
Optimality and Stability Criteria for Software Testing

Process Control Model

Ljubomir Lazić
Technical Faculty, State University of Novi Pazar

Vuka Karadžića bb, 36 300 Novi Pazar,
SERBIA

llazic@np.ac.yu, http://www.np.ac.yu

Nikos E Mastorakis
Technical University of Sofia,

English Language Faculty of Engineering
Industrial Engineering

Sofia 1000
Sofia

BULGARIA
http://www.wseas.org/mastorakis

Abstract: - The software development industry spends more than half of its budget on maintenance related
activities. Software testing provides a means to reduce errors, cut maintenance and overall software costs.
Software testing involves the process of detecting software discrepancies so that they can be corrected before
they are installed into a live environment supporting operational business units. Early in the history of software
development, testing was confined to testing the finished code, but, testing is more of a quality control
mechanism. However, as the practice of software development has evolved, there has been increasing interest
in expanding the role of testing upwards in the SDLC stages, embedding testing throughout the systems
development process. Numerous software development and testing methodologies, tools, and techniques have
emerged over the last few decades promising to enhance software quality. While it can be argued that there has
been some improvement it is apparent that many of the techniques and tools are isolated to a specific lifecycle
phase or functional area. This paper presents a set of best practice models and techniques integrated in
optimized and quantitatively managed software testing process (OptimalSQM), expanding testing throughout
the SDLC. Further, we explained how can Quantitative Defect Management (QDM) Model be enhanced to be
practically useful for determining which activities need to be addressed to improve the degree of early and cost-
effective software fault detection with assured confidence, then optimality and stability criteria of very complex
STP dynamics problem control is proposed.

Key-Words: - Software Testing, Quality, Testing optimization, Cost of Quality, Testing stability criteria

1 Introduction
The software development industry spends more
than half of its budget on maintenance related
activities. Software testing provides a means to
reduce errors, cut maintenance and overall software
costs. The importance of software testing has been
emphasized more and more, as the quality of
software affects its benefit to companies
significantly [1-4]. This paper presents some

research results of ongoing project [5-7]1, designed
to study software defect data as a means toward
identifying where resources should be allocated
most effectively to provide the highest quality of
software product while reducing the overall cost of

1 This work has been done within the project ‘Integrated

and Optimized Software Testing and Maintenance

Process’, supported in part by the Ministry of Science and

Technological Development of the Republic of Serbia

under Grant No. TR-13018.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 73 ISBN: 978-960-474-124-3

software testing. The identification and removal of
software defects constitutes the basis of the software
testing process a fact which inevitably places
increased emphasis on defect related software
measurements. Early in the history of software
development, testing was confined to testing the
finished code, but, testing is more of a quality
control mechanism. However, as the practice of
software development has evolved, there has been
increasing interest in expanding the role of testing
upwards in the SDLC stages, embedding testing
throughout the systems development process, so,
testing becomes a parallel process. Avoidable
rework consumes a large part of development
projects, i.e. 20-80 percent depending on the
maturity of the organization and the complexity of
the products [9]. High amounts of avoidable rework
commonly occur when having many faults left to
correct in late stages of a project. In fact, research
studies indicate that the cost of rework could be
decreased by up to 50 percent by finding more faults
earlier [2, 5, 9]. Numerous software development
and testing methodologies, tools, and techniques
have emerged over the last few decades promising
to enhance software quality. While it can be argued
that there has been some improvement it is apparent
that many of the techniques and tools are isolated to
a specific lifecycle phase or functional area.

This paper focuses on software testing and the
measurements which allow for the quantitative
evaluation of this critical software development
process. The software testing process requires
practical measurements for the quantification of all
software testing phases. Software product quality
and software testing process (STP) improvement
commence with addressing the testing process in a
quantitative manner [7]. The continuous monitoring
of the testing process allows for establishing an
adequate level of confidence for the release of
software products and for the quantification of
software risks, elements which traditionally have
plagued the software industry. The mechanism for
this study is development of a series of simulation
models to improve STP [7,8].

The first phase of model development is
presented in this paper. Ongoing work will involve
extensive data collection regarding business
processes followed by the use of simulation in the
development of decision models [8,9]. In this paper,
Quality and Efficiency in Software Testing by our
OptimalSQM framework is described and its
components defined and exemplified. It also
discusses practical applications of OptimalSQM and
research model for investigating its antecedents and
impacts is presented. OptimalSQM provide

alignment between testing and development which
has been raised as an issue for successful systems
development. Missing however have been
actionable how to methodologies for assessing and
enhancing such alignment [12,13,16]. This paper
attempts to fill this gap by describing a systematic
methodology, a development-testing alignment
(DTA) methodology which posits that such
alignment leads to beneficial effects such as lower
costs and shorter time of development, greater
system quality, fewer errors and a better relationship
between the corporate IT unit and customers in
business functions who have commissioned new
systems. This methodology considers alignment at
both strategy and execution levels. By dissecting
alignment into internal (within) and external
(between) categories, it outlines pragmatic
mechanisms by which the coherence between the
internal components of developer-tester alignment
can be assessed and managed. This paper presents a
set of best practice models and techniques integrated
in optimized and quantitatively managed software
testing process (OptimalSQM), expanding testing
throughout the SDLC. Further, we explained how
can Quantitative Defect Management (QDM) Model
be enhanced to be practically useful for determining
which activities need to be addressed to improve the
degree of early and cost-effective software fault
detection with assured confidence, then optimality
and stability criteria of very complex STP dynamics
problem control is proposed.

2 Need for Research

Cost to an organization (both in dollars and in
image) is significant when software defects are
identified after installation at a client site. This
project1 intends to identify areas where
improvements in software testing resource
allocations would provide added value to the
organization. This paper proposes a development-
testing alignment (DTA) methodology which posits
that such alignment leads to beneficial effects such
as lower costs and shorter time of development,
greater system quality, fewer errors and a better
relationship between the corporate IT unit and
customers in business functions who have
commissioned new systems (see Fig. 2 and 3
below). Alignment models and measurements have
been studied in other related contexts [16] but never
within corporate IT units and specifically between
the development and testing functions. The paper
therefore decomposes DT alignment into a series of
aspects for the purpose of assessing and analyzing
each of the construct. These aspects are drawn from

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 74 ISBN: 978-960-474-124-3

the overarching framework developed initially from
prior literature [8,16]. The DTA methodology will
allow IT managers to improve the effectiveness of
testing and development by both synergistically
integrating testing in the development process and
by aligning the testing and development units in
terms of strategy and execution capability.

Fig. 1 Average Cost Of Defect Removal [2]

Organiztions that engage in software
development and testing benefit significantly if their
management team has tools to assist them in
determining the most effective use of financial
resources that might result in the fewest software
errors in delivered systems [2-10,22-26]. To be most
effective, this tool needs to be developed after a
thorough review of the specific organization’s
testing data [17,26]. Once developed, the tool will
identify the specific phases and processes during the
evelopment life cycle where additional resources
would provide the best return on investment and
highest software quality. The use of this tool will
provide a major reduction in the number and
severity of software defects that exist after software
testing. It will also reduce the overall cost of
software testing by focusing on the appropriate
process for a specific organizational environment
[7,9,17-19,26]. To summarize, the purpose of this
research is to increase software quality and reduce
overall costs of software testing by focusing
resources where they provide the most value.
According to Gartner [14], on average, 7% of
software functionality that was paid for is actually
used, while 85% of IT projects failing to meet
objectives (32% being cancelled outright). Dhaliwal

and Onita [13] posit that many of these development
failures are a result of poorly executed development
process. These employ either inadequate
development models or flawed implementation due,
in part, to the lack of proper testing and effective
collaborative mechanisms between testers and
developers. These issues have not yet found a proper
solution, due, in part, to a lack of a methodology
that would allow the analysis and correction of
software development processes. A review of the
testing and development literature reveals that
relations between the development and testing
functions are lacking for projects of medium and
large magnitude, where testing is separate from the
development activities [12,15].

2.1 Research Questions

Based on the outcome of the evaluation of related
work conducted in the previous subsection, the our
project has identified some challenges to address.
The challenges can be broken down into five sub-
questions to address in this paper. During the work
on this project1 several research questions were
formulated which the research then was based upon.
The initial main research question that was posed for
the complete research in this project was:

RQ1 or Main Research Question: How can
software testing be performed efficiently and
effectively i.e. Optimal, that is, do we have a
framework model targeted specific software testing
domains or problem classes described below in RQ2
to RQ5?

To be able to address the main research question
several other research questions needed to be
answered first (RQ2–RQ5). The first question that
needed an answer, after the main research question
was formulated, was:

RQ2: Which metric or set of metrics can assess
effectiveness of test detectin techniques and what is
the potential in combining different software testing
techniques with respect to effectiveness (and to
some extent efficiency)?

Thus, since this project is based upon the main
research question, it was worthwhile taking the time
to examine the current practice in different projects
and see how software quality is measured and,
especially, software testing was practiced [1-8]. The
answer to this research question is to be found in
Section 3 and 4 together with an analysis of how
software testing is used in different types of
projects. To put it short, the answer to RQ2 divided

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 75 ISBN: 978-960-474-124-3

the research, as presented in this paper, into two
areas covering effectiveness in software testing
techniques and efficiency in software testing with
development-testing alignment (DTA) methodology
[5-9] which posits that such alignment leads to
beneficial effects such as lower costs and shorter
time of development, greater system quality, fewer
errors and a better relationship between the
corporate IT unit and customers in business
functions who have commissioned new systems. To
begin with, the research aimed at exploring the
factor of defect detection and removing
effectiveness (DRE) during SDLC (RQ3) while
later focusing on early aspects of software cost of
quality. In order to examine if the current practice in
software development projects was satisfactory for
developing software with sufficient quality and
budget constraint, RQ3 evolved into:

RQ3: Which metric or set of metrics can identify
and prioritize software quality attributes, can assess
cost of software quality management process in a
specific project i.e. how to optimize software quality
to pay off investment in STP improvement (ROI)?

Simply put, the main research question might have
been a question of finding optimization model of
software Quality and Efficiency in Software Testing
by an OptimalSQM framework and its components
defined in advance at start point of SDLC. The
OptimalSQM framework needs a systematic model
which enables to minimize the cost of switching
between test plan alternatives, when the current
choice cannot fulfill the quality constraints, to
enable software designers to achieve a higher
quality for their design, a better insight into quality
predictions for their design choices that evolved to
the RQ4:

RQ4: Which metric or set of metrics can identify
and prioritize improvements to achieve early and
cost-effective software fault detection, can assess
the improvement potential of improving the degree
of early and cost-effective software fault detection?

The answer to RQ4 can be found in Section 5 which
introduces new kinds of STP improvenent and hence
indirectly led to Research Question 5:

RQ5: How should a software development
organization apply the metric(s) suggested above for
assessing ongoing and finished projects with an
Dynamic Control Model view i.e. What are
optimality and stability criteria of very complex
STP dynamics problem control?

The answer to RQ5 can be found in Section 6 and 7.
Section 6 explain how can Quantitative Defect
Management (QDM) Model be enhanced (as
answer to RQ4) to be practically useful for
determining which activities need to be addressed to
improve the degree of early and cost-effective
software fault detection with assured confidence,
optimality and stability criteria of very complex
STP dynamics problem control (described in Section
7).

