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Abstract: - Many production Grid and e-science infrastructures offer their broad range of resources via services to end-
users during the past several years with an increasing number of scientific applications that require access to a wide 
variety of resources and services in multiple Grids. But the vision of world-wide federated Grid infrastructures in 
analogy to the electrical power Grid is still not seamlessly provided today. This is partly due to the fact, that Grids 
provide a much more variety of services (job management, data management, data transfer, etc.) in comparison with 
the electrical power Grid, but also the emerging open standards are still partly to be improved in terms of production 
usage. This paper points exactly to these improvements with a well-defined design of an infrastructure interoperability 
reference model that is based on open standards that are refined with experience gained by production Grid 
interoperability use cases. This contribution gives insights into the core building blocks in general, but focuses 
significantly on the computing building blocks of the reference model in particular.  
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1   Introduction 
Computational simulations and thus scientific computing 
is the third pillar alongside theory and experiment in 
science and engineering today. The term e-science 
evolved as a new research field that focus on 
collaboration in key areas of science using next 
generation computing infrastructures such as Grids to 
extend the potential of scientific computing.  
     More recently, increasing complexity of e-science 
applications that embrace multiple physical models (i.e. 
multi-physics) and consider a larger range of scales (i.e. 
multi-scale) is creating a steadily growing demand for 
world-wide interoperable Grid infrastructures that allow 
for new innovative types of e-science by jointly using a 
broader variety of computational resources. Since such 
interoperable Grid infrastructures are still not seamlessly 
provided today, the topic ‘Grid interoperability’ emerged 
as a broader research field in the last couple of years. 
     The lack of Grid interoperability is a hindrance since 
we observe a growing interest in the coordinated use of 
more than one Grid with a single client that controls 
interoperable components deployed in different Grid 
infrastructures. In fact, we have shown in a recent 

classification [10] that among simple scripts with limited 
control functionality (i.e. loops), scientific application 
client plug-ins, complex workflows, and interactive 
access, there is also Grid interoperability mentioned as 
one approach to perform e-science today.  
     Such interoperable federated Grids have the potential 
to facilitate e-research and thus scientific advances, 
which would not be possible using only a single Grid 
infrastructure. These advances arise from the advantages 
that federated Grid resources provide, such as access to a 
wide variety of heterogeneous resources, aggregated 
higher throughput, and lower time-to-solution. 
     In more detail, we observe that more and more Grid 
end-users raise the demand to access both High 
Throughput Computing (HTC)-driven Grids (EGEE, 
OSG, etc.) and High Performance Computing (HPC)-
driven infrastructures (DEISA, TeraGrid, etc.) from a 
single client or science portal. In this context, the 
fundamental difference between HPC and HTC is that 
HPC resources (i.e. supercomputers) provide a good 
interconnection of cpus/cores while HTC resources (i.e. 
pc pools) do not.  
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     This joint use is typically motivated by the theory and 
concept that tackle the scientific problem and is modeled 
within the corresponding codes that in turn lead to some 
codes that are ‘nicely parallel’ (i.e. HTC) and others that 
are better suited to be computed as ‘massively parallel’ 
(i.e. HPC) simulations. In addition, the joint use of HTC- 
and HPC-Grids is often motivated by the fact that often 
end-users perform smaller evaluation runs with their 
codes on HTC resources before performing full-blown 
production runs on large-scale HPC resources. This 
saves rare computational time on costly HPC resources 
within HPC-driven Grids.  
    This contribution highlights recent achievements in 
defining the core building blocks of a Grid infrastructure 
interoperability reference model (IIRM) that is based on 
emerging open standards and there improvements based 
on lessons learned from real interoperability use cases. 
Although many aspects of the reference model have been 
described by Riedel et al in [3], this paper provides much 
more detail in the particular context of the core building 
blocks in terms of computation. In this sense it 
highlights the improvements of the emerging open 
standards that have proven to be useful in production 
Grids. In fact, more recently, the most elements of the 
work provided within this contribution have been given 
as an input into the OGF Production Grid Infrastructure 
(PGI) working group in order to feed back our lessons 
learned and interoperability application experience with 
open standards into the standardization process. 
     This paper is structured as follows. Following the 
introduction, Section 2 sets the scene by discussing the 
common challenges and benefits of Grid interoperability. 
Section 3 describes the general design of the 
interoperability reference model, while Section 4 
provides many details to the improved concepts of open 
standards. Finally, after surveying related work in 
Section 5, we present our conclusions in Section 6. 
  
