
A Virtualized Environment and Orthogonal Array as a Method

for Software Testing

SNEŽANA POPOVIĆ LJUBOMIR LAZIĆ
 School of Computing Department for Matematics and Informatics

 Union University of Beograd State University of Novi Pazar
 SERBIA SERBIA

spopovic@raf.edu.rs, http://www.raf.edu.yu llazic@np.ac.yu, http://www.np.ac.yu

NIKOS E MASTORAKIS
Technical University of Sofia,

English Language Faculty of Engineering
Industrial Engineering, Sofia 1000, Sofia

BULGARIA
http://www.wseas.org/mastorakis

Abstract: - The combinatorial approach to software testing uses models, particularly an Orthogonal Array
Testing Strategy (OATS) is proposed as a systematic, statistical way of testing pair-wise interactions to
generate a minimal number of test inputs so that selected combinations of input values are covered. Because of
these advantages, combinatorial testing methods are often applied in cases of the configuration testing. Good
practice points to the simultaneous application of combinatorial testing and virtualization. Virtualization, in the
process of testing, is based on setting the necessary environment to multiple virtual machines, which run on one
or in smaller groups of physical computers, which are: reduce the cost of equipment and related resources,
reduce the time required to manage the testing process, and favours raising removal of test infrastructure.
Together, combinatorial testing and virtualization presents practical approach to improving process of testing,
through the balancing quality, cost and time.

Key-Words: - Software Testing, Virtual Mashines, Environment Virtualization, Combinatorial testing

1 Introduction

Applications are usually executed in very
complex environments, which consist of: multi
client and server machines, different operating
systems, a large number of applications written in
different programming languages, different
database, as well as networks that connect all these
components. Our research [2]1 concluded that test
application, which will work in such environments,
requires significant test resources, such as: costs for
the purchase of hardware and software required, the
cost of raising the hardware configuration, the cost
of creating the appropriate software configuration,
operation and the time required for the tests. One
approach for creating a test environment is the use
of virtual machines (VMs), which allow better use

1 This work was supported in part by the Ministry of

Science and Technological Development of the Republic
of Serbia under Grant No. TR-13018.

of hardware while, at the same time, simply and
quickly set the required software configuration.
Software development typically involves developing
and testing for different target environments, but
dedicating a physical computer to each environment
can be expensive. Besides the initial purchase cost,
physical computers take up space, use power, and
require maintenance. Virtual machines can reduce
this cost by providing a way to run multiple
development and test environments on one physical
computer. Another problem with dedicating a
physical computer to each environment is that
setting up target environments can be quite time
consuming. In this situation, virtual machines can
save the time. In order to duplicate a particular
environment, it is possible to create a library of
virtual hard disks, that are pre-loaded with specific
sets of software. Test team can clone the disks that
they need and quickly replicate a particular
environment in a virtual machine.

In this paper, we consider a problem that arises
in black box testing: generating small test suites
(i.e., sets of test cases) where the combinations that

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 231 ISBN: 978-960-474-124-3

have to be covered are specified by input-output
parameter relationships of a software system. That
is, we only consider combinations of input
parameters that affect an output parameter, and we
do not assume that the input parameters have the
same number of values. To solve this problem, we
propose interaction testing, particularly an
Orthogonal Array Testing Strategy (OATS) as a
systematic, statistical way of testing pair-wise
interactions. In software testing process (STP), it
provides a natural mechanism for testing systems to
be deployed on a variety of hardware and software
configurations. The combinatorial approach to
software testing uses models to generate a minimal
number of test inputs so that selected combinations
of input values are covered.

The paper presents that the combinatorial testing
and virtualization together can dramatically improve
the process of testing. The example points the way
how to use virtualization to cover a wide range of
test environments and how to obtain the
configuration testing to be more effective.

2 Combinatorial testing

Testing a software system requires the creation
of test cases, which contain values for input
parameters and the expected results. Exhaustive
testing for all of the possible combinations of
parameters, in most cases it is not possible, it is not
feasible, or the cost is out of the available budget.
The main goal of using different methods and
techniques of testing is to create a smaller number of
combinations of parameters and their values, which
will be tested.

