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Abstract: - The software development industry spends more than half of its budget on maintenance related 
activities. Software testing provides a means to reduce errors, cut maintenance and overall software costs. 
Software testing involves the process of detecting software discrepancies so that they can be corrected before 
they are installed into a live environment supporting operational business units. Early in the history of software 
development, testing was confined to testing the finished code, but, testing is more of a quality control 
mechanism. However, as the practice of software development has evolved, there has been increasing interest 
in expanding the role of testing upwards in the SDLC stages, embedding testing throughout the systems 
development process. Numerous software development and testing methodologies, tools, and techniques have 
emerged over the last few decades promising to enhance software quality. While it can be argued that there has 
been some improvement it is apparent that many of the techniques and tools are isolated to a specific lifecycle 
phase or functional area. This paper presents a set of best practice models and techniques integrated in 
optimized and quantitatively managed software testing process (OptimalSQM), expanding testing throughout 
the SDLC. Further, we explained how can Quantitative Defect Management (QDM) Model  be enhanced to be 
practically useful for determining which activities need to be addressed to improve the degree of early and cost-
effective software fault detection with assured confidence, then optimality and stability criteria of very complex 
STP dynamics problem control is proposed. 
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1 Introduction 
The software development industry spends more 
than half of its budget on maintenance related 
activities. Software testing provides a means to 
reduce errors, cut maintenance and overall software 
costs. The importance of software testing has been 
emphasized more and more, as the quality of 
software affects its benefit to companies 
significantly [1-4]. This paper presents some 

research results of ongoing project [5-7]1, designed 
to study software defect data as a means toward 
identifying where resources should be allocated 
most effectively to provide the highest quality of 
software product while reducing the overall cost of 

                                                 
1 This work has been done within the project ‘Integrated 

and Optimized Software Testing and Maintenance 

Process’, supported in part by the Ministry of Science and 

Technological Development of  the Republic of Serbia 

under Grant No. TR-13018. 
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software testing. The identification and removal of 
software defects constitutes the basis of the software 
testing process a fact which inevitably places 
increased emphasis on defect related software 
measurements. Early in the history of software 
development, testing was confined to testing the 
finished code, but, testing is more of a quality 
control mechanism. However, as the practice of 
software development has evolved, there has been 
increasing interest in expanding the role of testing 
upwards in the SDLC stages, embedding testing 
throughout the systems development process, so, 
testing becomes a parallel process. Avoidable 
rework consumes a large part of development 
projects, i.e. 20-80 percent depending on the 
maturity of the organization and the complexity of 
the products [9]. High amounts of avoidable rework 
commonly occur when having many faults left to 
correct in late stages of a project. In fact, research 
studies indicate that the cost of rework could be 
decreased by up to 50 percent by finding more faults 
earlier [2, 5, 9]. Numerous software development 
and testing methodologies, tools, and techniques 
have emerged over the last few decades promising 
to enhance software quality. While it can be argued 
that there has been some improvement it is apparent 
that many of the techniques and tools are isolated to 
a specific lifecycle phase or functional area.  

This paper focuses on software testing and the 
measurements which allow for the quantitative 
evaluation of this critical software development 
process. The software testing process requires 
practical measurements for the quantification of all 
software testing phases. Software product quality 
and software testing process (STP) improvement 
commence with addressing the testing process in a 
quantitative manner [7]. The continuous monitoring 
of the testing process allows for establishing an 
adequate level of confidence for the release of 
software products and for the quantification of 
software risks, elements which traditionally have 
plagued the software industry. The mechanism for 
this study is development of a series of simulation 
models to improve STP [7,8].  

The first phase of model development is 
presented in this paper. Ongoing work will involve 
extensive data collection regarding business 
processes followed by the use of simulation in the 
development of decision models [8,9]. In this paper, 
Quality and Efficiency in Software Testing by our 
OptimalSQM framework is described and its 
components defined and exemplified. It also 
discusses practical applications of OptimalSQM  and 
research model for investigating its antecedents and 
impacts is presented. OptimalSQM provide 