2   World-wide Grid Islands 
At the time of writing, it is an interesting time period for 
European Grids in the sense of the upcoming transition 
process from the project-based EGEE project to a longer 
sustainable European Grid Initiative (EGI) while DEISA 
and the Partnership for Advanced Computing in Europe 
(PRACE) are jointly creating an HPC infrastructure for 
emerging peta-scale applications. In the US, we see an 
upcoming third phase of the TeraGrid in the context of 
the extreme digital (XD) resources for science and 
engineering transition.  
     Nevertheless, what we learned from the past and what 
we can expect from the future is that the underlying 
computing paradigms will remain in the sense that 
requirements for HTC and HPC will be still present. 
That’s still valid even in times where, in principle, HTC 
and HPC codes could be executed on one large-scale 

cluster such as the IBM BlueGene/P while having thus 
much more focus on the computed data itself instead on 
the computational paradigms that are being used. More 
recently this approach have been coined as many-task 
computing that is rather close to the approach of Grid 
interoperability in the sense of using HTC and HPC 
concepts seamlessly and focusing much more on the data 
aspect of the scientific applications. 
     Since the difference between these underlying 
computational paradigms (i.e. HTC and HPC) will still 
exist in the future, interoperability between Grid 
infrastructures that offers seamless access to both types 
of computational resources will be further needed in 
future. Since, we observe a rather slow adoption of 
emerging open standards in deployed Grid middleware 
systems on these infrastructures in the past; The Grid 
communities and projects developed many different 
approaches to Grid interoperability that are classified by 
Riedel et al. in [10].  
     What we observe in all of these approaches, that are 
not only restricted to HTC and HPC infrastructure 
interoperability, is that emerging open standards have a 
high potential to achieve a reasonable basic level of 
interoperability. But in terms of production use cases it 
turns out that many standards that are adopted rather 
slowly in production Grids lack some certain smaller 
concepts. Often, the interoperability is achieved by doing 
small workarounds; apply small hacks or changes to the 
emerging standards to get not-fully supported concepts 
working on a pair-to-pair basis between usually two 
production Grid infrastructures. 
     As a summary, common open standards are the one 
and only way to enable a long-term seamless cross-Grid 
access that goes beyond a pair-to-pair basis connecting 
some of the so-called non-interoperable ‘Grid islands’. 
This, however, implies that experience gained in 
production Grid interoperability must be fed back to the 
standardization process. Thus we have worked on the 
understanding of how such standards can be further 
improved to increase their adoption in production Grid 
middleware.  
     In fact, we have performed many interoperability 
tests and worked with a wide variety of interoperability 
use cases [2] in the context of the Grid Interoperation 
Now (GIN) community group of OGF. The lessons 
learned from all these activities have been given as an 
input to the OGF Production Grid Infrastructure (PGI) 
working group in order to improve existing emerging 
open standards towards an improved production usage 
following the well defined infrastructure interoperability 
reference model [3]. In this working group, members of 
UNICORE (deployed on DEISA), ARC (deployed on 
NorduGrid), and gLite (deployed on EGEE) work 
closely together with members of the US (e.g. 
GENESIS-II) in order to define how these improved 
standards can be seamlessly integrated into middleware. 
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3   Reference Model Design 
The lack of Grid interoperability is a hindrance since we 
observe a growing interest in the coordinated use of 
more than one Grid infrastructure from a single Grid 
client, which is able to seamlessly use a variety of 
computational resources in different Grid infrastructures. 
     The fundamental idea of the Grid infrastructure 
interoperability reference model (IIRM) is to formulate a 
well-defined set of emerging open standards and 
refinements of them in order to address the 
interoperability needs of state-of-the-art production Grid 
and e-science infrastructures. In order to identify this 
well-defined set of standards, we worked with many 
scientific interoperability use cases [1, 2]. Based on 
these efforts, the lessons learned about the most crucial 
functionality led to the core building blocks of the 
reference model design as shown in Figure 1. 
 

 
Fig.1 – The core building blocks of the infrastructure 
interoperability reference model in the context of state-
of-the art scientific and Grid computing infrastructures. 
 