Before any work on solving a particular research
questions starts (a research question is basically a
formalization of a particular problem that needs to
be solved) a researcher needs to look at how the
problem should be solved. To be able to do this, one
must choose a research methodology. Iterative
approaches for improvement exist in the quality
management area. The PDCA (plando-check-act) or
“Shewhart Cycle”, the WV (or zigzag) framework
and the DMAIC (definemeasure-analyze-improve-
control) cycles are analogous methods to capture a
generic framework for the improvement of a process
or system [1,3,8]. A similar model, the “simulate-
test-evaluate process” iterative experimentation
cycle was developed by the office of the US
Secretary of Defense, called the Simulation, Test
and Evaluation Process (DoD STEP framework) to
integrate M&S into the test and evaluation process
of the system/software under test (SUT) [17]. A
basic rule from cybernetics - that a long time lag
between the output signal from the controlled
system and feedback to the controller causes
instability in the system - applies to SDP-STP
processes as well. Long design iteration loops with
late feedback drive cost and schedule overruns in
SDP-STP.

 3 Key Concepts of Developer-Tester

Alignment solution in integrated,

quantitatively managed and optimized

software testing process

When design and testing activities are not coupled,
the information testing provides on product design is
delivered at a wrong point in the process. This late
information is either not useful any more or shows
design problems too late, causing undesired late
rework. Thus, iteration cycles should be kept short
and rapid. However, this is difficult in the context of
a number of interrelated activities without a model
to facilitate process analysis and improvement.
To address the research questions stated above,
multiple studies have been conducted [5-8] about

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 76 ISBN: 978-960-474-124-3

alignment between the development and testing
functions which can be defined as the strategic and
operational fit between the development and testing
functions on components of strategy and capabilities
[13-16]. Since systems development as well as
systems testing are integral parts of the corporate
technology acquisition strategy, they too have to be
aligned to ensure business success. In many
organizations, there is a gap, or misalignment, at the
strategic and/or execution level, between the
development and testing groups as well as between
individual testers and developers. To correct these
misalignments, this paper proposes a methodology,
grouped under the DTA model [13] that draws upon
the strategic alignment model initially proposed in
[16]. This DTA model focuses on the fit between the
development and testing functions. A key goal of
this research is to develop a methodology for
applying these concepts within the corporate IT unit
tasked with building and implementing business
system applications. A high level of integration of
business and IT plans facilitates communication and
collaboration [16]. Similarly, in the areas of
development and testing, a high level of integration
and correspondence at both the execution and
strategic levels may also facilitate communication
and collaboration. Integration represents the level of
linkage between development and testing, while
correspondence represents how closely their
capabilities mirror and complement each other.
Varying levels of alignment can either promote or
hinder integration and correspondence. This is a
common characteristic of all alignment models in
the literature as verified by Dhaliwal, J. and Onita
C. in their work [13]. Figure 2 details the key
structural and flow components of the DT alignment
model for development and testing within the
corporate IT unit. This model decomposes the
alignment of the development and testing functions
along three key flow dimensions: 1) strategic
alignment, 2) capabilities alignment, and 3) strategy-
execution alignment.

The first structural component, development
strategy looks at strategic choices of the
development function. This component is comprised
of three key aspects: the scope of development,
governance of development and development
resources. Here the scope of IT development is
defined in terms of IT goals that support the
business strategy. The formal organizational makeup
of the IT development departments and teams, buy
or build decisions, as well as the overall
competencies and responsibilities of the
development and testing groups are also taken into
consideration.

Fig. 2 Alignment model for testing and development
(adapted from [13])

The second structural component, development
capabilities, has three key aspects: development
process, development skills and development
architecture. These directly impact the applications
being developed, the tools used in development
processes, as well as the models or frameworks
employed in the development process. Decisions
about development models, such as SDLC, RAD,
prototyping, etc., the skills and competencies of the
development personnel are also considered at this
level. On the testing side, the third structural
component, testing strategy focuses on three key
aspects: the scope of testing, issues regarding
responsibilities and resources and the governance
and reporting structure of the testing function. The
fourth structural component describes the testing
capabilities and has three aspects, testing processes,
testing skill/competencies and testing architecture.

The specific methods of testing (traditional, V-
mode, iterative), as well as choices about testing
tools, architecture, communication structure, etc. are
considered and analyzed from an alignment
perspective. The individual skills of testing
personnel are also assessed. In conclusion, the top
two quadrants of Figure 2 represent the strategy
level while the lower two quadrants represent the
capability level. The left two quadrants represent the
development function while the right two quadrants
represent the testing function.

DT alignment implies that all four dimensions
are matched in capabilities, resources, structure, etc.
This does not mean that they have to be similar, but

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 77 ISBN: 978-960-474-124-3

that testing complements development and acts as
an enabler of development success by providing
verification, validation and bug-finding services.
Each structural component (quadrant) of the
Alignment Model deals with alignment from a
double perspective: strategy/capabilities and
development/testing. DT Alignment also has three
flow dimensions (as represented by the numbered
vertical and horizontal arrows): strategic alignment,
capabilities alignment, and strategy-execution
alignment.

3.1 Strategy Execution Alignment of Testing

The testing Strategy-Execution Alignment (arrow
3b) deals with the ability of testing capabilities
(competencies, tools and methodologies) to support
the execution of stated testing strategies. Testing
strategies have to be executable, and testing
capabilities have to empower and support the
strategic goals and decisions. Prior studies have
identified additional influences that impact the
alignment between the components of the DTA
framework. Similarly, when talking about alignment
between testing and development, shared domain
knowledge of development executives and testing
executives will, most likely, positively influence the
level of alignment between the two functions. When
testing executives have development experience
and/or knowledge, and when development
executives have testing experience and/or
knowledge, their decisions will lead to better
alignment of the functions. This is especially true if
participative decision making takes place, where
testing executives are part of the development
functions decision making and development
executives are part of the testing function’s decision
making process.

Improving any process can be facilitated by
proper planning and by following detailed and
fitting methodologies and techniques. Based on case
study and field study approaches [8], this study
proposes a methodology for achieving DT
Alignment (see Fig. 3) through Collaborative
Techniques & Technology which Enables
OptimalSQM to be realised. The methodology is
derived from a survey of the literature from
Strategic Alignment [13-16] Testing [1-4], [8-10] to
Project Management and Information Systems
development methods [10-16]. To improve the
reliability and validity of this methodology,
alignment case studies and field studies were
conducted and real life examples are given to
improve the applicability of the methodology. A list
of techniques is also mapped onto each step of the

methodology. While not exhaustive, this toolbox
gives IT managers a good idea about the available
techniques that can used when attempting to secure
high levels of DT Alignment/Realignment strategy.

Fig. 3 Collaborative Techniques & Technology
Enables OptimalSQM realisation

3.4 Integrated, quantitatively managed and

optimized software testing process -

OptimalSQM solution

To answer the main research question (RQ1) we
applied DTA model, desribed above, in
OptimalSQM framework which combine best
practice from Design of Experiments, Modeling &
Simulation, integrated practical software
measurement, Six Sigma strategy, Earned
(Economic) Value Management (EVM) and Risk
Management (RM) methodology through
simulation-based software testing scenarios at
various abstraction levels of the software under test
(SUT) to manage stable (predictable and
controllable) software testing process at lowest risk,
at an affordable price and time [8,9], [17,18] as
depicted in Fig. 4. Unlike conventional approaches
to software testing (e.g. structural and functional
testing) which are applied to the software under test
without an explicit optimization goal, the IOSTP

with embedded Risk Based Optimized STP

(RBOSTP) approach designs an optimal testing
strategy to achieve an explicit optimization goal,
given a priori [8,17]. This leads to an adaptive
software testing strategy. A non-adaptive software

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 78 ISBN: 978-960-474-124-3

testing strategy specifies what test suite or what next
test case should be generated, e.g. random testing
methods, whereas an adaptive software testing
strategy specifies what testing policy should be
employed next and thus, in turn, what test suite or
test case should be generated next in accordance
with the new testing policy to maximize test activity
efficacy and efficiency subject to time-schedule and
budget constraints. The process is based on a
foundation of operations research, experimental
design, mathematical optimization, statistical
analyses, as well as validation, verification, and
accreditation techniques.

Fig. 4 Integrated and optimized software testing
process (IOSTP) framework, core of OptimalSQM
framework

The use of state-of-the-art methods and tools for
planning, information, management, design, cost
trade-off analysis, and modeling and simulation, Six
Sigma strategy significantly improves STP
effectiveness as in Fig. 4 which graphically
illustrates a generic IOSTP framework that makes
core of the OptimalSQM framework [8].
The main components of IOSTP with embedded
RBOSTP approach to STP:
 Integrate testing into the entire development
process
 Implement test planning early in the life cycle via
Simulation based assessment of test scenarios
 Automate testing, where practical to increase
testing efficiency
 Measure and manage testing process to maximize
risk reduction
 Exploit Design of Experiments techniques
(optimized design plans, Orthogonal Arrays etc.)
 Apply Modeling and Simulation combined with
Prototyping
 Continually improve testing process by pro-
active, preventive (failure mode analysis) Six Sigma
DMAIC model

 Continually monitor Cost-Performance Trade-
Offs (Risk-based Optimization model, Economic
Value and ROI driven STP).

Framework models are similar to the structural
view, but their primary emphasis is on the (usually
singular) coherent structure of the whole system, as
opposed to concentrating on its composition. IOSTP
framework model targeted specific software testing
domains or problem classes described above. IOSTP
is a systematic approach to product development
(acquisition) which increases customer satisfaction
through a timely collaboration of necessary
disciplines throughout the life cycle. Successful
definition and implementation of IOSTP can result
in:
 Reduced Cycle Time to Deliver a Product
 Reduced System and Product Costs
 Reduced Risk

In order to significantly improve software testing
efficiency and effectiveness for the detection and
removal of requirements and design defects in our
framework of IOSTP, during 3 years of the IOSTP
framework deployment to STP of embedded-
software critical system such as Automated Target
Tracking Radar System (ATTRS) [17], we
calculated overall value returned on each dollar
invested i.e. ROI of 100:1 .

4 Optimum DDTs combination

selection and optimization study in

OptimalSQM

Answer to the research queation - RQ2 divided the
research, as presented in this paper, into two areas:
(1) covering effectiveness in software testing
techniques (defect detection techniques – DDT), and
(2) efficiency in software testing with development-
testing alignment (DTA) methodology is given in
our works [5-8] which posits that such alignment
leads to beneficial effects such as lower costs and
shorter time of development, greater system quality,
fewer errors and a better relationship between the
corporate IT unit and customers in business
functions who have commissioned new systems.
 The central elements of IOSTP with embedded
RBOSTP are finding optimal DDTs combination
choices for every software development phase that
maximize all over Defect Detection and
Removement Effectiveness in OptimalSQM: the
acquisition of information that is credible; avoiding
duplication throughout the life cycle; and the reuse
of data, tools, and information. Among numerous

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 79 ISBN: 978-960-474-124-3

defect detection techniques choices we reduced their
number using Borda voting method to rank DDT
candidates from most powerful on the basis of
multiple evaluation criteria we have been
established [6]. Using OART novel approach,
optimum combination of software defect detection
techniques choices for every software development
phase that maximize overall Defect Detection
Effectiveness of STP is determined. IOSTP
framework combines few engineering and scientific
areas such as: Design of Experiments, Modeling &
Simulation, integrated practical software
measurement, Six Sigma strategy, Earned
(Economic) Value Management (EVM) and Risk
Management (RM) methodology through
simulation-based software testing scenarios at
various abstraction levels of the SUT to manage
stable (predictable and controllable) software testing
process at lowest risk, at an affordable price and
time [6].