alignment between testing and development which  
has been raised as an issue for successful systems 
development. Missing however have been 
actionable how to methodologies for assessing and 
enhancing such alignment [12,13,16]. This paper 
attempts to fill this gap by describing a systematic 
methodology, a development-testing alignment 
(DTA) methodology which posits that such 
alignment leads to beneficial effects such as lower 
costs and shorter time of development, greater 
system quality, fewer errors and a better relationship 
between the corporate IT unit and customers in 
business functions who have commissioned new 
systems. This methodology considers alignment at 
both strategy and execution levels. By dissecting 
alignment into internal (within) and external 
(between) categories, it outlines pragmatic 
mechanisms by which the coherence between the 
internal components of developer-tester alignment 
can be assessed and managed. This paper presents a 
set of best practice models and techniques integrated 
in optimized and quantitatively managed software 
testing process (OptimalSQM), expanding testing 
throughout the SDLC. Further, we explained how 
can Quantitative Defect Management (QDM) Model  
be enhanced to be practically useful for determining 
which activities need to be addressed to improve the 
degree of early and cost-effective software fault 
detection with assured confidence, then optimality 
and stability criteria of very complex STP dynamics 
problem control is proposed. 
 

2 Need for Research 
 

Cost to an organization (both in dollars and in 
image) is significant when software defects are 
identified after installation at a client site. This 
project1 intends to identify areas where 
improvements in software testing resource 
allocations would provide added value to the 
organization. This paper proposes a development-
testing alignment (DTA) methodology which posits 
that such alignment leads to beneficial effects such 
as lower costs and shorter time of development, 
greater system quality, fewer errors and a better 
relationship between the corporate IT unit and 
customers in business functions who have 
commissioned new systems (see Fig. 2 and 3 
below). Alignment models and measurements have 
been studied in other related contexts [16] but never 
within corporate IT units and specifically between 
the development and testing functions. The paper 
therefore decomposes DT alignment into a series of 
aspects for the purpose of assessing and analyzing 
each of the construct. These aspects are drawn from 
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the overarching framework developed initially from 
prior literature [8,16]. The DTA methodology will 
allow IT managers to improve the effectiveness of 
testing and development by both synergistically 
integrating testing in the development process and 
by aligning the testing and development units in 
terms of strategy and execution capability. 
 

 

Fig. 1 Average Cost Of Defect Removal [2] 
 

Organiztions that engage in software 
development and testing benefit significantly if their 
management team has tools to assist them in 
determining the most effective use of financial 
resources that might result in the fewest software 
errors in delivered systems [2-10,22-26]. To be most 
effective, this tool needs to be developed after a 
thorough review of the specific organization’s 
testing data [17,26]. Once developed, the tool will 
identify the specific phases and processes during the  
evelopment life cycle where additional resources 
would provide the best return on investment and 
highest software quality. The use of this tool will 
provide a major reduction in the number and 
severity of software defects that exist after software 
testing. It will also reduce the overall cost of 
software testing by focusing on the appropriate 
process for a specific organizational environment 
[7,9,17-19,26]. To summarize, the purpose of this 
research is to increase software quality and reduce 
overall costs of software testing by focusing 
resources where they provide the most value. 
According to Gartner [14], on average, 7% of 
software functionality that was paid for is actually 
used, while 85% of IT projects failing to meet 
objectives (32% being cancelled outright). Dhaliwal 

and Onita [13] posit that many of these development 
failures are a result of poorly executed development 
process. These employ either inadequate 
development models or flawed implementation due, 
in part, to the lack of proper testing and effective 
collaborative mechanisms between testers and 
developers. These issues have not yet found a proper 
solution, due, in part, to a lack of a methodology 
that would allow the analysis and correction of 
software development processes. A review of the 
testing and development literature reveals that 
relations between the development and testing 
functions are lacking for projects of medium and 
large magnitude, where testing is separate from the 
development activities [12,15]. 

 
2.1 Research Questions 

 
Based on the outcome of the evaluation of related 
work conducted in the previous subsection, the our 
project has identified some challenges to address. 
The challenges can be broken down into five sub-
questions to address in this paper. During the work 
on this project1 several research questions were 
formulated which the research then was based upon. 
The initial main research question that was posed for 
the complete research in this project was: 
 

RQ1 or Main Research Question: How can 
software testing be performed efficiently and 
effectively i.e. Optimal, that is, do we have a 
framework model targeted specific software testing 
domains or problem classes described below in RQ2 
to RQ5? 
 
To be able to address the main research question 
several other research questions needed to be 
answered first (RQ2–RQ5). The first question that 
needed an answer, after the main research question 
was formulated, was: 
 

RQ2: Which metric or set of metrics can assess 
effectiveness of test detectin techniques and what is 
the potential in combining different software testing 
techniques with respect to effectiveness (and to 
some extent efficiency)? 