2.1 Orthogonal Array Testing Strategy

(OATS) and Techniques

The Orthogonal Array Testing Strategy (OATS)
provides representative (uniformly distributed)
coverage of all variable pair combinations. This
makes the technique particularly useful for
integration testing of software components
(especially in OO systems where multiple subclasses
can be substituted as the server for a client). It is
also quite useful for testing combinations of
configurable options (such as a web page that lets
the user choose the font style, background color, and
page layout). Dr. Genichi Taguchi was one of the
first proponents of orthogonal arrays in test design.
His techniques, known as Taguchi Methods, have
been a mainstay in experimental design in
manufacturing fields for decades. Orthogonal arrays

are two dimensional arrays of numbers which
possess the interesting quality that by choosing any
two columns in the array you receive an even
distribution of all the pair-wise combinations of
values in the array. The method of orthogonal arrays
is an experimental design construction technique
from the literature of statistics. In turn, construction
of such arrays depends on the theory of
combinatorics. An orthogonal array is a balanced
two-way classification scheme used to construct
balanced experiments when it is not practical to test
all possible combinations. The size and shape of the
array depend on the number of parameters and
values in the experiment. Orthogonal arrays are
related to combinatorial designs. An orthogonal
array is a balanced two-way classification scheme
used to construct balanced experiments when it is
not practical to test all possible combinations. The
size and shape of the array depend on the number of
parameters and values in the experiment.

Definition 1: Orthogonal array O(ρ, k, n, d)

An orthogonal array is denoted by O(ρ, k, n, d),
where:

• ρ is the number of rows in the array. The k-
tuple forming each row represents a single test
configuration, and thus ρ represents the
number of test configurations.

• k is the number of columns, representing the
number of parameters.

• The entries in the array are the values 0, …, n
– 1, where n = f(n0, …, nk-1). Typically, this
means that each parameter would have (up to)
n values.

• d is the strength of the array (see below).

An orthogonal array has strength d if in any ρ × d
sub-matrix (that is, select any d columns), each of
the n*d possible d-tuples (rows) appears the same
number of times (>0). In other words, all d-
interaction elements occur the same number of
times.

Here is some terminology for working with
orthogonal arrays followed by an example array in
Table 1 [2,10]:

• Runs - ρ: the number of rows in the array. This
directly translates to the number of test cases
that will be generated by the OATS technique.

• Factors - k: the number of columns in an
array. This directly translates to the maximum
number of variables that can be handled by this
array.

• Levels - n: the maximum number of values
that can be taken on by any single factor. An

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 232 ISBN: 978-960-474-124-3

orthogonal array will contain values from 0 to
Levels-1.

• Strength - d: the number of columns it takes
to see each of the LevelsStength possibilities
equally often.

• Orthogonal arrays are most often named
following the pattern LRuns(Levels

Factors
).

As an example of the benefit of using the OATS
technique over a test set that exhaustively tests every
combination of all variables, consider a system that
has four options, each of which can have three
values. The exhaustive test set would require 81 test
cases (3 x 3 x 3 x 3 or the Cartesian product of the
options). The test set created by OATS (using the
orthogonal array in Table 1) has only nine test cases,
yet tests all of the pair-wise combinations. The
OATS test set is only 11% as large at the exhaustive
set and will uncover most of the interaction bugs. It
covers 100% (9 of 9) of the pair-wise combinations,
33% (9 of 27) of the three-way combinations, and
11% (9 of 81) of the four-way combinations.