Our study [6] focuses on rapid multidisciplinary
analysis and evaluation-on-a-DRE maximum-basis
for DDT combination choices selection for each test
phase activities in an traditional SDP i.e. P1-
software requirement, P2- High level design, P3-
Low Level Design, P4- code under test, P5-
integration test, P6- system under test and finally
P7- Acceptance test, recall section 5. Different
Defect Detection Strategy and Techniques options,
together with critical STP variables performance
characteristics (e.g. DRE, cost, duration), are studied
to optimize design, development, test and evaluation
(DDT&E) cost using orthogonal arrays for computer
experiments [8,9,17]. This paper presents a novel
OACE (Orthogonal Arrays for Computet
Experiment) approach for software testing process
(STP) optimization study finding optimum
combination of software defect detection techniques
(DDT) choices for every software development
phase that maximize all over Defect Removal
Effectiveness (DRE) of STP. The optimum
combination of software defect detection techniques
choices were determined applying orthogonal arrays
constructed for post mortem designed experiment
with collected defect data of a real project [6]. First,
we applied adapted Borda voting method, on similar
way, to rank all used Defect Detection Techniques
(DDT) through software development life cycle
from most-to-least performance and quality
characteristics of DDT in revealing software faults
(bugs, errors). In this way we reduced huge possible
number of DDTs, in particular, the DDT with the
highest Borda Count is the best DDT according to
testers Performance and Quality multi-criteria

assessment, the DDT with the second highest count
is the next DDT with highest score, and so forth to
only three most ranked DDT. According to testers
assessment of 5 most frequently used DDT in
IOSTP [6,8]: DDT1= Inspection – DBR, DDT2=
PBR, DDT3= CEG+BOR+MI, DDT4= M&S,
DDT5= Hybrid (Category Partition, Boundary value
analysis, Path testing etc.) three of DDTs have the
highest rank 0 i.e. DDT1=DDT2=DDT4=0, then
DDT3= CEG+BOR+MI is next ranked and the last
was DDT5. Because of that we will group those
three DDT with highest rank 0, call them Static Test
Techniques – TT1 and treat all three DDTs as one
factor in optimization experiment applying
Orthogonal Arrays as Optimization Strategy. Next
high Borda ranked DDT4= CEG+BOR+MI we
designate with TT2 and the last ranked DDT5 as
TT3.

In this study, design of maximum DRE
percentage of STP optimization problem solving
with best DDT choice combination in each phase P1
to P7 as controlled variables values is determined by
designed experiment plan using orthogonal arrays
designed for this computer experiment (OACE). To
simplify the analysis such as decreasing factor’s
values (only three DDT number) applying Borda
Ranking of DDT candidates with highest rank,
several design disciplines were decoupled from the
present analysis. Seven major test phases P1 to P7
for accounting maximum DRE percentage all over
STP fault injection and removal model (see Fig.
8,17 and 18) for DDT candidate selection in each
test phase were determined. These were the Static
Test Techniques – TT1 (consisting of three DDTs as
one factor in optimization experiment applying
Orthogonal Arrays as Optimization Strategy), the
TT2 i.e. DDT4= CEG+BOR+MI and TT3 – Hybrid
Detection Technique= DDT5 (consisting of
Category Partition, Boundary value analysis, Path
testing etc.). The objective of this investigation was
then to determine the best combination of Test
Techniques options for the seven major test phase
activities sections optimized for STD&STP
maximum DRE percentage under cost and time
constraints according to IOSTP benefit index
maximization in (1) [8,17].
As the next step, least squares regression analysis is
used to fit the second order approximation model
(Equation 3) to the DRE data in terms of the seven
design variables Pi, i=1 to 7. This parametric model
accounts for the response surface curvature (square
terms) and two factor interactions (cross terms) i.e.
RSM:

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 80 ISBN: 978-960-474-124-3

DRE (%) = 111.71 - 2.58 *P1 + 1.22*P2 -1.95*P3 -

7.61*P4 - 0.69*P5 + 0.94*P6 -13.04*P7 - 0.36*P2
2

+ 1.46*P4
2
 + 0.79*P5

2
 - 0.36P6

2
 + 3.15*P7

2
 (3)

Note that, in this response surface approximation
model, the parameter values for Pi design variables
are restricted to 1 (TT1), or 2 (TT2), or 3 (TT3). In
Table 1, a Maximum DRE (%) value and
corresponding Test Techniques choices (TT1,TT2
and TT2) per test phase solution is given.

Table 1 Maximum DRE (%) value and
corresponding Test Techniques choices per test
phase solution

At these levels, the IOSTP DRE was predicted to be
94.03 % using a second order prediction model (3).
As a next step, a verification analysis was
performed. The DRE (%) of an IOSTP calculated
from these test techniques choices, according to the
post-mortem real project data using optimized DDT
chices from Table 8, we computed DRE (%) to be
93.43 % . Difference is 0.6%=94.03%-93.43% that
is acceptable to validate our prediction model for
DRE (%) in equation (3) for optimal DDT
combination choice given in Table 1.
Optimal combination of DDT choices per phase P
given in Table 1 made increase of about 6 %,
compared to un-optimized DDTs combination per
each test phase we used in our real project in which
we achieved DRE of 87.43 % in our case study.

5 Software qulity economics

From a developer’s perspective, there are two types
of benefits that can accrue from the implementation
of good software quality practices and tools: money
and time. The investment in software quality,
particularly in software testing, like any investment
has an immediate cost, with an expected net
payback. There is where Quality Cost Analysis
could be used as effective tool to make them
understand the ROI. In this section, we will define
techniques to, analyze and interpret return on the
testing investment (ROTI) values: Financial ROI
and Schedule Benefits as one answer to RQ3 based
on our studies [5,18,19] i.e. Which metric or set of
metrics can identify and prioritize software quality
attributes, can assess cost of software quality

management process in a specific project i.e. how to
optimize software quality?

In our work [19] we proposed a model which
traces design decisions and the possible alternatives.
With this model it is possible to minimize the cost of
switching between design alternatives, when the
current choice cannot fulfill the quality constraints.
With this model we do not aim to automate the
software design process or the identification of
design alternatives. Much rather we aim to define a
method with which it is possible to assist the
software engineer in evaluating design alternatives
and adjusting design decisions in a systematic
manner.

There are some prepositions, which are not
being tested comprehensively, but some useful
Economic Model of Software Quality Costs and
data from industry are described in this article
[1,3,4]. Significant research is needed to understand
the economics of implementing quality practices and
its behaviour. Such research must evaluate the cost
benefit trade-offs in investing in quality practices
where the returns are maximized over the software
development life cycle.
The total of the quality costs includes prevention
costs of nonconformance to requirements,
appraising costs of product or service
for conformance to requirements, and failure costs
of products not meeting requirements. As the quality
function evolved from inspection (quality control) to
more preventive activities (quality assurance),
quality cost collection was expanded into
prevention, appraisal, and failure costs. Failure costs
are divided into two subcategories: internal and
external. Dan Houston [23] has defined Cost of
quality in his article "Cost of Software Quality: A
Means of Promoting Software Process
Improvement" as follows;

CoSQ = Prevention Cost + Appraisal Cost + Internal
failure Cost + External failure Cost

By now we have clear understanding of four
components of the Quality cost. With the help of
these four components we will discuss the
theoretical model suggested by researcher based on
the results gathered from the manufacturing
industries. Following Fig. 5, is graphical
presentation of the CoSQ given by most researchers
[3-4], [19-23]. The graph below is showing that for
achieving high reliability, close to red dot (almost
zero defect) the cost is very high but achieving a
reasonable level (area between two green dots) of
quality does not require very high cost. To remove
defect after reaching at very low defect density the

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 81 ISBN: 978-960-474-124-3

cost of detection would be very high
(Rs.500/KLOC) whereas the defect detection was
relatively easy as numbers of defect were high (high
defect density) the cost to remove defect is
approximately 10 times lesser.

Fig. 5. The cost of high reliability

Cost mentioned on the graph are imaginary numbers
just to give an idea that cost of defect removal at
high defect density would be lower and cost at low
defect density would be high. Several studies [19-
23] described meanings of these quality cost
categories as follows:
• Prevention costs (PC) are those costs associated
with quality planning, designing, implementing and
managing the quality system, auditing the system,
supplier surveys, and process improvements.
• Appraisal costs (AC) are associated with
measuring, evaluating, or auditing products, and
product materials to ensure conformance with
quality standards and performance requirements.
• Failure costs (FC) are those losses associated with
the production of a nonconforming product; they
can be divided into internal and external.
• Internal failure costs (IFC) are associated with
failures and defects of processes, equipment,
products, and product materials that fail to meet
quality standards or requirements.
• External failure costs (EFC) are generated by
defective products, services, and processes during
customer use. They include warranties, complaints,
replacements or recalls, repairs, poor packaging,
handling, and customer returns.

5.1 Cost of Software Quality (CoSQ)

The costs of achieving quality and the costs due to
lack of quality have an inverse relationship to one
another: as the investment in achieving quality
increases, the costs due to lack of quality decrease.

This theoretical model is shown below in Fig. 6.
This shows that as appraisal and prevention cost
increases, the failure cost will decrease until an
optimum point is reached. After this optimum point,
the increase in appraisal will not be offset by the
decreased in failure cost. Researcher have noticed
that in the initial phase appraisal measures cause
internal failure to increase as these measures detect
more errors at early stages, but error removal at
early stage is much cheaper compare to error
removal at later stage. But overall appraisal
activities decrease external failure as a result total
failure decreases. A small increase in prevention
measures will normally create a major decrease in
total quality cost.

Cost of quality represents any and all costs that

organization incurs from having to repeat a process

more than once in order to complete the work

correctly. Cost of software Quality (CoSQ) is useful

to enable our understanding of the economic trade-

offs involved in delivering good-quality software.

Commonly used in manufacturing, its adaptation to

software offers the promise of preventing poor

quality but, unfortunately, has seen little use to date.

Different authors and researcher have used different

ways to classify components for quality cost [5-9], if

we look carefully their understanding about various

components are approximately the same.

Fig. 6 Model of software quality cost

5.2 Statement Of the Problem

A key metric for measuring and benchmarking the
software testing efficacy is by measuring the
percentage of possible defects removed from the
product at any point in time. Both a project and
process metric – can measure effectiveness of

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 82 ISBN: 978-960-474-124-3

quality activities or the quality of a all over project
by:

DRE = E/(E+D) (1)

Where E is the number of errors found before
delivery to the end user, and D is the number of
errors found after delivery. The goal is to have DRE
close to 100%. The same approach is applied to
every test phase denoted wit i as shown on Fig. 7:

DREi = Ei / (Ei + Ei+1) (2)

Where Ei is the number of errors found in a software
engineering activity i, and Ei+1 is the number of
errors that were traceable to errors that were not
discovered in software engineering activity i. The
goal is to have this DREi approach to 100% as well
i.e., errors are filtered out before they reach the next
activity. Projects that use the same team and the
same development processes can reasonably expect
that the DRE from one project to the next are
similar. For example, if on the previous project, you
removed 80% of the possible requirements defects
using inspections, then you can expect to remove
~80% on the next project. Or if you know that your
historical data shows that you typically remove 90%
before shipment, and for this project, you’ve used
the same process, met the same kind of release
criteria, and have found 400 defects so far, then
there probably are ~50 defects that you will find
after you release. How to combine Defect Detection
Technique (DDT) to achieve high DRE, let say
>85%, as a threshold for IOSTP required
effectiveness [2-5], is explained in previous Section
4, which describe optimum combination of software
defect detection techniques choices. Note that the
defects discussed in this section include all severity
levels, ranging from severity 1: activity stoppers,
down to severity 4. Obviously, it is important to
measure defect severity levels as well as recording
numbers of defects.

