraction technique tool (RET) 
performance is sufficient to support the use of the 
technique on large systems. 
 

Extracted Artifacts from 

Zip Source Code 

Time 

Taken 

(MM:SS) 

No. of  Artifacts 

Extracted 

Function Definitions 
 

00:06 170 

Function Calls 00:01 665 

                                                 
7 Apache 2.0.43 source code is used in this study.  

 

Structures 
 

00:00 3 

Enumeration 
 

00:00 2 

Include Files 
 

00:00 40 

 

 Table. 2. Artifacts extracted and times taken 
   

 

Source Code 

 

 

LOC 

 

Tool 

 

CPU Time (MM:SS) 

 
Apache 

 
346807 

 
RET  

 
2:06 

 

 Table 3: Time Taken to Extract C Call     

Information 
 

     This performance is promising since the purpose of 
the technique is not to supplant existing tools but 
rather to take advantage of the benefits the technique 
provides in being able to extract the artifacts from the 
different programming languages source code not 

possibly to compile or have mix-mode source code. 
 

5.   Conclusion 
The software systems are composed of several types of 
artifacts and these artifacts exist at the implementation, 
structural, functional, architectural and domain levels. 
The software engineers extract these artifacts and 
represent at higher levels of abstraction for 

 
 
 

int zipcopy(z, x, y) 
struct zlist far *z;     
FILE *x, *y;             
{ 
 
int percent(n, m) 
ulg n, m;                
{ 
int suffixes(a, s) 
char *a;                 
char *s;                 
{ 
int zipup(z, y) 
struct zlist far *z;     
FILE *y;                 
{ 
void closedir(DIR * dirp) 
{ 
int IsFileSystemFAT(char *dir) 
{ 

Figure 6. Required Extracted Zip Function 

Definitions 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 135 ISSN: 1790-5109



 
 

maintenance task at hand.  The software engineers are 
required to extract the source code for desired artifacts 
for the purpose of specific maintenance tasks at hand. 
The lexically based Regular Extraction Technique 
(RET) extracts the artifacts from the source code to 
perform the different maintenance tasks at hand. It can 
be applied on source codes which exist in may forms; 
multiple-languages source code or mix-mode source 
code and have different dialects, incomplete and can 
not be compiled or have errors. The user examines the 
system artifacts and uses the pattern specification 
language to specify the artifacts construct required to 
extract from the available source code. The user uses 
the pattern specification language and develops the 
abstract regular expression patterns to extract the 
required source code models for the desired artifacts.  
Abstract regular expression patterns allow the user to 
design different abstract patterns of interests required 
by the maintenance tasks at more abstract levels. 

The technique can be applied to different kinds of 
system artifacts including source codes (languages) 
and data files and only the specific required artifacts 
are extracted.  The specifications are easy to write and 
only syntactic knowledge of the subject system is 
required and few constraints are placed on the 
condition of the system artifacts.  The abstract patterns 
are reused to further develop new require more 
abstract patterns. The source code models are also 
reusable to produce higher abstract levels of varying 
details required for the maintenance task at hand.  

 

References: 

[1] M.M. Lehman and L.A Belady, “Program  
Evolution -  Processes of Software Change”, 
London, Academic Press, 1985. 

[2] M.M. Lehman, “Rules and Tools for Software 
Evolution Planning and Management, in 
FeedBack, Evolution And Software Technology 

Workshop (FEAST 2000), Imperial College 
London, 10-12 July 2000.  

[3] E. B. Swanson, “The Dimensions of 
Maintenance”, in Proceedings of the 2nd 

International Conference on Software 

Engineering, Los Alamitos, CA, 1976, pp. 492-
497. 

[4] N. Chapin, “ Software Maintenance Types & 
mdash:A Fresh View”, in Proceedings of the 
International Conference on Software 

Maintenance (ICSM 2000), San Jose, 
California,11- 14th  Oct. 2000. 

[5]  E. J. Chikofsky and J. H. Cross, “Reverse 
Engineering and Design  Recovery: A 

Taxonomy”. IEEE Software, vol. 7, no.1, pp. 13-
17, 1990. 

[6] H. A. Muller and J. S. Uhl, “Composing 
Subsystem Structures Using (K-2)-partite graphs”, 
in Proceedings of Conference on Software 

Maintenance, San Diego, CA, Nov. 1990, pp. 12-
19. 

[7] Datrix, “DATRIX- Abstract Semantic Graph 

Reference Manual”, Ver. 1.4 edition, Bell Canada 
Inc. Montreal, Canada, 2000. 

[8] R. Ferenc, and Beszedes, “Data Exchange with 
Columbus Schema for C++”, in Proceedings of 
European Conference on Software Maintenance 

and Re-Engineering (CSMR'02), March 2002, pp. 
59-66. 