Thus, since this project is based upon the main 
research question, it was worthwhile taking the time 
to examine the current practice in different projects 
and see how software quality is measured and, 
especially, software testing was practiced [1-8]. The 
answer to this research question is to be found in 
Section 3 and 4 together with an analysis of how 
software testing is used in different types of 
projects. To put it short, the answer to RQ2 divided 
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the research, as presented in this paper, into two 
areas covering effectiveness in software testing 
techniques and efficiency in software testing with 
development-testing alignment (DTA) methodology 
[5-9] which posits that such alignment leads to 
beneficial effects such as lower costs and shorter 
time of development, greater system quality, fewer 
errors and a better relationship between the 
corporate IT unit and customers in business 
functions who have commissioned new systems. To 
begin with, the research aimed at exploring the 
factor of defect detection and removing 
effectiveness (DRE) during SDLC (RQ3) while 
later focusing on early aspects of software cost of 
quality. In order to examine if the current practice in 
software development projects was satisfactory for 
developing software with sufficient quality and 
budget constraint, RQ3 evolved into: 
 

RQ3: Which metric or set of metrics can identify 
and prioritize software quality attributes, can assess 
cost of software quality management process in a 
specific project i.e. how to optimize software quality 
to pay off investment in STP improvement (ROI)? 
 
Simply put, the main research question might have 
been a question of finding optimization model of 
software Quality and Efficiency in Software Testing 
by an OptimalSQM framework and its components 
defined in advance at start point of SDLC. The 
OptimalSQM  framework needs a systematic model 
which enables to minimize the cost of switching 
between test plan alternatives, when the current 
choice cannot fulfill the quality constraints, to 
enable software designers to achieve a higher 
quality for their design, a better insight into quality 
predictions for their design choices that evolved to 
the RQ4:  
 

RQ4: Which metric or set of metrics can identify 
and prioritize improvements to achieve early and 
cost-effective software fault detection, can assess 
the improvement potential of improving the degree 
of early and cost-effective software fault detection? 
 

The answer to RQ4 can be found in Section 5 which 
introduces new kinds of STP improvenent and hence 
indirectly led to Research Question 5: 
 

RQ5: How should a software development 
organization apply the metric(s) suggested above for 
assessing ongoing and finished projects with an 
Dynamic Control Model view i.e. What are 
optimality and stability criteria of very complex 
STP dynamics problem control? 
 

The answer to RQ5 can be found in Section 6 and 7. 
Section 6 explain how can Quantitative Defect 
Management (QDM) Model  be enhanced (as 
answer to RQ4) to be practically useful for 
determining which activities need to be addressed to 
improve the degree of early and cost-effective 
software fault detection with assured confidence, 
optimality and stability criteria of very complex 
STP dynamics problem control (described in Section 
7). 

Before any work on solving a particular research 
questions starts (a research question is basically a 
formalization of a particular problem that needs to 
be solved) a researcher needs to look at how the 
problem should be solved. To be able to do this, one 
must choose a research methodology. Iterative 
approaches for improvement exist in the quality 
management area. The PDCA (plando-check-act) or 
“Shewhart Cycle”, the WV (or zigzag) framework 
and the DMAIC (definemeasure-analyze-improve-
control) cycles are analogous methods to capture a 
generic framework for the improvement of a process 
or system [1,3,8]. A similar model, the “simulate-
test-evaluate process” iterative experimentation 
cycle was developed by the office of the US 
Secretary of Defense, called the Simulation, Test 
and Evaluation Process (DoD STEP framework) to 
integrate M&S into the test and evaluation process 
of the system/software under test (SUT) [17]. A 
basic rule from cybernetics - that a long time lag 
between the  output signal from the controlled 
system and feedback to the controller causes 
instability in the system - applies to SDP-STP 
processes as well. Long design iteration loops with 
late feedback drive cost and schedule overruns in 
SDP-STP. 