5.3 The Real Cost Of Software Defects

It is obvious that the longer a defective application
evolves the more costly it is to repair. But how
much more? The answer might surprise you.
According to the collected metrics of one software
development organization, a bug that costs $1 to fix
on the programmer’s desktop costs $100 to fix once
it is incorporated into a complete program, and
many thousands of dollars if it is identified after the
software has been deployed in the field [10], as
described on Fig. 8. Barry Boehm, one of the

industry’s leading experts on software quality, has
published several studies [11] over nearly three
decades that demonstrate how the cost for removing
a software defect grows exponentially for each
downstream phase of the development lifecycle in
which it remains undiscovered. Since the original
study, Boehm’s results have been confirmed in a
number of subsequent studies [5-7].

Fig. 7 Fault Injection and Fixing Model

Further, another major research project conducted
recently by the United States Department of
Commerce, National Institute of Standards and
Technology (NIST) showed that in a typical
software development project, fully 80% of software
development dollars are spent correcting software
defects. The same NIST study also estimated that
software defects cost the U.S. economy, alone, $60
billion per year. Many organizations view the
software development lifecycle, in a Conventional
way, as a linear process with discrete functions:
design, develop, test and deploy. In reality, the
software development lifecycle is a cyclical function
with interdependent phases. Quality assurance has a
role in every phase of that lifecycle, from
requirements review and test planning, to code
development and functional testing, to performance
testing and on into production. It was unanimously
agreed that quality and quality assurance is more
than strictly testing at the end of the development
process. Starting quality initiatives early and paying
attention to quality throughout the development,
deployment and production effort is key in order to
achieve a baseline goal of zero-defect software.

5.4 Software Testing Economics Formulas

5.4.1 Techniques To Analyze Return On The

Testing Investment (ROTI)

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 83 ISBN: 978-960-474-124-3

The ROTI model compares the development cost for
a conventional project with the development cost
for a project that uses TDD.

Fig. 8 Engineering Rules for Cost Of Defect
Removal [10]

The investment cost is the additional effort
necessary to complete the TDD project as compared
to the conventional project. The life cycle benefit is
captured by the difference in quality measured by
the number of defects that the TDD team finds and
fixes, but the conventional project does not.

This defect difference is transformed into a
monetary value using the additional developer effort
corresponding to finding and fixing these defects in
the conventional project. The concepts of the life
cycle benefit and the investment cost in our context
are depicted in Fig. 9. The upper horizontal line
corresponds to the conventional project with
additional quality assurance phase! The lower
horizontal line corresponds to the TDD project. Our
model captures the return on investment for an
experienced TDD team in software testing process
improvement (SPI).

5.4.2 Financial ROI

From a developer’s perspective, there are two

types of benefits that can accrue from the

implementation of good software quality practices

and tools: money and time. A financial ROI looks at

cost savings and the schedule ROI than looks at

schedule savings. Direct financial ROI is expressed

in terms of effort since this is the largest cost on a

software project. There are a number of different

models that can be used to evaluate financial ROI

for software quality.

The first is the most common ROI model. We

will show that this model is not appropriate because

it does not accurately account for the benefits of

investments in software projects. This does not

mean that that model is not useful (for instance,

accountants that we speak with do prefer the

traditional model of ROI), only that we will not

emphasize it in our calculations.

Fig. 9 Overview of benefit cost ratio calculation

Methods for return on investment (ROI) include

benefit, cost, benefit/cost ratio, ROI, net present

value, and breakeven point are given in Fig. 10.

ROI methods in general are quite easy,

indispensable, powerfully simplistic, and absolutely

necessary in the field of software process

improvement (SPI). It is ironic that ROI methods are

not in common practice. The literature does not

abound with ROI methods for SPI. The ROI

literature that does exist is very hard to locate,

appears infrequently, and is often confusing.

Fig. 10 ROI metrics showing simplicity of ROI

formulas and their order of application

We also look at ROI at the project level, specially

on return on the testing investment (ROTI), rather

than at the enterprise level. ROI at the enterprise

level (or across multiple projects) requires a slightly

different approach which we will not address

directly here.

The most common ROI model, and that has been

used more often than not in software engineering, is

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 84 ISBN: 978-960-474-124-3

shown below:

InvestmentTest

InvestmentTestSavedCoQTotal
ROTI

⋅

⋅−⋅⋅
=1

 (3)

This ROTI model gives how much the Total Cost of

Quality (CoQ) savings gained from the project were

compared to the initial investment. Let us look at a

couple of examples to show how this model works.

5.4.3 Schedule Benefits

If software quality actions are taken to reduce
development cost, then this will also lead to a
reduction in development schedule. We can easily
calculate the reductions in the development schedule
as a consequence of reductions in overall effort. In
this section we will outline the schedule benefits of
quality improvements. To do so we will use the
schedule estimation model from COCOMO [11].

It is instructive to understand the relationship
between project size and schedule as expressed in
the COCOMO II model [11]. This is illustrated in
Fig. 12. Here we see economies of scale for project
schedule. This means that as the project size
increases, the schedule does not increase as fast. The
three lines indicate the schedule for projects
employing different levels of practices. The lower
risk and good practice projects tend to have a lower
schedule.
Another way to formulate the ROTI model in Eqn. 3
which will prove to be handy is:

CoQTotalOriginal

CoQTotalNewCoQTotalOriginal
ROTI

⋅⋅

⋅⋅−⋅⋅
=2

 (4)

The New Total CoQ is defined as the total cost of
software quality the project delivered after
implementing the quality improvement practices or
tools as in our work [9]. This includes the cost of the
investment itself.
We can then formulate the New Total CoQ as
follows:

)1(2ROTICoQTotalOriginalCoQTotalNew −⋅⋅⋅=⋅⋅

Now, we can formulate the schedule reduction

(∆SCED or SCEDRED) as a fraction (or

percentage) of the original schedule as follows:

ScheduleOriginal

ScheduleNewScheduleOriginal
SCED

⋅

⋅−⋅
=∆ (5)

Fig. 12 Relationship between project size and
schedule in COCOMO II.

By substituting the COCOMO equation for
schedule, we now have:

)002.0(28.0

)002.0(28.0)002.0(28.0

5

1

5

1

5

1

∑

∑
−

∑

=∆

=

==

⋅×⋅+

⋅×⋅+⋅×⋅+

j

j

j

j

j

j

SF

Original

SF

New

SF

Original

PM

PMPM
SCED (6)

where:

PMOriginal - The original effort for the project in
person-months

PMNew - The new effort for the project (after
implementing quality practices) in person-
months

SFj - A series of five Scale Factors that are used to
adjust the schedule (precedentedness,
development flexibility, architecture / risk
resolution, team cohesion, and process
maturity).

Now, by making appropriate substitutions, we have:

)002.0(28.0

)002.0(28.0

2

)002.0(28.0)002.0(28.0

5

1

5

1

5

1

5

1)1(

∑

 ∑
−×

∑
−

∑

=∆

=

===

×+

×+×+×+

j

j

j

j

j

j

j

j

SF

Original

SFSF

Original

SF

Original

PM

ROTIPMPM

SCED

Which simplifies to:

)002.0(28.0

2

5

1)1(1
∑

−−=∆ =

×+
j

jSF

ROTISCED (7)

The relationship between cost savings and

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 85 ISBN: 978-960-474-124-3

schedule reduction is shown in Fig. 13. As can be

seen, the schedule benefits tend to be at smaller

proportions than the cost benefits. Nevertheless,

shaving off 10% or even 5% of your schedule can

have nontrivial consequences on customer

relationships and market positioning.

5.4.4 Interpreting The ROI Values

In this section we will explain how to interpret

and use the ROI values that are calculated. First, it
must be recognized that the ROI calculations, cost
savings, and project costs as presented in our models
are estimates. Inevitably, there is some uncertainty
in these estimates. The uncertainty stems from the
variables that are not accounted for in the models
(there are many other factors that influence project
costs, but it is not possible to account for all of these
since the model would then be unusable). Another
source of uncertainty is the input values themselves.

These values are typically averages calculated

from historical data; to the extent that the future

differs from the past these values will have some

error. Second, note that the calculated ROI values

are for a single project. A software organization will

have multiple on-going and new projects. The total

benefit of implementing software quality practices

to the organization can be calculated by generalizing

the results to the organization. For example, if the

ROI for a single project is say a 15% saving.

Assuming that the input values are the same for

other projects in the organization, then we can

generalize to the whole organization and estimate

that if software quality practices are implemented on

all projects in the organization, the overall savings

would be 15%.

If the software budget for all the projects is say

20 million, then that would translate into an

estimated sa ving of 3 million. Note that this is not

an annual saving, but a saving in total project

budgets hat may span multiple years (i.e., for the

duration of the projects). To annualize it then the

15% savings must be allocated across multiple

years. If you are implementing quality improvement

on a single project, then these costs would have to

be deducted from the single project savings. If you

are implementing quality practices in the whole

organization, then these costs will be spread across

multiple projects.

In such a case, these costs would be deducted from
the organizational savings (the calculation of which
is described above).

Fig. 13 The relationship between cost savings and

schedule reduction for up to 50% cost savings. The

assumption made for plotting this graph was that all

Scale Factors were at their nominal values.

6 Advanced Quantitative Defect

Management (AQDM) Model

The answer to RQ5 can be found in our work [7].
In this section we explain how can Quantitative
Defect Management (QDM) Model be enhanced (as
answer to RQ4) to be practically useful for
determining which activities need to be addressed to
improve the degree of early and cost-effective
software fault detection with assured confidence,
than definitely, optimality and stability criteria of
very complex STP dynamics problem control
(described in Section 7).

6.1 The defect containment measure

An error in an activity of development phase Pi

(i=1 to N) is made that causes a failure (see Fig. 15-
17). The failure leads to a reported anomaly. When
the reported anomaly is analyzed, the fault(s)
causing the failure is found and corrected. Rework is
about revising an existing piece of software or
related artifact. Therefore, a typical rework activity
is to correct reported anomalies. Rework can be
divided into two primary types of corrective work
[9]:

• Avoidable rework is work that would not have
been needed if the previous work would have been
correct, complete, and consistent. Such rework
consists of the effort spent on detecting and fixing
software difficulties that could have been discovered
earlier or avoided altogether [2,5].

• Unavoidable rework is work that could not
have been avoided because the developers were not
aware of or could not foresee the change when

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 86 ISBN: 978-960-474-124-3

developing the software, e.g. changed user
requirements or environmental constraints [9].

Using raw defect containment data and deriving
AQDM measures early in the development life cycle
provides opportunities for a project to identify issues
in defect capture before costs spiral out of control
and schedule delays ensue.

This section describes the selected method for
how to achieve the objectives stated in the previous
section. The method can be divided into the
following three steps:

1. Determine which faults that should have been
avoided or at least found earlier,

2. Determine the average cost of finding faults
in different phases,

3. Determine the improvement potential from
the results in (1) and (2).

The three sub-sections below describe how to
perform each of the three steps.

6.2 The raw defect containment data

This section is dedicated to a model for assessing a
plan for SQA defect-removal effectiveness and cost.
The model, a multiple filtering model as shown on
Fig. 7, is based on data acquired from a survey of
defect origins, percentages of defect removal
achieved by various quality assurance activities, and
the defect-removal costs incurred at the various
development phases. The model enables quantitative
comparison of quality assurance policies as realized
in quality assurance plans. The application of the
proposed model is based on three types of data,
described under the following headings from [1].