Table 1. An L9(3
4
) orthogonal array with 9 runs, 4

factors, 3 levels, and strength of 2

 Factors

Runs

0 0 0 0

0 1 1 2

0 2 2 1

1 0 1 1

1 1 2 0

1 2 0 2

2 0 2 2

2 1 0 1

2 2 1 0

The test set could easily be augmented if there were
particularly suspicious three- and four-way
combinations that should be tested. Interaction
testing can offer significant savings. Indeed a system
with 20 factors and 5 levels each would require 520 =
95 367 431 640 625 i.e. almost 1014 exhaustive test
configurations. Pair-wise interaction testing for 520
can be achieved in 45 tests. But what if some failure
is triggered only by a very unusual combination of
three, four, or more values? It’s unlikely that our 45
tests would detect this unusual case. We would need

to test at least three- and four-way value
combinations. Combinatorial testing beyond
pairwise is rare, however, because good algorithms
for higher strength combinations haven’t been
available or were too slow for practical use. In the
past few years, advances in covering-array
algorithms, integrated with model checking or other
testing approaches, have made it practical to extend
combinatorial testing beyond pairwise tests [11]. If
some failure is triggered only by an unusual
combination of more than two factor interactions,
how many testing combinations are enough to detect
all errors? What degree of interaction occurs in real
system failures? Surprisingly, researchers hadn’t
studied these questions when the US National
Institute of Standards and Technology (NIST) began
investigating causes of software failures in 1996
[11]. Study results showed that, across various
domains, all failures could be triggered by a
maximum of four- to six-way interactions. As
Figure 1 shows, the detection rate increased rapidly
with interaction strength. Within the NASA
database application, for example, 67 percent of the
failures were triggered by only a single parameter
value, 93 percent by two-way combinations, and 98
percent by three-way combinations. The detection-
rate curves for the other applications studied are
similar, reaching 100 percent detection with four- to
six-way interactions.

These results are not conclusive, but they suggest
that the degree of interaction involved in faults is
relatively low, even though pairwise testing is
insufficient. Testing all four- to sixway
combinations might therefore provide reasonably
high assurance.

Figure 1. Error-detection rates for four- to six-way
interactions in four application domains: medical
devices, a Web browser, an HTTP server, and a

NASA distributed database [11].

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 233 ISBN: 978-960-474-124-3

2.2 How to use this technique

The OATS technique is simple and
straightforward. The steps are outlined below. The
OATS technique is simple and straightforward. The
steps are outlined below.

1. Decide how many independent variables will
be tested for interaction. This will map to the
Factors of the array.

2. Decide the maximum number of values that
each independent variable will take on. This
will map to the Levels of the array.

3. Find a suitable orthogonal array with the
smallest number of Runs. A suitable array is
one that has at least as many Factors as
needed from Step 1 and has at least as many
levels for each of those factors as decided in
Step 2.

4. Map the Factors and values onto the array.
5. Choose values for any "left over" Levels.
6. Transcribe the Runs into test cases, adding any

particularly suspicious combinations that aren't
generated.

In a process of the combinatorial testing, tester
generates tests that cover all double, triple or n-pairs
combination of test parameters defined in the formal
requirements for testing. Coverage of the pairs
combination means that for any two parameters P1
and P2, and any valid values for the V1 for
parameter P1 and V2 for parameter P2, there is a
test in which the P1 has the value V1 and P2 has the
value v2 [1-3]. Case studies [2-4,10] give evidence
that the approach compared to conventional
approaches is:

• more than twice as efficient (measured in
terms of detected faults per testing effort) as
traditional testing,

• about 20% more effective (measured in terms
of detected faults per number of test cases) as
traditional testing.

It is appropriate that the combinatorial testing
uses orthogonal arrays and all-pairs algorithm for
providing the following advantages [2]:

• Significantly reducing the cost and raises the
quality of testing is achieved by intelligent
generating test cases,

• Dramatically reduced overall number of test
cases compared to exhaustive testing,

• Detects all faults due to a single parameter
input domain,

• Detects all faults due to interaction of two

parameter input domains,
• Detects many faults due to interaction of

multiple parameter input domains

At this time, combinatorial testing is a very mature
technique of testing, supported by a large number of
tools to generate test cases [4].

3 Virtualization Properties and

Advantages

Virtualization allows that more of the software
environments, which in this case are called virtual
machines (VMs), could be physically executed at
the same time, at only one physical computer (host),
sharing the same hardware resources among them.
Communication between host and virtual machine is
provided by the software, generally called: the
monitor, or hypervisor, which can be run directly on
the physical computer, or may be a layer between
the host operating system and virtual machines.
There are several virtualization approaches. It is
considered that the native virtualization and the
paravirtualization are the best for software testing
[5-6].