 3 Key Concepts of Developer-Tester 

Alignment solution in integrated, 

quantitatively managed and optimized 

software testing process 
 
When design and testing activities are not coupled, 
the information testing provides on product design is 
delivered at a wrong point in the process. This late 
information is either not useful any more or shows 
design problems too late, causing undesired late 
rework. Thus, iteration cycles should be kept short 
and rapid. However, this is difficult in the context of 
a number of interrelated activities without a model 
to facilitate process analysis and improvement. 
To address the research questions stated above, 
multiple studies have been conducted [5-8] about 
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alignment between the development and testing 
functions which can be defined as the strategic and 
operational fit between the development and testing 
functions on components of strategy and capabilities 
[13-16]. Since systems development as well as 
systems testing are integral parts of the corporate 
technology acquisition strategy, they too have to be 
aligned to ensure business success. In many 
organizations, there is a gap, or misalignment, at the 
strategic and/or execution level, between the 
development and testing groups as well as between 
individual testers and developers. To correct these 
misalignments, this paper proposes a methodology, 
grouped under the DTA model [13] that draws upon 
the strategic alignment model initially proposed  in 
[16]. This DTA model focuses on the fit between the 
development and testing functions. A key goal of 
this research is to develop a methodology for 
applying these concepts within the corporate IT unit 
tasked with building and implementing business 
system applications. A high level of integration of 
business and IT plans facilitates communication and 
collaboration [16]. Similarly, in the areas of 
development and testing, a high level of integration 
and correspondence at both the execution and 
strategic levels may also facilitate communication 
and collaboration. Integration represents the level of 
linkage between development and testing, while 
correspondence represents how closely their 
capabilities mirror and complement each other. 
Varying levels of alignment can either promote or 
hinder integration and correspondence. This is a 
common characteristic of all alignment models in 
the literature as verified by Dhaliwal, J. and  Onita 
C. in their work [13]. Figure 2 details the key 
structural and flow components of the DT alignment 
model for development and testing within the 
corporate IT unit. This model decomposes the 
alignment of the development and testing functions 
along three key flow dimensions: 1) strategic 
alignment, 2) capabilities alignment, and 3) strategy-
execution alignment. 

The first structural component, development 
strategy looks at strategic choices of the 
development function. This component is comprised 
of three key aspects: the scope of development, 
governance of development and development 
resources. Here the scope of IT development is 
defined in terms of IT goals that support the 
business strategy. The formal organizational makeup 
of the IT development departments and teams, buy 
or build decisions, as well as the overall 
competencies and responsibilities of the 
development and testing groups are also taken into 
consideration. 

 
Fig. 2 Alignment model for testing and development 
(adapted from [13]) 

The second structural component, development 
capabilities, has three key aspects: development 
process, development skills and development 
architecture. These directly impact the applications 
being developed, the tools used in development 
processes, as well as the models or frameworks 
employed in the development process. Decisions 
about development models, such as SDLC, RAD, 
prototyping, etc., the skills and competencies of the 
development personnel are also considered at this 
level. On the testing side, the third structural 
component, testing strategy focuses on three key 
aspects: the scope of testing, issues regarding 
responsibilities and resources and the governance 
and reporting structure of the testing function. The 
fourth structural component describes the testing 
capabilities and has three aspects, testing processes, 
testing skill/competencies and testing architecture. 

The specific methods of testing (traditional, V-
mode, iterative), as well as choices about testing 
tools, architecture, communication structure, etc. are 
considered and analyzed from an alignment 
perspective. The individual skills of testing 
personnel are also assessed. In conclusion, the top 
two quadrants of Figure 2 represent the strategy 
level while the lower two quadrants represent the 
capability level. The left two quadrants represent the 
development function while the right two quadrants 
represent the testing function. 

DT alignment implies that all four dimensions 
are matched in capabilities, resources, structure, etc. 
This does not mean that they have to be similar, but 
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that testing complements development and acts as 
an enabler of development success by providing 
verification, validation and bug-finding services. 
Each structural component (quadrant) of the 
Alignment Model deals with alignment from a 
double perspective: strategy/capabilities and 
development/testing. DT Alignment also has three 
flow dimensions (as represented by the numbered 
vertical and horizontal arrows): strategic alignment, 
capabilities alignment, and strategy-execution 
alignment. 
 

3.1 Strategy Execution Alignment of Testing 
 
The testing Strategy-Execution Alignment (arrow 
3b) deals with the ability of testing capabilities 
(competencies, tools and methodologies) to support 
the execution of stated testing strategies. Testing 
strategies have to be executable, and testing 
capabilities have to empower and support the 
strategic goals and decisions. Prior studies have 
identified additional influences that impact the 
alignment between the components of the DTA 
framework. Similarly, when talking about alignment 
between testing and development, shared domain 
knowledge of development executives and testing 
executives will, most likely, positively influence the 
level of alignment between the two functions. When 
testing executives have development experience 
and/or knowledge, and when development 
executives have testing experience and/or 
knowledge, their decisions will lead to better 
alignment of the functions. This is especially true if 
participative decision making takes place, where 
testing executives are part of the development 
functions decision making and development 
executives are part of the testing function’s decision 
making process. 