6.2.1 Defect removal effectiveness

It is assumed that any quality assurance activity
filters (screens) a certain percentage of existing
defects. It should be noted that in most cases, the
percentage of removed defects is somewhat lower
than the percentage of detected defects as some
corrections (about 10% according to [4]) are
ineffective or inadequate. The remaining defects,
those undetected and uncorrected, are passed to
successive development phases. The next quality
assurance activity applied confronts a combination
of defects: those remaining after previous quality
assurance activities together with “new” defects,
created in the current development phase. The main
objective of the case study presented in this section
was to investigate how fault statistics could be used
for removing unnecessary rework in the software
development process. This was achieved through a
measure called Faults-Slip-Through (FST) [5,9], i.e.

the measure tells which faults that would have been
more cost-effective to find in earlier phases.
As previously mentioned, FST measurement was
used for determining this, i.e. it evaluates whether
each fault slipped through the phase where it should
have been found or not. The main difference
between FST measurement and other related
measurements is when a fault is introduced in a
certain phase but it is not efficient to find in the
same phase. For example, a certain test technique
might be required to simulate the behaviour of the
function. Then it is not a fault slippage. Figure 14
further illustrates this difference. A consequence of
how FST is measured is that a definition must be
created to support the measurement, i.e. a definition
that specifies which faults that should be found in
which phase. To be able to specify this, the
organization must first determine what should be
tested in which phase. Therefore, this can be seen as
test strategy work. Thus, experienced developers,
testers and managers should be involved in the
creation of the definition. The results of the case
study in Section 6.2.2 further exemplify how to
create such a definition.

Fig. 14 Example of Fault Latency and FST

When having all the faults categorized, the next step
is to estimate the cost of finding faults in different
phases. From the measure, the improvement
potential of different parts of the development
process is estimated by calculating the cost of the
faults that slipped through the phase where they
should have been found (see Fig. 7 and 8 in our
work[7]). The usefulness of the method was
demonstrated by applying it on two completed
development projects [1] and [2]. The results
determined that the implementation phase had the
largest improvement potential since it caused the
largest FST cost to later phases, i.e. from 56 to 87
percent of the total improvement potential in the two

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 87 ISBN: 978-960-474-124-3

studied project scenarios. It is assumed that the
filtering effectiveness of accumulated defects of
each quality assurance activity is not less than 40%
(i.e., an activity removes at least 40% of the
incoming defects). Typical average defect filtering
effectiveness rates for the various quality assurance
activities, by development phase, based on Boehm
[11] and Jones [4], are listed in Table 2.

6.2.2 Cost of defect removal

Data collected about development project costs
show that the cost of removal of detected defects
varies by development phase, while costs rise
substantially as the development process proceeds.
For example, removal of a design defect detected in
the design phase may require an investment of 2.5
working days; removal of the same defect may
require 40 working days during the acceptance tests.
Several surveys carried out by IBM, TRW, GTE,
Boehm and others, summarized by Boehm [11],
estimate the relative costs of correcting errors at
each development phase. Estimates of effectiveness
of software quality assurance tools and relative costs
of defect removal are provided by McConnell [10].
Although defect removal data are quite rare,
professionals agree that the proportional costs of
defect removal have remained constant since the
surveys conducted in the 1970s and 1980s. Instead
of average per phase defect removal cost we
propose average relative defect-removal costs
injected in phase Pi (i=1 to 7) and detected and removed
latter in downstream phases Pj , j>i up to the
operation phase (j=7) as shown in Table 3.

6.2.3 Qunatitative Defect Removal Model

The model is based on the following assumptions:
■ The development process is linear and sequential,
following the waterfall model of CMM Level 5.
Software size is aproximately 100FP (1 injected
defect/FP) i.e. for Java implementation about
50KLOC of source code [4].

■ A number of “new” defects are introduced in each
development phase. For their distributions, see Fig.
15 and 16.

■ Review and test software quality assurance
activities serve as filters, removing a percentage of
the entering defects and letting the rest pass tothe
next development phase. For example, if the number
of incoming defects is 30, and the filtering
efficiency is 60%, then 18 defects will beremoved,
while 12 defects will remain and pass to be detected

by the next quality assurance activity. Typical
filtering effectiveness rates for the Standard quality
assurance activities are shown in Table 2.

Table 2 Average filtering (defect removal)
effectiveness by Standard quality assurance
activities plan [1]

■ At each phase, the incoming defects are the sum
of defects not removed by the former quality
assurance activity together with the “new” defects
introduced (created) in the current development
phase.

■ The cost of defect removal is calculated for each
quality assurance activity by multiplying the number
of defects removed by the relative cost of removing
a defect (see Table 3, 3rd column).

■ The remaining defects, unfortunately passed to the
customer, will be detected by him or her. In these
circumstances, full removal entails the heaviest of
defect-removal costs. In this model, each of the
quality assurance activities is represented by a filter
unit, as shown for Design in Fig. 15. The model
presents the following quantities:

■ POD = Phase Originated Defects (from Fig. 16)

■ PD = Passed Defects (from former phase or
former quality assurance activity)

■ %FE = % of Filtering Effectiveness (also termed
% screening effectiveness) (from Table 2)

■ RD = Removed Defects

■ CDR = Average Cost of Defect Removal (from
Table 2)

■ TRC = Total Removal Cost: TRC = RD ×CDR.

The illustration in Fig. 16 of the model applies to a
standard quality assurance plan (“standard defects
filtering system”) that is composed of six quality
assurance activities (six filters), as shown in Table 2.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 88 ISBN: 978-960-474-124-3

Table 3 Representative average relative defect-
removal costs and fixing multiplier because FST

A comprehensive quality assurance plan
(“comprehensive defects filtering system”) achieves
the following: (1) Adds two quality assurance
activities, so that the two are performed in the
design phase as well as in the coding phase.

(2) Improves the “filtering” effectiveness of other
quality assurance activities.

Fig. 15 A filter unit for defect-removal
effectiveness: example (100 defects) from [1]

The comprehensive quality assurance plan can be
characterized as shown in Table 4.

The main conclusions drawn from the comparison
are:

(1) The standard plan successfully removes only
57.6% (28.8 defects out of 50) of the defects
originated in the requirements and design phase,
compared to 92.0% (46 defects out of 50) for the
comprehensive plan, before coding begins.

(2) The comprehensive plan, as a whole, is much
more economical than the standard plan as it
saves 41% of total resources invested in defect
removal, compared to the standard plan.

(3) Compared to the standard plan, the
comprehensive plan makes a greater contribution
to customer satisfaction by drastically reducing
the rate of defects detected during regular
operations (from 6.9 % to 3 %).

The comparison also supports the belief that
additional investments in quality assurance activities
yield substantial savings in defect removal costs.
Alternative models dealing with the cumulative
effects of several qualityassurance activities are
discussed by [2,5,9] as described below. A process-
oriented illustration of the comprehensive quality
assurance plan and model of the process of
removing 100 defects is provided in Fig. 17. A
comparison of the outcomes of the standard
software quality plan versus the comprehensive plan
is revealing as shown in Table 5. In general, the
quantitative results of the comparison comply nicely
with the SQA approach.

Table 4 Comprehensive quality assurance plan [1]

6.3 Simulation results of AQDM

improvement
Unlike conventional approaches to software

testing which are applied to the software under test
without an explicit optimization goal, as described
above, the OptimalSQM approach designs an
optimal testing strategy to achieve an explicit
optimization goal, given a priori is described in our
works [5,6].

We described in this section, as answer to the
RQ4, a Software Quality Optimization (SQO)
strategy of OptimalSQM framework, which is a
continuous, iterative process throughout the
application lifecycle resulting in zero-defect
software that delivers value from the moment it goes
live, with Simulated Defect Removal Cost Savings
model using net savings that are calculated using
this formulae:

)(* 11 PrPrPr CMCMFSTNS →+→+→ −= , r=1..6

for the given large (~11300 FP, Java implementation
about 600KLOC of source code) project example

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 89 ISBN: 978-960-474-124-3

from [2]. The results determined that the
implementation phase (P3) had the largest
improvement potential since it caused the largest
FST cost to later phases, i.e. from 56 to 87 percent
of the total improvement potential in the two studied
project scenarios.

Fig. 16 DRE and costs of Standard QA plan and
model of the process of removing 100 defects [1]

Fig. 16 DRE of Comprehensive QA plan and model
of the process of removing 100 defects [1]

Table 5 Comparison of the standard and
comprehensive quality assurance plans

7 Optimality and stability criteria of

STP dynamics problem control

A basic rule from cybernetics - that a long time lag
between the output signal from the controlled
system and feedback to the controller causes
instability in the system - applies to SDP-STP
processes as well. Long design iteration loops with
late feedback drive cost and schedule overruns in
SDP-STP. In order that OptimalSQM framework to

be practically useful for determining which activities
need to be addressed to improve the degree of early
and cost-effective software fault detection with
assured confidence, than definitely, optimality and
stability criteria of very complex STP dynamics
problem control is described in this Section as
answer to RQ5. How should a software
development organization apply the metric(s)
suggested above for assessing ongoing and finished
projects we propose one Dynamic Control Model

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 90 ISBN: 978-960-474-124-3

of SDP-STP in Fig. 17 with optimality and stability
criteria of very complex STP dynamics problem
control described in next sub-sections.

When design and testing activities are not
coupled, the information testing provides on product
design is delivered at a wrong point in the process.
This late information is either not useful any more
or shows design problems too late, causing
undesired late rework. Thus, iteration cycles should
be kept short and rapid. However, this is difficult in
the context of a number of interrelated activities
without a model to facilitate process analysis and
improvement.

Fig. 17 The feedback control model for SDP-STP

Planning, managing, executing, and documenting
testing as a key process activity during all stages of
development is an incredibly difficult process. There
is strong demand for software testing effectiveness
and efficiency increases with Planning, Estimating
SDP-STP [1-9,18,19] and Predicting (PEP): Time
schedule, Size and tracking current project software
Quality metrics with explored the true costs of
software defects and their impact on application
performance; demonstrated OptimalSQM
framework simulation to find how quality processes
implemented throughout the application lifecycle
can result in measurable performance
improvements; presented economic model for the
return on investment of TDD (ROTI) based on a
variety of ways of calculating ROI (described in
previous Sections).

This section describes the selected method for
how to achieve the objectives stated in the previous
section. The method can be divided into the
following three steps:

1. Determine the Life Cycle Benefit i.e.
Optimality criteria,

2. Determine the statistical control limits for
estimated OptimalSQM metrics,

3. Determine the execution confidence from the
results in (1) and (2).

The three sub-sections below describe how to
perform each of the three steps.

7.1 The Life Cycle Benefit model parameters

formulas for calculations

This section describes those formulas of our
OptimalSQM metrics model which are necessary to
understand the break-even and ROTI analysis if the
investment of described STP improvements in
previous sections pays off.

Calculating the return on investment ROI means
to add up all the benefits of the investment, subtract
the cost, and then compute the ratio of the cost
according the equation (6) in Section 5.4.2 Financial
ROI). If the investment in STP improvement pays
off, the ROTI1 is positive, otherwise negative. In
our evaluation of TDD we focus on the benefit cost
ratio BCR which is easily derived from the return on
investment.

BCR = LifeCycleBenefit/Investment = ROTI1 + 1

Studying the BCR instead of the ROTI1 makes the
break-even analysis much simpler, see below.

7.1.1 Investment Cost

We first look at the investment cost. For the
conventional project, the development phase
includes design, implementation and test. The
development phase of the TDD project is comprised
only of test-driven development.
As first empirical evidence suggests, we assume that
the TDD project lasts longer than the
conventional project. We call the ratio of the project
durations the test-speed-disadvantage (TSD).

TSD = TimeConv/TimeTDD

Since we assume that the development phase is
shorter for the conventional project, because
include small number of test activities, the test-
speed-disadvantage ranges between 0 and 1:0 <
TSD < 1.

Using productivity figures to explain the difference
in elapsed development time between the two
kinds of project, the TDD development is (1 −
TSD) × 100 % less productive than the conventional
project. Finally, the investment is the difference

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 91 ISBN: 978-960-474-124-3

between the development cost of the TDD project
and the conventional project as depicted in Fig. 9.