VM can simulate very realistic software
configurations. Applications, which are tested on the
VM can be assigned to different hardware and
software resources, where the test can be done at the
same time. During the test it is possible to use VMs
library, which includes a set of previously created
virtual machines, ready to be used. The most
important advantages of using virtual machines are:
reduction of costs; isolation of applications, easier
testing, standardization of testing and portability.

Optimizing virtual environments can offer
significant benefits to your virtual infrastructure.
Some of the platform’s benefits experienced in
native environments apply to virtualized systems.
But, making adjustments in processor affinity,
memory, and how you deploy VM disk storage can
help improve performance further. It depends on
many factors, both specific to the virtual machine
manager (VMM) being deployed, types of users,
and the particular workloads being run, and general
optimization parameters available on the servers.
You should also consider recommendations by your
VMM developer, and possibly experiment on non-
production environments to achieve added
performance benefits for your particular workloads,
users, and system hardware.We apply the techniques
outlined in this paper for many benchmarks.

3.1 Reduction of costs

Total Cost of Ownership (TCO) in the
organization is defined as a cost of possession,
exploitation and maintenance of computer systems.
TCO also includes costs for hardware and software,

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 234 ISBN: 978-960-474-124-3

as well as the cost of installation, training, support,
upgrade and repair. The best practice is to always
test upgrades, patches and new applications in a
non-production environment that emulates your
production network as closely as possible. However,
purchasing the hardware to create a parallel network
can get expensive. It's much more cost effective to
create your test network in VMs on one or a few
physical computers. Each VM operates as a separate
member of the network, with its own IP address.

Virtualization reduces TCO, in the following
ways [7]:

• Increase system utilization (existing servers
are used less than 10% of the capacity)

• Reduces the necessary hardware (about 25%)
• Contributes in preserving the environment,

reduces energy consumption and reduces the
required level of air conditioning (operating
costs are reduced by about 50%).

Taking into account the money needed to obtain
software licenses for the host machine, compared by
costs for virtual machines. The cost can be further
reduced, using at the same time integrated
environment for development, as well as for the
purpose of the testing. Currently, licenses costs are
the same for traditional installation, as well as for an
installation of the virtual environment. In the near
future is expected decreasing the cost of licensing
software for virtual environments.

3.2 Application Isolation

Virtual machines allow isolation of individual,
or application groups, in their own environment,
which can be run on the same physical machine.
Besides, except for reducing the required hardware
resources, simplifies and hardware management.

In addition, tested software accepts them as
separate machines. Also, in the case of the crash of
some of the virtual machine, due to applicable error
or OS error, other virtual machines will continue to
run, keeping the functionality of other parts of the
system, as shown in Fig. 2.

3.3 Easy test plans execution

VM make test plans easy to be executed. The
most of the VM provide features of state recording
(snapshot) and the return to the previous state
(rollback). This means that it is possible to stop the
VM, record the current state, and return back, as
often as necessary. Also, it is possible to run a new
test in a "clean" machine, without affecting the
previous installation of the already tested software.

Figure 2. Typical VMs test configuration

3.4 Standardization

Applying the virtual machine, it is possible to
ensure standardization of systems. Different virtual
machines, as an OS guest, run on the same,
standardized hardware. Standardized hardware
platform reduces the cost of testing, and sharing the
same hardware environment increases the efficiency
of IT resources. In practice, different host machines
often belong to different generations of hardware.
Furthermore, in these cases, behaviour of the VM
still is the same. Also, raising more VM on a single
hardware platform, which is checked and reliable, it
is possible quickly to locate causes of errors, made
in testing the application, and to reduce maintenance
costs of hardware for the purpose of testing.