As shown in Fig. 1, the core building blocks are well 
embedded in the typical environments of Grid 
infrastructures with numerous types of clients accessing 
them in order to execute different types of applications 
that are typically based on different computing 
paradigms (i.e. HTC, HPC) using some kind of shared 
scientific data. In the most cases, different production 
Grid infrastructures exist to satisfy these demands that 
are HPC-driven Grid infrastructures (i.e. TeraGrid, 
DEISA) with large-scale HPC resources and HTC-
driven Grids (i.e. OSG, EGEE) with a high amount of 
smaller clusters or PC pools.  
     In addition, in many applications use cases we 
encountered the demand for joint data storages since data 
is fundamentally different from computation in the sense 
that data once stored in one technology must be migrated 
in a time-consuming effort. In computing, on the other 
hand, the submission and management of the 

computational jobs itself can be easier changed to 
another infrastructure although also this implies certain 
problems (e.g. differences in job description). 
     Hence, the identified most crucial functionality to 
actually enable interoperability between production Grid 
infrastructures is data management and control, 
including the data transfer, as well as job management 
and control. In context of the latter, there is also the 
execution environment important, for instance to have 
common environment variables that describe different 
boundary conditions (e.g. available memory, CPUs, etc.) 
for the application execution during run-time. 
     Apart from this functionality, there are two special 
kinds of elements of the design that are security and 
information. A common security setup is in the most 
cases the major showstopper to enable interoperability 
between Grid infrastructures and as it affects basically 
every layer in can be considered as a rather vertical 
building lock (cp. Fig. 1). The same is valid for 
information that refers to the up-to-date information 
about the computational Grid in general and each of its 
computational resources in particular. These pieces of 
information are reaching from the amount of available 
CPUs to a list of supported applications and services. 
     Less used in our interoperability use cases have been 
self-management functionality or service level 
agreements that are often used in other use cases 
together with a meta-scheduling framework. 
Investigations in production Grid infrastructures reveal 
that these frameworks as well as self-management 
functionality is rather experimental and not used in 
production Grids on a daily basis. 
     Further investigations [2] in production Grids reveal 
that the most interoperability use cases are often based 
on emerging open standards including some 
modifications and thus small refinements of them. By 
taking our various lessons learned into account, these 
open standards (including refinements) can be in turn 
easily mapped to the core building blocks of the 
reference model design as shown in Fig. 2. In this 
context, we refer to profiling in the sense of defining 
small refinements of the used open standards that have 
been proved useful in numerous interoperability use 
cases and thus majorly improve the effectiveness of the 
emerging open standard. 
     As shown in Fig. 2, the significant improved 
standards are the Storage Resource Manager (SRM) [4] 
data control interface as well as the WS-Database Access 
and Integration Service (WS-DAIS) [5] data 
management interface. In terms of wide-area data 
transfer, mostly GridFTP or HTTP(S) is used in the 
scientific use cases. The core building block of job 
management and control is represented by improved 
versions of the OGSA-Basic Execution Service (BES) 
[6] and the Job Submission and Description Language 
(JSDL) [7]. The environment profile is somehow 
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different since its standardization was started within the 
GIN community group, but not yet finalized as proposed 
standardization document. The information standard that 
plays a very important role in the design model is the 
GLUE2 [8] standard including some small refinements. 
Finally, the security profile refers to a broader range of 
authentication and attribute-based authorization 
standards basically based on X.509 and the Security 
Assertion Markup Language (SAML) [9].  
 

 
Fig. 2 – The reference model core building blocks are 
based on refined open standard profiles. 
 
Because of the page limitation, we are not able to cover 
all the details of all the core building blocks. Therefore, 
this contribution focuses on the OGSA-BES and JSDL 
profile building block including some aspects of the 
environment profile as well. For more overall pieces of 
information about the other building blocks of the 
reference model please refer to Riedel et al. [3]. 
 