Improving any process can be facilitated by 
proper planning and by following detailed and 
fitting methodologies and techniques. Based on case 
study and field study approaches [8], this study 
proposes a methodology for achieving DT 
Alignment (see Fig. 3) through Collaborative 
Techniques & Technology which Enables 
OptimalSQM to be realised. The methodology is 
derived from a survey of the literature from 
Strategic Alignment [13-16] Testing [1-4], [8-10] to 
Project Management and Information Systems 
development methods [10-16]. To improve the 
reliability and validity of this methodology, 
alignment case studies and field studies were 
conducted and real life examples are given to 
improve the applicability of the methodology. A list 
of techniques is also mapped onto each step of the 

methodology. While not exhaustive, this toolbox 
gives IT managers a good idea about the available 
techniques that can used when attempting to secure 
high levels of DT Alignment/Realignment strategy. 

 
 
Fig. 3 Collaborative Techniques & Technology 
Enables OptimalSQM realisation 
 

3.4 Integrated, quantitatively managed and 

optimized software testing process -  

OptimalSQM solution 

 
To answer the main research question (RQ1) we 
applied DTA model, desribed above, in 
OptimalSQM framework which combine best 
practice from Design of Experiments, Modeling & 
Simulation, integrated practical software 
measurement, Six Sigma strategy, Earned 
(Economic) Value Management (EVM) and Risk 
Management (RM) methodology through 
simulation-based software testing scenarios at 
various abstraction levels of the software under test 
(SUT) to manage stable (predictable and 
controllable) software testing process at lowest risk, 
at an affordable price and time [8,9], [17,18] as 
depicted in Fig. 4. Unlike conventional approaches 
to software testing (e.g. structural and functional 
testing) which are applied to the software under test 
without an explicit optimization goal, the IOSTP 

with embedded Risk Based Optimized STP 

(RBOSTP) approach designs an optimal testing 
strategy to achieve an explicit optimization goal, 
given a priori [8,17]. This leads to an adaptive 
software testing strategy. A non-adaptive software 
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testing strategy specifies what test suite or what next 
test case should be generated, e.g. random testing 
methods, whereas an adaptive software testing 
strategy specifies what testing policy should be 
employed next and thus, in turn, what test suite or 
test case should be generated next in accordance 
with the new testing policy to maximize test activity 
efficacy and efficiency subject to time-schedule and 
budget constraints. The process is based on a 
foundation of operations research, experimental 
design, mathematical optimization, statistical 
analyses, as well as validation, verification, and 
accreditation techniques. 

 
Fig. 4 Integrated and optimized software testing 
process (IOSTP) framework, core of OptimalSQM 
framework  
 

The use of state-of-the-art methods and tools for 
planning, information, management, design, cost 
trade-off analysis, and modeling and simulation, Six 
Sigma strategy significantly improves STP 
effectiveness as in Fig. 4  which graphically 
illustrates a generic IOSTP framework that makes 
core of  the OptimalSQM framework [8]. 
The main components of IOSTP with embedded 
RBOSTP approach to STP: 
 Integrate testing into the entire development 
process 
 Implement test planning early in the life cycle via 
Simulation based assessment of test scenarios 
 Automate testing, where practical to increase 
testing efficiency 
 Measure and manage testing process to maximize 
risk reduction 
 Exploit Design of Experiments techniques 
(optimized design plans, Orthogonal Arrays etc.) 
 Apply Modeling and Simulation combined with 
Prototyping 
 Continually improve testing process by pro-
active, preventive (failure mode analysis) Six Sigma 
DMAIC model 

 Continually monitor Cost-Performance Trade-
Offs (Risk-based Optimization model, Economic 
Value and ROI driven STP). 
 