3.5 Portability

Individual VM can be easily moved from one
physical machine to another. The most VM software
puts your drive within the host environment in the
form of only one file. At the same time, the state
snapshots are recorded in a separate file on the host
system. Virtual machines allow for binary
compatibility between platforms. Therefore, in the
case of the VM relocation from one to another host
machine, it is enough, instead of VM install, just
copy the virtual disk file and snapshot to the new
host machine's drive.

For example, an application workload may grow
over time due to changing business requirements. As
a result, the memory or compute resources of the
physical server hosting the workload may become
constrained. When this happens, additional capacity
can made available by migrating the virtual machine
(VM) containing the application to a less-utilized
server.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 235 ISBN: 978-960-474-124-3

Live migration enables us to perform such
migrations within a server cluster without
interrupting the services the VMs are providing. It
reduces the extra work traditionally involved with
moving VMs, including notifying users, shutting
down the applications, moving the VMs to new
servers, and then restarting the VMs and each of the
applications. Eliminating these steps improves
flexibility and efficiency in managing data center
resources.

Live migration provides the foundation for
advanced data center capabilities such as:

Dynamic load balancing.

When resources such as processor or memory are
constrained on one physical server, we can utilize
additional capacity available in the cluster by live
migrating VMs to a less heavily loaded server in the
same cluster.

Maintenance without VM downtime.

We can perform server maintenance, upgrades,
and refreshes without incurring VM downtime by
using live migration to move VMs off the host
server before we shut it down.

Advanced load-balancing scenarios.
Scenarios such as power-aware load balancing

and support for affinity and anti-affinity rules
determine the allocation of virtualized workloads to
physical servers (for example, certain VMs can be
hosted on the same server for performance reasons).

3.6 Disadvantages

While VMs benefits all sound ideal, virtual
machines do have two main drawbacks: they share
physical resources with the host and any other
running virtual machines, and they carry some
processing overhead. So it could not be expected the
same performance from a virtual machine as do
from a physical one. Because they contend for
resources in this way, the following are not good
uses of virtual machines:

• Performance and stress testing. Results may
not be accurate because the amount of
resources available for a given operation can
fluctuate.

• Running multiple resource-intensive virtual
environments on the same physical computer.
Performance will be sub-optimal unless
Tester's computer is sized adequately. Tester's
host computer must have the sum of all of the
physical resources required by the running
virtual machines, plus what the host system

needs, plus about another 10 percent for
overhead.

4 Configuration testing in virtual

environment

Configuration testing is the process of testing
the system on a machine with different
combinations of software and hardware. The
number of possible combinations, which are
supplied as a Cartesian product, often is too big to
be tested out for every single combination. For
example, Web applications testing could be covered
by a huge number of possible combinations of: OS
version, browser, Web server, etc. In the case of 8
different versions of OS, 7 different versions of
browsers, 6 different web servers, and only 10
localizations, the number of different configuration
is: 8x7x6x10 = 3360. Adding different software
components, as well as Plug-in's and ActiveX
controls for the different versions of Web browser,
as well as setting the browser's options, the number
of possible combinations exceeds all objective
testing that can be done. However, if orthogonal
arrays are applied, in this case (4 factors, i.e. with
parameter 8, 7, 6, and 10-level variations,
respectively) there are only 100 combinations to test
on O(2

4
,10

4
).

Having in mind that, in the case when the
number of combinations is very large, it is
practically impossible to carry out testing within the
available time, budget and within other resources.
One of the possible approaches to software
configuration testing is the use of VM.

4.1 Test configuration

The main characteristics of test configurations
depend on the software applications and hardware
and software environments:

• Software applications are intended for use in
different environments. Characteristics of the
environment, or environment factors, which
should be considered, are: system software,
network connections and hardware platform.

• Particular environment is defined by a
combination of hardware and software.

• Each individual surrounding matches a set of
values for each of these factors. Test
configuration is a single combination of
environmental factors.

• Example of a typical test configuration, in the
present applications, is shown in Figure 3:

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 236 ISBN: 978-960-474-124-3

Figure 3. Typical test infrastructure
• One of the possible configurations is:

Windows XP, ADSL connection and a PC
with 2GB RAM.