4   Computational Concepts 
The whole IIRM is based on lessons learned gained from 
using the emerging open standards in real production e-
science interoperability applications. In this context, the 
paper focuses only on the improvements related to the 
emerging standards OGSA-BES and JSDL while an 
overall description of the reference model itself can be 
found in [3]. 
     We gained a lot of experience in the past several 
years with using the OGSA-BES service implementation 
not only for pure demonstration purposes, but also for 
real interoperability use cases that require resources in 
more than one Grid infrastructure. While working with 
these different Grid applications, we encountered several 
limits in using the OGSA-BES specification in several 
scientifically-driven interoperability use cases among 
several infrastructures. These limitations have been 
addressed by many different concepts that lead to the 

proposed improvements of the emerging open standards 
that we describe within this section in more detail. 
     When comparing these improved concepts, we 
outline that the OGSA-BES specification concepts do 
not fit the requirements of production e-science 
infrastructure job management as experienced by use 
cases such. This is also true when combining it with 
profiles such as the High Performance Computing (HPC) 
– Basic Profile (BP) that also not cover all of the 
following concepts. We thus argue that the scope of the 
OGSA-BES specification must be extended in the case 
of scientifically driven Grid infrastructures even if this 
means a decrease in modular approaches of reusing the 
OGSA-BES specification in numerous other use cases. 
     In fact, the broad variety of how the OGSA-BES 
specification can be used with numerous other security 
setups and profiles lead in several of our application use 
cases to a significant decrease in successful 
interoperability setups. Therefore the goal of the IIRM in 
general, and the improvements of OGSA-BES in 
particular is to profile exactly how this improved OGSA-
BES can be used in the context of deployed components 
for information handling, data transfer, and storage 
management as well as security. 
     Taking the lessons learned of many problems in 
interoperability into account, it becomes clear that job, 
data, and storage management can be seen as one atomic 
entity as initially proposed by Riedel et al. in [18] 
described by using the UNICORE Atomic Services 
(UAS) as reference implementation at that time. The 
UAS provide Web service interfaces for all these parts, 
but are rather proprietary compared to the OGSA-BES, 
SRM, and other specifications. Nevertheless, the 
approach of specifying all these different areas together 
is the approach we found majorly important while 
dealing with multi-infrastructure e-science applications. 
In other words, if one little element is slightly different 
specified and implemented (e.g. one JSDL-based 
extension is supported in e-research tool A, but not in e-
research tool B) it has a high potential to break the whole 
interoperability setup. 
     Also important is to specify at least one output 
mechanism that acts as default in the improved OGSA-
BES specification to avoid the problem of specifying a 
raw interface that can be used to submit jobs, but not 
getting any results. In this context, the output transfer is 
tightly coupled with storage functionality and thus also 
part of the ’atomic entity’ mentioned above. As a side 
remark, the ’atomic’ term is not meant as ’atomic 
transaction’ but rather indicating that job, data, and 
storage management must be closely defined together as 
within the IIRM to enable interoperability usable for 
production applications. Hence, core job submission, 
storage, and file transfer functionality must be seen as 
one atomic entity allowing possible ways of extending 
(e.g. alternative data-staging technologies/profiles). 
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4.1 Improving Common Open Standards 
This section discusses the identified concepts that directly 
affect the execution service interface and thus our 
proposed improvements of the OGSA-BES interface. For 
each of the concepts we also reveal the context of our 
work with e-research applications that require resources 
in more than one e-science infrastructure and in turn 
substantially contributed to our proposed improvements.  
     In general, we can state that the OGSA-BES 
specification is very good first step towards the right 
direction. This is acknowledged where several required 
concepts are actually already provided by this 
specification. To provide an example, in the WISDOM 
[1] and EUFORIA [19] use case, we actually succeeded 
in submitting a job from the EGEE infrastructure to the 
DEISA infrastructure and vice versa using the OGSA-
BES interface of gLite and UNICORE. We have been 
able to submit simple jobs while simple refers to the fact 
of having one executable without very specific resource 
requirements (e.g. used network topology on a resource). 
     Also, the cancellation of submitted jobs and their 
status retrieval also worked fine across the different 
infrastructures. An interesting concept provided by the 
OGSA-BES specification was the remote management 
features that have been marked as deprecated in the 
improvements since we learned that administrators in 
production infrastructures typically would like to retain 
local resource control and are not in favor of service 
management operations that can be remotely invoked. 
But despite several advances in interoperability, we also 
have to state that there are a lot required concepts that are 
not in OGSA-BES or JSDL adoptions today. 
 

 
Fig. 3 – OGSA-BES / JSDL defines functionality for 
staging data automatically performed via the 
middleware. 
 