Framework models are similar to the structural 
view, but their primary emphasis is on the (usually 
singular) coherent structure of the whole system, as 
opposed to concentrating on its composition. IOSTP 
framework model targeted specific software testing 
domains or problem classes described above. IOSTP 
is a systematic approach to product development 
(acquisition) which increases customer satisfaction 
through a timely collaboration of necessary 
disciplines throughout the life cycle. Successful 
definition and implementation of IOSTP can result 
in: 
 Reduced Cycle Time to Deliver a Product 
 Reduced System and Product Costs 
 Reduced Risk 
 

In order to significantly improve software testing 
efficiency and effectiveness for the detection and 
removal of requirements and design defects in our 
framework of IOSTP, during 3 years of the IOSTP 
framework deployment to STP of embedded-
software critical system such as Automated Target 
Tracking Radar System (ATTRS) [17], we 
calculated overall value returned on each dollar 
invested i.e. ROI of 100:1 . 
 

4 Optimum DDTs combination 

selection and optimization study in 

OptimalSQM 
 
Answer to the research queation - RQ2 divided the 
research, as presented in this paper, into two areas: 
(1) covering effectiveness in software testing 
techniques (defect detection techniques – DDT), and 
(2) efficiency in software testing with development-
testing alignment (DTA) methodology is given in 
our works [5-8] which posits that such alignment 
leads to beneficial effects such as lower costs and 
shorter time of development, greater system quality, 
fewer errors and a better relationship between the 
corporate IT unit and customers in business 
functions who have commissioned new systems. 
 The central elements of IOSTP with embedded 
RBOSTP are finding optimal DDTs combination 
choices for every software development phase that 
maximize all over Defect Detection and 
Removement Effectiveness in OptimalSQM: the 
acquisition of information that is credible; avoiding 
duplication throughout the life cycle; and the reuse 
of data, tools, and information. Among numerous 
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defect detection techniques choices we reduced their 
number using Borda voting method to rank DDT 
candidates from most powerful on the basis of 
multiple evaluation criteria we have been 
established [6]. Using OART novel approach, 
optimum combination of software defect detection 
techniques choices for every software development 
phase that maximize overall Defect Detection 
Effectiveness of STP is determined. IOSTP 
framework combines few engineering and scientific 
areas such as: Design of Experiments, Modeling & 
Simulation, integrated practical software 
measurement, Six Sigma strategy, Earned 
(Economic) Value Management (EVM) and Risk 
Management (RM) methodology through 
simulation-based software testing scenarios at 
various abstraction levels of the SUT to manage 
stable (predictable and controllable) software testing 
process at lowest risk, at an affordable price and 
time [6]. 
 
Our study [6] focuses on rapid multidisciplinary 
analysis and evaluation-on-a-DRE maximum-basis 
for DDT combination choices selection for each test 
phase activities in an traditional SDP i.e. P1- 
software requirement, P2- High level design, P3- 
Low Level Design, P4- code under test, P5- 
integration test, P6- system under test and finally 
P7- Acceptance test, recall section 5. Different 
Defect Detection Strategy and Techniques options, 
together with critical STP variables performance 
characteristics (e.g. DRE, cost, duration), are studied 
to optimize design, development, test and evaluation 
(DDT&E) cost using orthogonal arrays for computer 
experiments [8,9,17]. This paper presents a novel 
OACE (Orthogonal Arrays for Computet 
Experiment ) approach for software testing process 
(STP) optimization study finding optimum 
combination of software defect detection techniques 
(DDT) choices for every software development 
phase that maximize all over Defect Removal 
Effectiveness (DRE) of STP. The optimum 
combination of software defect detection techniques 
choices were determined applying orthogonal arrays 
constructed for post mortem designed experiment 
with collected defect data of a real project [6]. First, 
we applied adapted Borda voting method, on similar 
way, to rank all used Defect Detection Techniques 
(DDT) through software development life cycle 
from most-to-least performance and quality 
characteristics of DDT in revealing software faults 
(bugs, errors). In this way we reduced huge possible  
number of DDTs, in particular, the DDT with the 
highest Borda Count is the best DDT according to 
testers Performance and Quality multi-criteria 

assessment, the DDT with the second highest count 
is the next DDT with highest score, and so forth to 
only three most ranked DDT. According to testers 
assessment of 5 most frequently used DDT in 
IOSTP [6,8]: DDT1= Inspection – DBR, DDT2= 
PBR, DDT3= CEG+BOR+MI, DDT4= M&S, 
DDT5= Hybrid (Category Partition, Boundary value 
analysis, Path testing etc.) three of DDTs have the 
highest rank 0 i.e. DDT1=DDT2=DDT4=0, then 
DDT3= CEG+BOR+MI is next ranked and the last 
was DDT5. Because of that we will group those 
three DDT with highest rank 0, call them Static Test 
Techniques – TT1 and treat all three DDTs as one 
factor in optimization experiment applying 
Orthogonal Arrays as Optimization Strategy. Next 
high Borda ranked DDT4= CEG+BOR+MI we 
designate with TT2 and the last ranked DDT5 as 
TT3.  