7.1.2 Life Cycle Benefit

Now, we consider the benefit. Each
development process is characterized by a distinct
defect-removal-efficiency -DRE (recall the section
5.2). The defect-removal-efficiency denotes the
percentage of defects a developer eliminates
during development. Initially, a developer
inserts a fixed amount of defects per thousands
lines of code (initial-defect-density, IDD), but he
eliminates DRE × 100 % of the defects during the
development process. From the increased reliability
assumed for TDD,we have:

0 < DRE Conv < DRE TDD < 1.

The additional quality assurance (QA) phase of
the conventional project compensates for the
reduced defect-removal-efficiency of the
conventional process. The only purpose of the
Comprehensive QA plan phase is to remove all
those defects found by TDD but not by the
conventional process (recall the section 6.2). The
amount of defects to be removed in the
Comprehensive QA plan phase is mainly
characterized by:

△DRE = DRE TDD − DRE Conv .

The benefit of TDD is equal to the cost of the
Comprehensive QA plan phase for the conventional
project. The benefit depends on the effort
(measured in developer months) for repairing one
line of code during QA, which is characterized by

WT

IDDDRT *
QAEffort =

QAEffort depends on the following:
• The defect removal time DRT. It describes the
developer effort in hours for detecting (finding) and
removing one defect.
• The inital defect density IDD. The number of de-
fects per line of code inserted during development.
• The working time WT. The working hours per
month of a developer. The reciprocal of QAEffort is a
measure for the productivity during the QA phase.

7.1.3 Benefit Cost Ratio

The benefit cost ratio is the ratio of the benefit and
the investment. Substituting the detailed formulas
given in [24] of our model, the benefit cost ratio
becomes:

)1(

** Prod*
BCR

TSD

TSDDREQAEffort

−

∆
= (8)

Where, Prod is the productivity of the
conventional project during the development phase
measured in lines of code per month. Values larger
than 1 for the BCR mean a monetary gain from
TDD, values smaller than 1 a loss.

7.1.4 Break Even

Setting the benefit cost ratio equal to 1, we get a
relation between the test-speed-disadvantage of
TDD and the reliability gain of TDD:

1*

1
TSD

+∆
=

DREc
, or

TSDc

TSD
DRE

*

1−
=∆ , where c=QAEffort*Prod

As an example, we examine the benefit cost ratio of
the following scenario.
Factor Value

DRT 10 h/defect
IDD 0.1 defects/LOC
WT 135 h/month
Prod 350 LOC/month

Let TSD and △DRE vary. Figure 18 shows the
benefit cost ratio plane spanned by the test-
speed-disadvantage TSD and the defect-removal-

efficiency difference △DRE. Values larger than 4
are cut off.

Fig. 18 Benefit cost ratio dependent on TSD and △DRE

For large values of the test-speed-disadvantage
(TSD > 0.9) the TDD project performs almost
always better than the conventional project, even for
a small defect-removal-efficiency difference. On
the other hand, if the test-speed-disadvantage is
very small (TSD < 0.2), TDD does not produce any
benefit regardless how large the defect-removal-
efficiency difference is.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 92 ISBN: 978-960-474-124-3

The TSD can be estimated with formula (10) for
∆SCED in Section 5.4.3. The relationship between
cost savings defined by ROTI2 and schedule
reduction is shown in Fig. 14 in the same Section.

Next section describes the selected method for
how to achieve the objectives stated in the previous
section i.e. step two.

7.2 Statistical control limits for estimated

OptimalSQM metrics

Advanced Quantitative process management
implemented in OptimalSQM framework is among
the advanced features of highly mature processes as
defined in capability maturity model integration
(CMMI), which provides insights on the degree of
goal fulfillment and root causes of significant
process/product deviation [25]. Quantitative defects
management predicts the number of defects
expected to be detected in each stage of software
development, enabling proactive measures to be
taken early in development [26]. Quantitative
defects management is the key to ensure the
production of high-quality software, which has been
an important part of quantitative process
management. Unfortunately, how to quantitatively
manage defects across multiple test iterations
remains a challenging issue [26]. Two process areas

(OPP, organizational process performance; QPM,

quantitative project management) and some

statistical techniques (e.g. statistical process

control) are described in CMMI for implementing

quantitative process management. However, most
software organizations still do not know clearly how
to apply quantitative process management.
Therefore, detailed, experience-based guidance
would be helpful for software organizations
applying or planning to apply quantitative process
management.
In this section, we introduce a process performance
Baselines (PPBs) based on Advanced Quantitative
Defects Management (AQDM) method [2] and its
application in a Chinese telecommunications
company (named ZZNode) published in [26] which
we adapted for our purpose in OptimalSQM
framework. The AQDM method covers all defect
detection activities, e.g. review, inspection, and
testing which has successfully applied in
OptimalSQM framework in quantitative defect
control as depicted in Fig. 19.
AQDM method of quantitatively managing the
testing process, which supports high-level process
management mentioned in CMMI. As shown in Fig.
1, the four steps of the AQDM method are to: (1)
identify the performance objectives (P-Objs) to be

managed quantitatively and construct data samples;
(2) establish the P-BL for the identified P-Objs; (3)
establish the process-performance model for fixing
effort; and (4) establish the process-performance
model for fixing schedule.

Fig. 19 The illustration of the AQM method [26]

As shown in Fig. 19, by using the methodology, the
empirically based models for the testing process can
be established based on the analysis of historical
data, which will be described in next Section.
Software projects can use the model to estimate and
control the defects, effort and schedule
quantitatively.

7.2.1 Identify P-Objs and Construct Data

Samples

Normally, the effort of detecting and fixing defects,
and the defect-injected phase are sensitive data that
we should consider for testing process. A general
assumption is that the effort of detecting and fixing
defects should consume a certain percentage in the
total development effort, and the effort of fixing
defects is influenced by the defect number and the
defect-injected phase. In the AQDM method, four P-
Objs have been identified as follows:
1. Percentage of Detecting Effort (%EffDetect) or

PDE: Detecting effort means the effort for all
detecting activities including test planning, test case
preparation, test implementation and fix verification.
The percentage of the detecting effort in the total
effort is %EffDetect.
2. Defect Injection Distribution (DID): In general,
many software organizations collect defect data for
quality control. There are always some defects
injected in the early phases, which are only detected
during the testing activities, even in high-maturity
organizations. In our method, three primary phases,
namely requirements, design and coding, are used to
classify the corresponding injected phases for each

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 93 ISBN: 978-960-474-124-3

defect. The corresponding percentages of defects
injected in these phases are denoted as:
requirements, (%DIReq); design, (%DIDesign); and
coding, (%DICode) respectively. The principles of
assigning the injected phase are described as: (i)
defect injected in the requirements phase: a defect
that is due to poor requirements, such as inconsistent
and unclear requirements;(ii) a defect injected in the
design phase: a defect that is due to poor design,
such as unclear interface, misunderstanding of
requirements and incomplete data verification; and
(iii) a defect injected in the coding phase: a defect
that is due to poor coding, such as incorrect words in
a Web page and inconsistent code against
requirements or design.
3. Schedule Factor for Defect Fixing (SFFix). For
each defect, the opening date is the day the defect is
being submitted, and the closing date is the day the
defect is being confirmed as repaired. The schedule
of defect fixing (ScedFix) can be calculated by the
formula below.

ScedFix = closing date − opening date + 1.

Sometimes, certain defects are assigned ‘deferred’
and not to be fixed in the current release due to
business pressures. In this case, we take the day the
defect is being deferred and calculate the ScedFix as
shown below.

ScedFix = deferred date − opening date + 1.

The ScedFix for deferred defects means the schedule
of the defect being dealt with.
For each project, the average schedule of fixing one
defect (AScedFix) injected in each phase can be
calculated by the formula below.

AScedFix of each phase = total ScedFix/ total defects

injected in the phase

Normally, the AScedFix of coding phase (AScedCode)
is the shortest. We use the AScedCode as the
benchmark (i.e. SFCode), and calculate the ratio of
AScedFix of requirements phase (AScedReq) to
AScedCode, as well as the ratio of AScedFix of design
phase (AScedDesign) to AScedCode by the formula
below borowed from [26].
SFCode = 1
SFReq = AScedReq/AScedCode
SFDesign = AScedDesign/AScedCode

As we mentioned before, many software projects are
delayed due to the slippage of the testing process. In
fact, many testing processes are delayed due to the
schedule overrun of defect-fixing activity. To solve
this problem, AQDM uses a more effective method
on estimating schedule of defect-fixing activity
[5,26]. An algorithm to help estimate the schedule of
defect-fixing activity is established based on the

analysis of SFFix and the effort of defect fixing. The
algorithm applies the following principles:
• Shortest schedule. Based on the total effort of
defect fixing, the defect-fixing schedule should be as
short as possible.
• Concurrent defect fixing. Defects which require a
long fixing schedule should be fixed concurrently if
there are sufficient human resources available.

The basic ideas of the algorithm are: (1) the fixing
schedule of defects injected in requirements should
be allocated first since the AScedReq is the longest,
which is the basis of the fixing schedules of defects
injected in design and coding; (2) if the number of
defects injected in the design and the number of
defects injected in the coding are similar, as well as
if the SFReq is longer than the sum of SFDesign and
SFCode, then the fixing schedule of defects injected in
design and coding could be allocated serially.
Especially, in the algorithm, we assume that if ½ <

numbers of defects injected in design/numbers of

defects injected in coding <2, it means that the
numbers of defects injected in design and coding are
similar; and (3) in the other cases, the schedule of
defects injected in design and the schedule of
defects injected in coding should be allocated
concurrently. According to P-BLs of SFFix ,
published in [26] it is obvious that the earlier in the
phase the defects get injected, the longer is the
schedule needed to fix the defects.
Based on the AScedFix of the 16 projects and the P-
BL of SFFix, the organization defined some rules for
defects management as shown in Table 6. Based on
the P-BLs of SFFix, we establish the process-
performance model for fixing the schedule.
4. Percentage of Fixing Effort (%EffFix) or PFE:
Fixing effort data means the effort for all defect-
fixing activities including defect analysis and fixing.
%EffFix is the percentage of the fixing effort in the
total effort.

Defect fixing is an important activity of software
development, which demands a certain amount of
effort. In the International Software Benchmark
Standard Group (ISBSG), (www.isbsg.org), the
fixing effort is collected and counted in rework
effort. However, many effort estimation methods do
not pay sufficient attention to the effort of defect
fixing; instead, they just include it in the testing
activities. Normally, defect detecting is performed
by a testing team, and defect fixing is performed by
a development team. Estimating their effort
separately is helpful for an organization to plan its
human resources and schedules. In addition, the
fixing effort is strongly correlated with the number

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 94 ISBN: 978-960-474-124-3

and injected phase of defects. Splitting them and
establishing their P-BLs are very useful to manage
testing process quantitatively.