     One example for the most important missing concept 
initially originated from the WISDOM use case and we 
refer to this concept as client-initiated data-staging. In 
the context of this application, it is important to 
understand that exactly between the workflow step 1 
(molecular docking) and step 2 (molecular dynamics, i.e. 
simulation over time) manual intervention is necessary by 
the scientists in order to evaluate which docking data 
actually makes sense to be computed using highly costly 
supercomputing time. Hence, the scientists manually 
analyzes the data and afterwards raise the requirement for 
our an approach that enables ’client initiated data-

staging’ to one specific site where a particular job should 
be executed.  
As shown in Fig. 3, as part of JSDL, end-users are able to 
specify which data should be staged-in by the Grid 
middleware and we refer to this approach as ’data pull’. 
Nevertheless, in many of our use cases, there was a 
specific need by scientists that data has to be staged-in 
manually to the working space of the corresponding Grid 
job (i.e. activity). In one particular example, the 
WISDOM scientists actually would like to submit a job 
to the UNICORE-BES implementation and before the 
activity is being started, the scientists use meta-data 
stored in a WS-DAIS-compliant database and GridFTP to 
trigger an client-initiated data-staging that only transfers 
a specific data subset of workflow step 1 (molecular 
docking) outcomes for computation on the DEISA 
infrastructure.  
 

 
Fig. 4 – Data-push as improvement concept versus 
already existing data-pull in the context of a real 
interoperability use case application using the EGEE 
and DEISA infrastructure. 
 
This particular concept and thus the identified 
improvement of the standards is shown in Fig. 5 (blue 
text and lines). More information about this particular e-
science application with data-staging using relational 
databases can be found in Holl et al. [20]. 
 

 
Fig. 5 – Improved OGSA-BES / JSDL defines 
functionality for staging data manually performed via 
the client. 
 
A closer investigation of this concept reveals that two 
more related concepts are actually required to achieve 
this. First, this concept raises the demand for the concept 
of job working directory access, which refers to the 
client knowledge of the location of the job sandbox (i.e. 
directory) where the submitted job will be executed. 
Second, the submitted job should not start until the 
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client-initiated data-staging has been performed and thus 
this leads to the concept of Predefined Hold points. If 
this is not provided, the scientists manually transfer sub-
elements of the data into the file system GPFS of DEISA 
and UNICORE-BES in turn would have to stage-in the 
data for computation into the working directory thus 
leading to a second not necessary file transfer. 
     All these three concepts are at the time of writing not 
supported by the OGSA-BES specification, but can be 
easily achieved by providing the job location, if possible, 
as an immediate result of the submit operation (i.e. 
createActivity) or providing a suitable way of obtaining 
this location via a query about job information later. This 
location is important so that end-users (or corresponding 
client software) knows where data can be staged close to 
the created Grid job. Of course, this location can be also 
retrieved with another operation that queries information 
about one particular Grid job, but we found that this then 
requires yet another communication exchange and thus 
was considered to be more efficient when the location 
information can be encoded in the outcome of a job 
submission (if possible). Apart from the WISDOM use 
case, we learned that also other use cases such as 
EUFORIA, or VPH [3] welcome this concept in order to 
use this location to perform a direct SSH connection into 
the working directory. This has been proved to be useful 
in order to enable higher-level concepts such as 
computational steering of Grid jobs or checking the data-
writing progress of one Grid job while running. 
     Another aspect to realize the ’client-initiated data-
staging’ins the concept of using ’Predefined Hold points’ 
that can be described with ’states’. This means that after 
a Grid job is submitted and its JSDL has been parsed and 
the implied data-staging activities have been performed, 
the job should not directly start in order to wait for any 
kind of client-initiated data-stagings. In order to 
communicate this, scientists can specify so-called hold 
points in the improvements of the JSDL-based job 
submission. The job description is the right place for 
specifying this since the position of the hold-points are 
often related to the nature of the execution itself while a 
more general and flexible manual suspend functionality 
is defined in the context of the interface itself. 
     In the WISDOM example and in the context of 
workflow step 2 (molecular dynamics), one hold-point is 
always at the data-staging-in state in order to allow that 
WISDOM scientists can transfer a suitable subset of data 
from the molecular dockings before the job is actually 
starting to run in DEISA. We also learned from the 
WISDOM use case that from time to time a 
computational job should be just suspended, which can 
be also achieved by providing another hold-point during 
the ’job-execution’ state. However, this is not clearly 
directly related to the job itself and thus this concept of 
is rather implemented on the execution service interface 
level. This concept enables, for instance in our 