• Combining of certain versions of an operating
system and drivers for the printer, it is possible
to create several test configurations for the
printer.

• To reach the high reliability of the planned
environment, the application must be tested in
a large number of test configurations, or
environments.

Virtual machines could be attached to physical
networks just as if they were physical, or they could
structure a virtual network for testing different
scenarios, while isolating virtual machine network
traffic to the host computer. This is useful for
patching virtual machines, providing general
network access to them, and validating different
network scenarios that might be relevant in software
testing. As previously mentioned, library of virtual
hard disk files could be created and used to recreate
a particular environment.

4.2 Combinatorial test design process

1
st
 Step

Modelling the input space and / or configuration
space. The result of modelling is expressed by
factors and corresponding levels of those factors.

2
nd
 Step

An obtained model represents the entrance to
the procedure of the combinatorial design, where the
combinatorial object is to be generated. The
combinatorial object often is called "the design

factor" and it is represented by a set of factors and
levels.

3
rd
 Step

Generated combinatorial object can be used to
design a test set or a test configuration. What will be
designed depends on the demands.

Within the combinatorial test design, it is
possible to automate the 2nd and the 3rd step. A
combinatorial test process designing is shown on the
figure 4.

5 Application - Case Study
Combinatorial approach can be applied to

configuration testing as outlined below [2]:
• Testing of complex systems with multiple

configurations,
• Interoperability testing,
• Web testing,
• Known that faulty interaction between system

components is a common source of system
failures,

• Re-use existing suite of (system) test cases,
• Test at least for all two-way interactions

among various system components because
exhaustive testing (i.e. executing a suite of test
cases for all possible configurations) cannot be
afforded,

• Assume that the risk of an interaction failure
among three or more components is balanced
against the ability to complete testing within a
reasonable budget,

• Calculate the minimal set of test configurations
that test each pair-wise combination of
components.

Figure 4. Combinatorial test design process [8]

An example, of testing the compatibility, could

be Web applications testing on different platforms,
in order to check whether the request is fulfilled:
"Web application X can be used by different clients
(Web browser), different customized and ran on
different operating systems".

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 237 ISBN: 978-960-474-124-3

Insurance company plans to offer, to local
customers, tools for calculating the price of the
premium for a property and a life insurance. It is
important that the value of premiums and insurance
will be displayed in the local currency. Furthermore,
dates of an insurance period would be presented by
localized format. As verification and calculation is
to be on the client side, it is necessary to allow
cookies receive, and it is necessary to provide
JavaScript and ActiveX controls support. Also, it is
necessary to show the text in the appropriate
language and script, while the look and functionality
of pages should be the same, regardless of the
browser to be used.

Application software was created by a small IT
agency (with four employees), using very limited
hardware resources.

In this case, only the client side and a
combination of OS, web browser, web browser
settings and defined localization in the role of the
platform, was considered. Execute applications on
the Web server is done in controlled conditions,
which can be precisely defined in advance.

In the testing process of the Web application
configuration, parameters for the test cases creation
were: OS, selected localization, Web browser,
support for JavaScript, ActiveX controls, cookies.
But, at glance, it is clear that there are a number of
test configurations on the client side, which are
necessary to provide to carry out exhaustive testing.

Using combinatorial testing, we have defined all
pairs of combinations, and later, the reduced set of
test cases for testing the configuration. Testing was
realised by means of using virtualization.

The process included the following steps:
1. Parameters that will be tested are identified:

a. OS, localization, web browser, support for

JavaScript, cookies, ActiveX controls,
2. Certain values are possible - selected for each

parameter (parameter values for the selected
browser on the basis of reports
NetApplications Corporation in January 2009.
The [9]):
a. Client OS: Windows XP, Windows Vista,
Mac OS X 10, Windows 2000, Linux

b. Browser: Internet Explorer 6, Internet
Explorer 7, Mozilla Firefox 2, Mozilla
Firefox 3, Apple Safari 3, Opera 9

c. Localizations: Albanian, Croatian,
Hungarian, Serbian, Slovenian, another
localization

d. JavaScript: allowed, not allowed
e. Cookies: allowed, not allowed
f. ActiveX control: allowed, not allowed