Table 6 Defects management rules for fixing the
schedule

In CMMI, the process-performance model is a
description of the relationships among attributes of a
process and its work products that are developed
from historical process-performance data, and
calibrated using collected process and product
measures from the project, and are used to predict
results to be achieved by following a process [25].
In the testing activities, there is a consensus that the
earlier a defect is injected, the more effort is needed
to fix it as we described in previous sections. In
contrast, the later a defect is injected, the less effort
is needed to fix it. So, defects injected in an earlier
phase, such as the requirements phase, have the
effect of increasing the defect-fixing effort,whereas,
defects injected in a later phase, such as the coding
phase, have the effect of decreasing the defect-fixing
effort (recall the Table 2 in 6.2.3 Qunatitative Defect
Removal Model). After constructing defect-related
data samples, software organizations can discover
some more precise correlation between defects and
fixing effort. The process-performance model for
fixing effort is based on this hypothesis. There are
some statistical methods which can be used to
analyze the correlation between DID and %EffFix,
such as multiple regression analysis. After the
correlation between DID and %EffFix has been
analyzed, the regression equation between DID and
%EffFix can be used to refine the estimation of fixing
effort after testing. The outcome can provide a
guideline to estimate the effort of defect fixing
based on the defects and the distribution of injection
phases. So, after testing, project managers could
reestimate and replan their fixing effort effectively.
The factors of regression equation could be refined
and calibrated based on the historical data of

software organizations. Thereafter, it can be better
applied in these organizations. We adopted factors
of regression equation derived from the the
historical data and for the fixing model as follows
[26]:

%EffFix = 0.1065 × %DIReq − 0.0043 × %DIDesign −

0.3925 × %DICoe + 0.3597

For high-maturity software organizations, the
defect-related process performance, such as defect
injection, defect removal, and defect density, also
has some common and stable properties. Many
methods discuss the defect removal ratio and defect
density. These are very useful and easy to
understand. Here we focus on the defect injection
and the correlation between the defects and effort
needed to fix them.
Process Performance Baselines - PPB is a
measurement of performance for the organization’s
set of standard processes at various levels of detail,
as appropriate [25]. When all functions are coded
and passed unit testing, integration testing (IntT) for
all functions is performed. After all iterations are
finished, product integration and system testing
(Int&SysT) for products developed by all iterations
are performed.
Before establishing PPBs, ten defect related
measures that provide appropriate insight into the
project’s quality and process performance, as shown
in Table 7 were selected. The principles of selecting
these measures are:
1. the measures can be collected easily, e.g. there is
tool support for data collection;

2. the measures are closely related to the Advanced
Quantitative process management implemented in
OptimalSQM framework's objectives of
development projects.

In Table 7, the measure numbers 1–4 focus on all
kinds of defects, including defects detected in
review, inspection, unit testing, integration testing,
system testing, etc.; the measure numbers 6, 9, and
10 just focus on defects detected in system-testing
activity. In Table 7, the measure number 1 is used to
manage the distribution of defect injection in
different kinds of activities which is applied in the
DRE model; the measure number 2 is used to
management the effectiveness of defect removal
activities which is applied in the DRE model; the
measures numbers 3 and 4 are used to manage the
quality of product; the measure number 5 describes
software productivity of the project; the measure
number 6–8 are used to management system-testing

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 95 ISBN: 978-960-474-124-3

activity which are applied in the fixing model; the
measures numbers 9 and 10 describe the efficiency
of testing and rework activities which are applied in
the DRE model.
PPB contains two important indicators: process
performance and capability. The process
performance is a measure of actual results achieved
by following a process, specified by central line
(CL). The process capability is the range of

expected results that can be achieved by following a
process, specified by Upper Control Limit (UCL)
and Lower Control Limit (LCL). We use the
baseline – statistic – refinement method [26] and the
XmR (individuals and moving range) control chart
to establish PPBs. Due to space limit, we do not
describe the process of calculating CL, UCL, and
LCL in detail.

Table 7 Measures that should be collected in

iterative development projects

No. Measures_____________

1 Defect injection rate of requirements,
design, coding, and testing activities =
number of defects injected at the
activity/total number of defects of the
project

2 Defect removal effectiveness of
requirements, design, coding, and testing
activities = number of defects removed at
the activity/(number of defects existing on
activity entry + number of defects injected
during development of the activity)

3 Pre-release defect density = number of
defects removed before product
release/product size

4 Post-release defect density = number of
defects detected within 1 year after product
release/product size

5 Productivity = product size/total effort of
project

6 Defect injection distribution = number of
defects injected in requirements (or design,
coding, and testing)/total number of defects
removed in system testing × 100%

7 Percentage of detecting effort = effort of
defect-detecting activity in system-testing
stage/total effort of project × 100%

8 Percentage of fixing effort = effort of
defect-fixing activity in system-testing
stage/total effort of project × 100%

9 Test efficiency = number of defects/defect-
detecting effort

10 Rework efficiency = number of
defects/defect-fixing effort

__

7.2.2 The Control Limits for of a Process -

Performance Model for Fixing Effort

For the 16 projects in Web application domain, from
the the historical data published in [26], all the
defects considered were detected in the testing
activities. These defects were classified into four
categories: critical defects, serious defects,
noncritical defects and cosmetic defects.
In this article, we only describe the total defects
collected without distinguishing them. The XmR
(individuals and moving range) control chart is
applied to analyze the DID (Defect Injection
Distribution) data. Assume that the sequence of data
sample is Xi, the moving range (mR) is:

mRi = |Xi − Xi−1| , i = 2 . . . n

According to the theory of statistics, we can get the
upper control limit (UCL), central line (CL), and
lower control limit (LCL) for mR-chart and X-chart
as follows:

Figures 20-22 show the XmR control charts for
%DIReq, %DIDesign and %DICode respectively. For the
three XmR charts in Figures 20–22, all data points
are distributed between the UCL and the LCL in
both mR-chart and X-chart. Hence, the %DIReq,
%DIDesign and %DICode were converged and the
distribution of defect injection appears to be stable.
In telecommunication application domain as a
reference, for the range of expected results, you can
use data from Table 8.

We applied this empirical method on an ongoing
project of the organization to estimate, plan and
manage its testing process quantitatively. The P-BLs
and correlation established above plus (recall
previous sections) some other baselines to compose
the Advanced Quantitative process management

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 96 ISBN: 978-960-474-124-3

implemented in OptimalSQM framework of the
organization process management system.

Fig. 20 XmR chart for %DIReq data of the 16
projects [26]

Fig. 21 XmR chart for %DIDesign data of the 16
projects [26]

Fig. 22 XmR chart for %DICode data of the 16
projects [26]

The steps of applying the quantitative management
model for testing process are: (1) based on the P-BL
of the P-Objs, estimating the defect detecting effort,
defect fixing effort and number of defects injected in
each phases during the project planning; (2) through
the testing activities, collecting the defect related
data and re-estimating the effort of defect fixing
when the actual P-Objs has abnormality which we

can reveal by the Statistical-Risk-Based Test
with Assured Confidence, explained in next
sub-section.

7.3 The Statistical-Risk-Based Test with

Assured Confidence as a stability criteria

In order to prevent endless regresion test of defect
detection and fixing loop (recall the Fig. 17, The

feedback control model for SDP-STP) i.e.
abnormality of planned test activities and
established control limits we must before the
process starts, determine the threshold failure
density and the corresponding confidence level.

Table 8 PPBs for telecommunication projects

The threshold failure density must be determined by
the requirements only. The number of daily test and
fixing transactions and criticality of failures
determine the threshold failure density. For
example, if the system is mission-critical and no
failure can be tolerated, the threshold should be low,
say 0.0001. Once the threshold failure density is
determined, the confidence level can be determined,
and this again can be determined by the
requirements. Note that higher confidence level and
lower threshold on failure density increase the
number of test cases needed. This process starts
from module testing, to integration testing, and
finally to end-to-end testing, and this process can be
easily embedded in most software development
processes. If a module fails at any stage of the
Statistical-Risk-Based Test with Assured
Confidence (SRBTAC) testing [8], it should be
subjected to software modification and testing
before it can be used for the next phase of the
SRBTAC testing. Only when a module passes the
SRBTAC module testing, it can be subjected to the
SRBTAC integration testing. Similarly, only when a
module pass the SRBTAC integration testing, it can

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 97 ISBN: 978-960-474-124-3

be subjected to the SRBTAC end-to-end testing.

This process has a feedback mechanism: if a
fault is detected in integration, the
corresponding module(s) must be subjected to
another round of testing. The process helps in
identifying areas that need further testing and/or
rework.

7.3.1 SRBTAC Statistical Model (I)

The statistical model requires that test cases for

the SRBTAC must be selected randomly and
independently. However, completely random test
cases may not cover all the important partitions in
the input domain. Thus, this paper recommends that
the input domains are thoroughly analyzed to
identify major partitions, and then test cases are
generated from these partitions to ensure coverage.
Major partitions can be identified by examining the
constraints on inputs, outputs and major execution
paths in the code or design and avoid any apparently
dependent test cases. At each level of SRBTAC
testing, only test cases from that level can be used.
For example, at the SRBTAC end-to-end testing,
only end-to-end test cases can be counted, but not

integration or module test cases. In addition to
regression testing, new test cases can be
developed by composing and reusing existing
test cases. During integration testing and end-
to-end testing, the operating environment
should be considered, and this may include
external systems interfacing, physical
environment, input data, system operators and
end users. For each factor, identify those that
are SRBTAC related and identify contingency
plans for environment components that can not
be certified.

The following equation is used to calculate the
number of test case required to achieve a certain
level of confidence C that the failure density is no
more than a desired bound B. All N test cases must
execute correctly without causing the software to
fail.

 C= 1 - (1-B)N (9)

– C is the confidence level desired.
– B is the failure density(threshold).
– N is the number of test cases required and N =
Ln(1-C)/Ln(1-B).
• For example, if desired confidence level is 0.95,

and the target failure rate 0.05, we need 58 test
cases, because 0.95 = 1 - (1- 0.05)N , so N needs
to be 58. The computation can be done using

Microsoft’s Excel or calculators to prepare table
1 that can be handy too.

• In this process, at each level, we need 58 test
cases to certify that the target software achieved
0.95 confidence with 0.05 failure density.

The formula (12) is applicable when every test case
is successful. If one or more test cases fail,
Statistical Model (II) shoul be used.

7.3.2 SRBTAC Statistical Model (II)

During the SRBTAC experiments at several testing
sites, it is apparent that some of the testing projects
have some failures, but it is still necessary to
compute the confidence.

Table 9 The number of test cases required for
various C and B when there is no failure.

Thus, the formula is now changed to:

 (10)
where

And N random test cases are executed with Q
failures, one has the confidence C that the true
failure rate is no more than B. In other words, with
a probability of at least C, one will see more than Q
failures in N test cases when the failure density is
more than B. Table 10 shows some computation
results.
This model has the following characteristics:
1. Confidence value is between 0 and 1.
2. The maximum confidence from a given set of N

test cases is obtained when there are no failures.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 98 ISBN: 978-960-474-124-3

By substituting Q = 0, one can obtain the
original equation.

3. As the failure increases, the confidence
decreases rapidly. When all test cases result in
failures, the confidence is zero.

4. As the targeted failure density decreases, more
test cases or fewer failures are required to
achieve the same confidence.

Table 10 Some combinations of N, Q, B and C when
there are failures.

Figure 23 shows how the confidence varies with the
number of test cases for the target failure density
0.05, for the failures between Q = 0 and 5. Note
that as the failures increases, the confidence
decreases rapidly which is evident from the graphs
becoming closer to the x-axis. When the failures
increases from 0 to 5 out of 100 test cases, the
confidence drops from 0.99 to around 0.4.

Test cases vs. Confidence (B=0.05)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Number of test cases

Q=0 Q=1 Q=2 Q=3 Q=4 M=5

Fig. 23 Confidence in the Presence of Failures

In Fig. 24, for a fixed bound B = 0.1 the confidence
is a function of failures detected for various number
of test cases. For a 0.1 target failure rate with 0.95
confidence, the failures should be less than 5 out of
100 test cases. If the targeted confidence level is
0.8, the failures should be less than 7 out of 100 test
cases. Note that reduction in the confidence does
not increase the failures significantly. This is to be
expected because the confidence decreases rapidly

with each additional failure. Hence, in practice only
few failures can be tolerated.

Failures vs. Confidence for various no. of test cases (N)

with B = 0.1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Number of failures

N=10 N=25 N=50 N=75 N=100

Fig. 24 Change in Confidence with Increasing
Failures

Another important issue in using this new model is
that the failures detected should not be critical. A
single critical failure can disable mission-critical
applications. Failures detected must be handled and
tested after the SRBTAC process.