[9] H. A. Muller et al. (2002) Rigi. Available from:< 
http://www.rigi. csc.uvic.ca> [Accessed  03 April, 
2002]. 

[10] R. C. Holt et al. (2002) PBS: Portable Bookshelf 
Tools. Available from: < http://www. 
turing.toronto.edu.>  [Accessed  03 April, 2002]. 

[11] T. R. Dean, A. J. Malton  and R. C. Holt, “ Union 
Schema as a Basis for a C++ Extractor, in 
Proceedings of Working Conference on Reverse 

Engineering (WCRE' 01), Oct. 2001, pp. 59-67. 
[12] S. Burson, G. Kotik, and L. Markosian, “A 

Program Transformation Approach to Automating 
Software Re-Engineering”, in Proceedings of the 
Fourteen Annual International Computer Software 

and Application Conference, Los Alamitos, CA, 
1990, pp. 314-322. 

[13] B. Kullbach, and A. Winter, “Querying as an 
Enabling Technology in Software Reengineering”, 
in Proceedings of Conference on Software 

Maintenance and Reengineering (CSMR'99), 
1999. 

[14] Acacia (2002) AT&T Laboratories. Available 
from: <http//www.research.att.com/~ciao.> 
[Accessed  4th January, 2002]. 

[15]  A. Aho, B. Kernighan  and P. Weinberger, 
“Awk- A Pattern Scanning and Processing 
Language”, Software-Practice and Experience, 
vol. 9, no. 4, pp. 267-280, 1979. 

[16] J. R Levine, “Lex & Yacc”, 2nd Edition, 
California, O'Reilly & Associates, 1992.  

[17] S. Paul and A. Prakash, “A Framework for Source 
Code Search Using Program Patterns”, IEEE 
Transactions on Software Engineering, vol. 20, 
no. 6, pp. 463-475, 1994. 

[18] P. Devanba, “GENOA – A Customizable, Front-
end-retagetable Source Code Analysis 
framework”, ACM Transaction on Software 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 136 ISSN: 1790-5109



 
 

Engineering and Methodology, vol. 8, no. 2, pp. 
177-212, 1999. 

[19] A. J. Malton, J. R. Cordy, D. Cousineau, K.A. 
Schneider, T.R Dean, J. Reynolds, “Processing 
Software Source Text in Automated Design 
Recovery and Transformation”, in  Proceedings of 
9
th
 International Workshop on Program 

Comprehension, Toronto, May 2001, pp. 127-134. 
[20] Y. Chen, M. Nishimoto,  and  C. Ramamoorthy, 

“The C Information Abstraction System”. IEEE 
Transaction on Software Engineering, vol. 6, no. 
3, pp. 325-334, 1990. 

[21] S. E. Sim, M. -A. D. Storey, “A Structured 
Demonstration of Program Comprehension 
Tools”, in Proceedings of Working Conference on 
Reverse Engineering (WCRE 00), Brisbane, 23-
25th  Nov. 2000. 

[22] Asif, N.,   Software Reverse Engineering, 
SoftResearch Press, 2006. (ISBN : 969-9062-00-
2).  

[23] Asif, N., Dixon, M., Finlay, J. and Coxhead, G., “ 
Recover the Design Artifacts”. In Proceedings of 
International Conference of Information & 

Knowledge Engineering (IKE’02). June 24th-27th , 

Las Vegas, Nevada, CSREA Press, pp. 656-662, 
2002. 

[24] Asif, N., “ Reverse Engineering Methodology to 
Recover  the Design Artifacts: A Case Study” . In 
proceedings of International  Conference of 

software Engineering Research & Practice 

(SERP’03). June 23rd -26th, Las Vegas, Nevada, 
CSREA,  pp. 932-938., 2003 

[25] Asif, N., Ramachandran, M. , “ Recover the Use 
Case Models”. In proceedings of International 
Conference of Software Engineering Research & 

Practice (SERP’05). June 27th-30th, Las Vegas, 
Nevada, USA, 2005.  

[26] Asif, N., “ Developing High Level Models for 
Artifacts Recovery and Understanding Using the 
Statistical Information”, In proceedings of 8th  
Islamic Countries Conference on Statistical 

Sciences (ICCS-VII),  Dec 19th- 23rd , 2005, ISOSS 
Press, Pakistan.  

[27] Asif, N., Recovery of Architecture Artifacts. The 
2007 International Conference on Software 

Engineering Theory and Practice (SETP-07), July 
9-12, 2007, Orlando, FL, USA (Appear).  

 

 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 137 ISSN: 1790-5109



 
 

 

Figure 4.  RET Tool used the Abstract Regular Expression Patten “ BothClasses”  for Extraction 

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY

ISBN: 978-960-474-146-5 138 ISSN: 1790-5109