WISDOM use case, an evaluation of the already 
simulated molecular dynamics time frame in order to 
check if ’invalid movements’ might already occur and 
thus make it unnecessary to continue the simulation. In 
the most cases this was related to the fact that sometimes 
computed data can be easily analyzed by the e-scientists 
that in turn immediately decide whether the data is 
useful or was just another evaluation run that should be 
not transferred in data-staging activities to more 
permanent storages. 
     The above discussion about ’suspend’ leads to a more 
generic discussion when observing the necessary 
’resume’ functionality and maybe even other rather 
manual state changes. In this context, a concept that was 
typically missing in interoperability use cases was thus 
the Manual manipulation of job states concept, which 
can be implemented with an operation such as 
changeActivity() within the execution service interface. 
But this particular operation is non-trivial since it raises 
several concerns and was left out initially in the OGSA-
BES specification for reasons related to the extensibility 
of the implied job status model. Hence, additionally 
supported states might not be known by clients and thus 
invoking such an operation with an unknown state model 
might cause serious trouble, for instance the uncertainty 
in picking the correct state to move an activity to. 
     We address this issue within the IIRM by explicitly 
profiling allowed state changes and defining a state 
model that is sufficient, but still extensible like the one 
in the OGSA-BES specification. Nevertheless, we 
encountered several times, not only in the WISDOM, 
EUFORIA or VPH application that this operation should 
be provided by an improved OGSA-BES specification. 
The benefit of this operation is twofold. First, it provides 
an operation that allows e-scientists to explicit start an 
activity once the potentially manually performed data-
staging step is finished. It thus also plays a crucial role in 
the ’client-initiated data-staging’ concept stated above in 
order to enable e-scientists with the possibility to finish 
the data-staging when they want. Second, it provides the 
functionality to suspend or resume a running Grid job in 
general, although this raises the requirement that 
underlying resource management systems support these 
feature, which was not always the case in our 
experiences. In this context, the GLUE2-based 
information service that provides information about any 
improved OGSA-BES endpoint must expose information 
whether this feature is supported or not. 
     This operation demands a well-defined fine-granular 
state model, which also includes our concept of Data 
staging in state model. In the WISDOM example, in the 
concept of workflow step 1 (molecular docking), a lot of 
initial input data (ligands, proteins, etc.) are staged-in 
before the job actually starts. However, the e-scientists 
often did not recognize why the job is not running was 
related to the fact of a long-lasting data-staging-in 
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activity. There is currently no mechanism in the state 
model in the OGSABES specification that indicates that 
a data-staging activity is currently performed by the 
service implementation and thus we propose this as one 
of the concepts that are required. In a more broader 
sense, it is important to understand that already small 
differences even in the state terms (e.g.  finished vs. 
ready) several times broke our interoperability setups or 
majorly influenced its success. We thus argue that a list 
of commonly agreed state terms between the different 
infrastructures and middleware providers is crucial and 
often its value is underexpected or oversimplified with 
respect to state extensions that cause serious problems. 
     Apart from the WISDOM use case we also 
encountered the need to completely wipe out an activity 
that include removing all temporary files and other 
resources allocated to the correspondent Grid job. This 
concept is not defined in the OGSA-BES specification 
so far, but required in several interoperability use cases 
and thus considered in the improved OGSA-BES 
specification.  
     One particular use case is to use this concept to clear 
all storages related to data-staging activities as well as all 
evidence of the submission. Note the difference 
compared to the concept of terminating or cancelling 
Grid jobs where the activity still exists in the services in 
a suitable terminated or cancelled state. In contrast, the 
concept of Wipe-out of submitted jobs means that the job 
is not longer available in the Web service container. 
 