The SRBTAC end-to-end testing 3-Step Process

• Step 1: Run the regression testing. If the system
fails at this step, it should be rejected; otherwise go
to the next step.
– If the modified system cannot pass this step, the
statistical models say that it is highly unlikely that
the system will be able to pass the SRBTAC
requirements.
– This step is relatively cheap because it reuses the
existing test resources only.

Benefits and Experience of SRBTAC (II)

• It is relatively easy to identify which parts of
subsystems are over tested and which are under
tested or to prevent endless regresion test of defect
detection and fixing loop of the feedback control
model view for SDP-STP i.e. abnormality of
planned test activities and established control limits .
• The testing team indicated that they can easily
incorporate the SRBTAC requirements in their test
projects if they were informed at the beginning of
the project.
• The testing team indicated that it is easy to apply
the SRBTAC process after some training.

7.3.3 Cost Means Risk

Is there a correlation between increasing the cost of
testing and the ability to meet overall test goals? In
our paper [17], we presented a model which showed

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 99 ISBN: 978-960-474-124-3

that testing can be minimized by assessing the
probability of successfully conducting the test based
on cost. Analysis showed that for one-shot test
events, such as bullets, bombs and missiles, the
more expensive the test, the cost (in terms of
achieving overall test goals) of failure (poor test
attempt or failed test) increased. Costs are weighted
by the probability of the cost being incurred by
failing a test. These "costs" are not only the direct
cost of the test itself (assets, range time, fuel, etc.)
but also living with the results. Generally speaking
the cost of incorrect evaluation (passing when it
should be failed, or failing when it should be passed)
exceeds the cost of correct evaluation (passing when
it should be passed, or failing when it should be
failed). The probability model analyzed past test
history to determine if testing should continue, stop
with system pass, or stop with system failure. Figure
25 graphically depicts a generalized output of the
behavior of the OptimalSQM framework in
advanced quantitative defect control model used in
the analysis. The regions are defined as follows:
Pass - Indicates that one should quit testing and pass
the system, Test - Indicates that one should test
further, Fail - Indicates that one should quit testing
and fail the system. It was shown that the Test
(uncertain) region narrowed and shifted to the left as
test costs increased and that the region of Pass
(acceptance) region decreased. The Test region also
necks down as the number of tests increases. As the
cost per test is raised, it ultimately becomes too
expensive to test the system and one uses what data
is on hand to assess the system. Conversely as the
cost of the test is lowered, one could test to system
pass or quit and declare success earlier and
minimize total expected cost. The author
recommended that a test manager use a probabilistic
based approach to minimize the expected total cost
rather than to some fixed statistical pass threshold
criteria. It can thus be shown analytically that a
more costly test increases the risk of not meeting
test requirements.

It can be safely stated that the least cost test strategy
model above can be applied to complex tests. The
logical conclusion is that simpler tests allow you
meet overall test goals sooner with a higher
probability of success. Statistical-Risk-Based Test
management procedure can be run by these steps:

1. Define all system requirements
(potentially to be tested)

2. Identify Risk Assessment techniques
3. Identify high risk requirements

a. Identify consequence of faults for
each requirement

b. Identify fault probability indicators
(if possible)

c. Prioritise the requirements based on
risk exposure

4. Plan and define tests according to
requirement prioritisation and coverage
criteria as set out in test plan)

5. Execute test according to prioritisation and
acceptance criteria as defined in the test
plan

6. Collect metrics to monitor progress and
report on priority level coverage (i.e. How
many of the requirements per priority level
have been tested)

7. Repeat until acceptance criteria per priority
level has been met (i.e. Number of
outstanding faults for each priority level is
acceptable)

Fig. 25 Narrowing and shifting of the "Continue
Test"

5 Conclusion

During the work on this project1 several research
questions were formulated which the research then
was based upon. The initial main research question
that was posed for the complete research in this
project was: How can software testing be performed
efficiently and effectively i.e. Optimal, that is, do
we have a framework model targeted specific
software testing domains or problem classes
described in the paper? To be able to address the
main research question several other research
questions needed to be answered first (RQ2–RQ5).
Thus, since this project is based upon the main
research question, it was worthwhile taking the time
to examine the current practice in different projects

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 100 ISBN: 978-960-474-124-3

and see how software quality is measured and,
especially, software testing was practiced [1-8] as
we described in Section 2. In Section 3 and 4 we
described our OptimalSQM framework which
presents a set of best practice models and techniques
integrated in optimized and quantitatively managed
software testing process (OptimalSQM), expanding
testing throughout the SDLC. It includes best
practice from Design of Experiments, Modeling &
Simulation, integrated practical software
measurement, Six Sigma strategy, Earned
(Economic) Value Management (EVM) and Risk
Management (RM) methodology. Through
simulation-based software testing scenarios at
various abstraction levels of the software under test
we are capable to manage stable (predictable and
controllable) software testing process at lowest risk,
at an affordable price and time according established
stability criteria. To put it short, the answer to RQ2
divided the research, as presented in this paper, into
two areas:(1) covering effectiveness in software
testing techniques, and (2) efficiency in software
testing. We described how to implement
development-testing alignment (DTA) methodology
into OptimalSQM [5-9] which posits that such
alignment leads to beneficial effects such as lower
costs and shorter time of development, greater
system quality, fewer errors and a better relationship
between the corporate IT unit and customers in
business functions who have commissioned new
systems. To begin with, the research aimed at
exploring the factor of defect detection and
removing effectiveness DRE during SDLC (RQ3)
while later focusing on early aspects of software
cost of quality. In Section 6, we explained how can
Advanced Quantitative Defect Management
(AQDM) Model be enhanced (as answer to RQ4) is
practically useful for determining which activities
need to be addressed to improve the degree of early
and cost-effective software fault detection. To
enable software designers to achieve a higher
quality for their design, a better insight into quality
predictions for their design choices, test plans
improvement using Simulated Defect Removal Cost
Savings model is offered in paper. The model which
enables to minimize the cost of switching between
test plan alternatives, when the current choice
cannot fulfill the quality constraints, corresponding
optimality and stability criteria are proposed. Much
rather we aim to define a simulation method with
which it is possible to assist the test manager in
evaluating test plan alternatives and adjusting test
process improvement decisions in a systematic
manner.To be practically useful for determining
which activities need to be addressed to improve the

degree of early and cost-effective software fault
detection with assured confidence, than definitely,
optimality and stability criteria of very complex
STP dynamics problem control is described in
Section 7 as answer to RQ5.

References:
[1] D. Galin, Software Quality Assurance:From

theory to implementation, Pearson Education
Limited, ISBN 0201 70945 7, 2004.

[2] A. Frost and M. Campo, " Advancing Defect
Containment to Quantitative Defect Man",
CrossTalk, December 2007.

[3] S. H. Kan, Metrics and Models in Software

Quality Engineering, Second Edition, Addison-
Wesley, 2003.

[4] C. Jones, Estimating Software Costs. 2nd edition.
McGraw-Hill, New York: 2007.

[5] Lj. Lazić, N. Mastorakis, Cost Effective Software
Test Metrics, WSEAS TRANSACTIONS on

COMPUTERS , Issue 6, Volume 7, June 2008.
[6] Lj. Lazić, N. Mastorakis, Orthogonal Array

application for optimal combination of software
defect detection techniques choices, WSEAS

TRANSACTIONS on COMPUTERS, Issue 8,
Volume 7, August 2008.

[7] Lj. Lazić, N. Mastorakis. "Optimizing Test
Process Action Plans by Simulated Defect
Removal Cost Savings", 11th WSEAS Int.Conf.
on AUTOMATIC CONTROL, MODELLING &
SIMULATION (ACMOS'09), Istanbul, Turkey,
May 30 - June 1, 2009.

[8] Lj. Lazićj. The Integrated and Optimized

Software Testing Process. PhD Thesis, School of
Electrical Engineering, Belgrade, Serbia, 2007.

[9] Lars-Ola Damm, Early and Cost-Effective
Software Fault Detection, PhD Thesis, Blekinge
Institute of Technology, SWEDEN, 2007.

[10] S. McConnell, Professional Software

Development, Addison Wesley, ISBN 0-321-
19367-9, 2004.

[11] B. Boehm, C. Abts, A. Brown, S. Chulani, B.
Clark, E. Horowitz, R. Madachy, D. Reifer and B.

Steece Software Cost Estimation with
COCOMO II, Prentice Hall, 2000.

[12] Cohen, C. F., Birkin, S. J., Garfield, M. J. and
Webb, H. W. (2004). “Management Conflict in
Software Testing.” Communications of the
ACM, 47(1), 76-81

[13] Dhaliwal, J., Onita C., A framework for
aligning Testing and Development,
Proceedings of the Workshop on Advances &
Innovations in Systems Testing, 2007

[14] Hunter and Blosch “Managing the New IT
Risks”. Gartner, 2003

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 101 ISBN: 978-960-474-124-3

[15] Pettichord, B. (2000). “Testers and Developers
Think Differently: Understanding and Utilizing
the Diverse Traits of Key Players on your
Team.” Software Testing & Quality
Engineering, 2(1), 42-45

[16] Sabherwal, Hirschheim and Goles (2003).
“Information systems – business strategy
alignment: The dynamics of alignment:
Insights form a punctuated equilibrium model.
Strategic information management: Challenges
and strategies in managing information
systems”, (Galliers and Leidner, Eds) pp 311-
346, Butterworh-Heinemann, Oxford,

[17] Lj. Lazić Lj, D. Velasević. "Applying simulation
and design of experiments to the embedded
software testing process". STVR, Volume 14,
Issue 4, p257-282, John Willey & Sons, Ltd.,
2004.

[18] Lj. Lazić, N. Mastorakis. "The COTECOMO:
COnstractive Test Effort COst Model". WSEAS
10

th
 EUROPEAN COMPUTING CONFERENCE

in Vouliagmeni Beach, Athens, Greece,
September 25-27, 2007 (abstract), full paper is
published in SPRINGER VERLAG, Proceedings
of the European Computing Conference, Volume
2, Series: Lecture Notes in Electrical Engineering,
Vol. 27 , Mastorakis, Nikos; Mladenov, Valeri
(Eds.), ISBN: 978-0-387-84813-6, June 2009;89-
110.

[19] Lj. Lazić, A. Kolašinac, Dž. Avdić. "The
Software Quality Economics Model for Software

Project Optimization", WSEAS
TRANSACTIONS on COMPUTERS, Issue 1,
Volume 8, p21-47, January 2009.

[20] M. Azuma. “SQuaRE: the next generation of the
ISO/IEC 9126 and 14598 international standards
series on software product quality”. In ESCOM
(European Software Control and Metrics
conference), April 2001.

[21] R. S. Pressman, Software engineering: a

practitioner’s approach —5th ed., McGraw-Hill
series in computer sc ience, 2001.

[22] R. Black, Managing the Testing Process, Second
Edition. Wiley, New York, 2002.

[23] D. Houston, and B. Keats, "Cost of Software
Quality: A Means of Promoting Software Process
Improvement", Quality Engineering, 10:3, pp.
563-573, March, 1998.

[24] M. Müller, "About the Return on Investment of
Test-Driven Development", ICSE'03, Portland,
Oregon, 2003.

[25] Chrissis MB, Konrad M, Shrum S. "CMMI(R):
Guidelines for Process Integration and Product
Improvement". Addison-Wesley Publishing
Company: Boston, MA. 2006.

[26] Q. Wang et al."Estimating Fixing Effort and
Schedule based on Defect Injection
Distribution", Softw. Process Improve. Pract.,
2008; 13: 35–50

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 102 ISBN: 978-960-474-124-3