3. Limits are defined:

a. In order to avoid the risk of loss of valid
pairs, there are not allowed to create certain
combinations (Browser Apple Safari 3 can
be tested only on Mac OS X 10. At the
same time, this OS will not be tested in
combination with other browsers).

b. There are defined values (seeds), which
must appear as a test case, within the
generated set of test cases, because they are
expected as most likely combination of
values of parameters (Windows XP, Internet
Explorer 7, English, JavaScript allowed,
allowed cookies, ActiveX controls,
allowed).

c. Weight factors, i.e. specific values for
parameters are estimated (more emphasis is
given to the following parameters values:
client OS - Windows XP, browser - Internet
Explorer 7, JavaScript - allowed, Cookies -
allowed, the ActiveX control - allowed).

4. The total number of test cases, regarding the
defined variables and their values for all
combinations, were 1440. Using PICT tool [4],
there were created only 38 needed test cases,
which cover all pairs of parameters. It should
be emphasized that the tool does not use
weight factors in such cases when there exist
two, potentially contradictory requirements:
the coverage of the combination with the
lowest number of test cases and the selection
of values in accordance to their defined
weight.

5. Virtual machines are created under defined
configurations for testing.

Generated test cases are shown in Table 2.

5.1 Advantages and uses

Advantages and benefits of the combinatorial
test techniques, aimed for application testing, it is
possible to realize even in the case of the small
dimension systems. Thus, in previous example, the
number of initial configuration, we had to test, was
1440. Applying the all-pairs algorithm, to extract the
unique combination of pairs, the initial number of
the necessary configurations, starting from 1440,
was reduced to 38. Thus, the 2.6% of the total
number of the theoretically possible configurations
covered all the pairs of variables. Testing the final
set of selected test configurations was done by
applying virtual machine.

Due to the fast settings and quick access to
different test configurations, at only one physical
host machine, testing was done much faster, sparing

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 238 ISBN: 978-960-474-124-3

costs for the provision additional hardware, required
for the physical settings, test configuration
generation.

Table 2. Generated test cases

Brows OS Local JS Cook ActX

IE7 WinXP Serb Y Y Y

IE6 WinXP Serb Y Y Y

IE7 Vista Slov N N N

Opera Linux Serb N Y N

Opera Win2k Slov Y N Y

FF 2 Linux Serb N N Y

IE6 WinXP Croat Y N N

FF 3 Win2k other Y Y N

FF 2 Vista Alb Y Y N

IE7 Win2k Hung N Y Y

FF 3 Vista Croat N N Y

Opera Linux Croat Y Y N

IE7 WinXP other N N Y

FF 2 Win2k other Y N Y

FF 3 Linux Alb N N Y

IE7 Win2k Croat N Y Y

Opera Vista other Y N N

Opera WinXP Hung Y N N

Safari MacOS Serb N Y N

IE6 Linux Slov N Y Y

IE6 Win2k Alb Y N Y

Safari MacOS Alb Y N Y

Opera WinXP Alb Y Y Y

IE7 Linux Alb Y Y Y

IE6 Vista other Y Y Y

Safari MacOS other N Y Y

Safari MacOS Slov Y Y Y

IE6 Linux Hung Y Y Y

Safari MacOS Hung Y Y Y

FF 2 WinXP Slov Y Y Y

FF 3 Vista Serb Y Y Y

FF 2 Vista Hung Y Y Y

FF 3 WinXP Slov Y Y Y

IE7 Win2k Serb Y Y Y

FF 3 WinXP Hung Y Y Y

Safari MacOS Croat Y Y Y

Opera Linux other Y Y Y

FF 2 WinXP Croat Y Y Y

6 Conclusion

The aim of this paper is to point out the
possibility of improving the process of testing
software systems. Initial idea was that the use of the
software virtualization in the process of testing will
reduce the requirements for the necessary hardware
and software resources. At the same time,
virtualization is combined with the combinatorial
testing, in order to reduce the number of test cases
that need to test, while this does not impair the
accuracy and reliability testing software.