In this study, design of maximum DRE 
percentage of STP optimization problem solving 
with best DDT choice combination in each phase P1 
to P7 as controlled variables values is determined by 
designed experiment plan using orthogonal arrays 
designed for this computer experiment (OACE). To 
simplify the analysis such as decreasing factor’s 
values (only three DDT number) applying Borda 
Ranking of DDT candidates with highest rank, 
several design disciplines were decoupled from the 
present analysis. Seven major test phases P1 to P7 
for accounting maximum DRE percentage all over 
STP fault injection and removal model (see Fig. 
8,17 and 18) for DDT candidate selection in each 
test phase were determined. These were the Static 
Test Techniques – TT1 (consisting of three DDTs as 
one factor in optimization experiment applying 
Orthogonal Arrays as Optimization Strategy), the 
TT2 i.e. DDT4= CEG+BOR+MI and TT3 – Hybrid 
Detection Technique= DDT5 (consisting of 
Category Partition, Boundary value analysis, Path 
testing etc.). The objective of this investigation was 
then to determine the best combination of Test 
Techniques options for the seven major test phase 
activities sections optimized for STD&STP 
maximum DRE percentage under cost and time 
constraints according to IOSTP benefit index 
maximization in (1) [8,17]. 
As the next step, least squares regression analysis is 
used to fit the second order approximation model 
(Equation 3) to the DRE data in terms of the seven 
design variables Pi, i=1 to 7. This parametric model 
accounts for the response surface curvature (square 
terms) and two factor interactions (cross terms) i.e. 
RSM: 
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DRE (%) = 111.71 - 2.58 *P1 + 1.22*P2 -1.95*P3 - 

7.61*P4 - 0.69*P5 + 0.94*P6 -13.04*P7 - 0.36*P2
2
 

+ 1.46*P4
2
 + 0.79*P5

2
 - 0.36P6

2
 + 3.15*P7

2
  (3) 

 
Note that, in this response surface approximation 
model, the parameter values for Pi design variables 
are restricted to 1 (TT1), or 2 (TT2), or 3 (TT3). In 
Table 1, a Maximum DRE (%) value and 
corresponding Test Techniques choices (TT1,TT2 
and TT2) per test phase solution is given. 
 
Table 1 Maximum DRE (%) value and 
corresponding Test Techniques choices per test 
phase solution 

 
 
At these levels, the IOSTP DRE was predicted to be 
94.03 % using a second order prediction model (3). 
As a next step, a verification analysis was 
performed. The DRE (%) of an IOSTP calculated 
from these test techniques choices, according to the 
post-mortem real project data using optimized DDT 
chices from Table 8, we computed DRE (%) to be 
93.43 % . Difference is 0.6%=94.03%-93.43% that 
is acceptable to validate our prediction model for 
DRE (%) in equation (3) for optimal DDT 
combination choice given in Table 1. 
Optimal combination of DDT choices per phase P 
given in Table 1 made increase of about 6 %, 
compared to un-optimized DDTs combination per 
each test phase we used in our real project in which 
we achieved DRE of 87.43 % in our case study. 

5 Software qulity economics 
 
From a developer’s perspective, there are two types 
of benefits that can accrue from the implementation 
of good software quality practices and tools: money 
and time. The investment in software quality, 
particularly in software testing, like any investment 
has an immediate cost, with an expected net 
payback. There is where Quality Cost Analysis 
could be used as effective tool to make them 
understand the ROI. In this section, we will define 
techniques to, analyze and interpret return on the 
testing investment (ROTI) values: Financial ROI 
and Schedule Benefits as one answer to RQ3 based 
on our studies [5,18,19] i.e. Which metric or set of 
metrics can identify and prioritize software quality 
attributes, can assess cost of software quality 

management process in a specific project i.e. how to 
optimize software quality? 