5   Related Work  
There is a wide variety of approaches in related work in 
the field of Grid interoperability that we list here. The 
most of these approaches don’t use the approach of 
improving open standards and as such rather implement 
‘transformation logic’ in one way or the other. This 
transformation logic is responsible to translate a protocol 
A into protocol B or a schema A into schema B. This 
process is typically very time consuming and error-
prone.  
     Furthermore, it is very difficult to maintain since if 
one element is changed different versions of these 
transformation logics have to be maintained. In addition, 
often it implies that a protocol is not fully able to being 
mapped to another. Hence, the result of transform 
protocol A into protocol B might actually lead to a 
protocol B* that is often only a subset of protocol B. 
     The most famous and thus most common approach is 
the additional layer concept, which enables 
interoperability by having a layer with transformation 
logic on top of different Grid technologies (i.e. Grid 
middleware). This transformation logic is responsible to 
change the job description formats and protocols to the 
corresponding ones supported by the respective 
middleware. This concept is implemented in Grid portals 

like GridSphere [12] or APIs like JavaGAT [13] or GPE 
[14] and thus this additional layer is often located on the 
client-side. 
     The fundamental idea of the bridge approach is to 
introduce a neutral protocol that can be always used by 
clients since it is not affected to changes in the Grid 
middlewares. This neutral protocol is used to contact the 
neutral bridge implementation, which in turn uses its 
transformation logic to change the neutral protocol in the 
different proprietary formats for each of the 
corresponding Grid middlewares. This approach is taken 
to achieve the interoperability between the CORBA-
based Integrade middleware and Globus Toolkits as 
described by Stone et al. in [15]. 
     The gateway approach refers to one central entity that 
is able to translates any middleware protocol into any 
other middleware protocol using its transformation logic. 
It is used, for instance, to realize the interoperability 
between the European infrastructure EGEE and VEGA, 
which is the Grid Operating System (GOS) for the 
CNGrid infrastructure in China. Kryza et al. describes in 
[17] that the interoperability is achieved via a universal 
interoperability layer named as Grid Abstraction Layer 
(GAL) that can be seen as one instance of a gateway. By 
implementing the gateway approach, the GAL not only 
enables the interoperability between egee and vega, but 
also allows for the integration of any other Grid 
environments. 
     The mediator approach is similiar to the neutral 
bridge approach, but instead of using a neutral protocol 
the respective client technology sticks to one specific 
protocol A. This protocol can be used to access all Grid 
middleware’s that natively support this protocol A, but 
also it can be used to access known mediators. These 
central mediators are always used via one specific 
protocol, but are in turn able to translate it into any other 
protocols with their implied transformation logic. This 
approach is adopted in the technologies that make EGEE 
interoperable with BOINC-based infrastructures as 
described by Kazsuk et al. in [16]. 
     Another often applied approach is the adapter 
approach. This means a typical Grid middleware client 
submits with Protocol A its job to the respective Grid 
middleware, which in turn, after processing the job 
description, executes the job or forwards it to a dedicated 
adapter. This adapter in turn provides the transformation 
logic that transforms the job into the format of the 
corresponding other Grid middleware. Hence, the 
difference to other approaches such as mediator is that 
the Grid job is actually processed in one middleware 
stack before being forwarded to another middleware 
stack B for execution. This approach is adopted to 
achieve the interoperability between UNICORE 5 and 
gLite as described by Riedel et al. in [2]. 
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6   Conclusion 
In this paper, we raised the demand for an infrastructure 
interoperability reference model to promote 
interoperability between production Grids today. We 
have shown the basic design reference model and have 
highlights some of their core building blocks in the 
context of computation.  
     Since our work is fundamentally based on lessons 
learned from real production Grid interoperability use 
cases, we using improvements of common open 
standards, which in turn are already deployed on the 
production infrastructure. Hence, we many of the core 
building blocks of the IIRM and many of them are 
already deployed on the infrastructures and only minor 
changes (i.e. missing links, refinements, etc.) have to be 
done in order to achieve interoperability in production 
Grid infrastructures today. 
     Since our evaluation use cases have been very 
successful, we have given the IIRM as an input to OGF 
by creating a GIN spin-off activity named as the PGI 
working group. By chairing this group, our goal is to 
standardize the IIRM elements and thus feed back our 
valuable production experience into the standardization 
process of OGF.  
     With having participants from many important Grid 
infrastructures such as DEISA, EGEE, NGS, NorduGrid, 
and ARC, we are looking forward to get the core 
building blocks for our proposed IIRM design 
standardized very soon. This will significantly contribute 
to the vision of having an interoperable united federation 
of world-wide Grid infrastructures in the near future 
offering standardized access. 
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