Now more than ever, it’s clear that virtualization
makes good business sense. For many companies,
the question isn’t, “Should we virtualize?” but
rather, “How can we transition to a virtualized
environment to increase business benefits and cost
effectiveness?” Companies with more current
technology can also benefit. Today’s companies are
harnessing the power of virtualization to consolidate
resources, enhance energy efficiency, increase
compute capabilities and reduce total cost of
ownership (TCO), all while achieving greater
business flexibility. Today’s solutions can
accommodate a variety of hardware architectures in

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 239 ISBN: 978-960-474-124-3

the same resource pool. By investing in an end-
toend virtualized environment now, you can add
new hardware to existing virtualization pools
whenever your organization needs additional
compute power.

We demonstrated in this paper, the example of
testing the compatibility of an Web applications
testing on different platforms, in order to check
whether the request is fulfilled: "Web application X
can be used by different clients (Web browser),
different customized and ran on different operating
systems". In the testing process of the Web
application configuration, parameters for the test
cases creation were: OS, selected localization, Web
browser, support for JavaScript, ActiveX controls,
cookies. But, at glance, it is clear that there are a
number of test configurations on the client side,
which are necessary to provide to carry out
exhaustive testing.

Using combinatorial testing, we have defined all
pairs of combinations, and later, the reduced set of
test cases for testing the configuration. Testing was
realised by means of using virtualization. The total
number of test cases, regarding the defined variables
and their values for all combinations, were 1440.
Using PICT tool [4], there were created only 38
needed test cases, which cover all pairs of
parameters.

The execution of the planned tests experienced
that the used VM software solutions ran stable. Test
process was relatively easy to manage, and time
required for test configuration, execution and
repetition of test cases and reset the state of the
system was acceptable. On the basis of acquired
experience and obtained test results, it can be noted
that the virtualization of the application and the
combinatorial testing were good decision. This is
especially true in the case of configuration testing,
where was necessary to contribute to the reduction
of the test resources, such as were: time, required
hardware and software configurations.

References

[1] D. M. Cohen, S. Dalal, J. Parelius, G. Patton,
"The Combinatorial Design Approach to Automatic
Test Generation", IEEE Software, pp. 83-87,
September 1996.

[2] Lj. Lazic, N. Mastorakis, "Orthogonal Array
application for optimal combination of software
defect detection techniques choices", WSEAS

TRANSACTIONS on COMPUTERS, pp. 1319-
1336, August 2008.

[3] J. Czerwonka, "Pairwise Testing in the Real
World: Practical Extensions to Test-Case
Scenarios", Microsoft Corporation, Software
Testing Technical Articles, February 2008.

[4] http://www.pairwise.org/tools.asp.

[5] Swaminathan Seetharaman and Krishna Murthy
B.V.S., "Test Optimization Using Software
Virtualization", IEEE Software, vol. 23, no. 5, pp.
66-69, Sep./Oct. 2006.

[6] Greg Goth, "Virtualization: Old Technology
Offers Huge New Potential", IEEE Distributed
Systems Online, vol. 8, no. 2, 2007, art. No. 0702-
o2003.

[7] Van Doorn, L., "Hardware Virtualization
Trends", Keynote presentation at the Second
International Conference on Virtual Execution
Environment, 2006, Ottawa, Canada

[8] A. Mathur, "Foundations of Software Testing",
Addison-Wesley Professional, ISBN-10:
8131716600, 2008.

[9] Market Share by Net Applications
http://marketshare.hitslink.com/os-market-
share.aspx

[10] A. W. Williams, "Software components
interactions testing: coverage measurement and
generation of configurations", PhD thesis, Computer
Science, Ottawa-Carleton Institute for Computer
Science, School of Information Technology and
Engineering, University of Ottawa, 2002.

[11] D.R. Kuhn, Y.Lei, R. Kacker, "Practical
Combinatorial Testing - Beyond Pairwise", IEEE IT
Professional, June 2008.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 240 ISBN: 978-960-474-124-3