In our work [19] we proposed a model which 
traces design decisions and the possible alternatives. 
With this model it is possible to minimize the cost of 
switching between design alternatives, when the 
current choice cannot fulfill the quality constraints. 
With this model we do not aim to automate the 
software design process or the identification of 
design alternatives. Much rather we aim to define a 
method with which it is possible to assist the 
software engineer in evaluating design alternatives 
and adjusting design decisions in a systematic 
manner. 

There are some prepositions, which are not 
being tested comprehensively, but some useful 
Economic Model of Software Quality Costs and 
data from industry are described in this article 
[1,3,4]. Significant research is needed to understand 
the economics of implementing quality practices and 
its behaviour. Such research must evaluate the cost 
benefit trade-offs in investing in quality practices 
where the returns are maximized over the software 
development life cycle.  
The total of the quality costs includes prevention 
costs of nonconformance to requirements, 
appraising costs of product or service 
for conformance to requirements, and failure costs 
of products not meeting requirements. As the quality 
function evolved from inspection (quality control) to 
more preventive activities (quality assurance), 
quality cost collection was expanded into 
prevention, appraisal, and failure costs. Failure costs 
are divided into two subcategories: internal and 
external. Dan Houston [23] has defined Cost of 
quality in his article "Cost of Software Quality: A 
Means of Promoting Software Process 
Improvement" as follows; 
 
CoSQ = Prevention Cost + Appraisal Cost + Internal 
failure Cost + External failure Cost 
 
By now we have clear understanding of four 
components of the Quality cost. With the help of 
these four components we will discuss the 
theoretical model suggested by researcher based on 
the results gathered from the manufacturing 
industries. Following Fig. 5, is graphical 
presentation of the CoSQ given by most researchers 
[3-4], [19-23]. The graph below  is showing that for 
achieving high reliability, close to red dot (almost 
zero defect) the cost is very high but achieving a 
reasonable level (area between two green dots) of 
quality does not require very high cost. To remove 
defect after reaching at very low defect density the 
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cost of detection would be very high 
(Rs.500/KLOC) whereas the defect detection was 
relatively easy as numbers of defect were high (high 
defect density) the cost to remove defect is 
approximately 10 times lesser. 

 
Fig. 5. The cost of high reliability 
 
Cost mentioned on the graph are imaginary numbers 
just to give an idea that cost of defect removal at 
high defect density would be lower and cost at low 
defect density would be high. Several studies [19-
23] described meanings of these quality cost 
categories as follows: 
• Prevention costs (PC) are those costs associated 
with quality planning, designing, implementing and 
managing the quality system, auditing the system, 
supplier surveys, and process improvements. 
• Appraisal costs (AC) are associated with 
measuring, evaluating, or auditing products, and 
product materials to ensure conformance with 
quality standards and performance requirements. 
• Failure costs (FC) are those losses associated with 
the production of a nonconforming product; they 
can be divided into internal and external. 
• Internal failure costs (IFC) are associated with 
failures and defects of processes, equipment, 
products, and product materials that fail to meet 
quality standards or requirements. 
• External failure costs (EFC) are generated by 
defective products, services, and processes during 
customer use. They include warranties, complaints, 
replacements or recalls, repairs, poor packaging, 
handling, and customer returns. 

5.1 Cost of Software Quality (CoSQ)  
 

The costs of achieving quality and the costs due to 
lack of quality have an inverse relationship to one 
another: as the investment in achieving quality 
increases, the costs due to lack of quality decrease. 

This theoretical model is shown below in Fig. 6. 
This shows that as appraisal and prevention cost 
increases, the failure cost will decrease until an 
optimum point is reached. After this optimum point, 
the increase in appraisal will not be offset by the 
decreased in failure cost. Researcher have noticed 
that in the initial phase appraisal measures cause 
internal failure to increase as these measures detect 
more errors at early stages, but error removal at 
early stage is much cheaper compare to error 
removal at later stage. But overall appraisal 
activities decrease external failure as a result total 
failure decreases. A small increase in prevention 
measures will normally create a major decrease in 
total quality cost. 

Cost of quality represents any and all costs that 

organization incurs from having to repeat a process 

more than once in order to complete the work 

correctly. Cost of software Quality (CoSQ) is useful 

to enable our understanding of the economic trade-

offs involved in delivering good-quality software. 

Commonly used in manufacturing, its adaptation to 

software offers the promise of preventing poor 

quality but, unfortunately, has seen little use to date. 

Different authors and researcher have used different 

ways to classify components for quality cost [5-9], if 

we look carefully their understanding about various 

components are approximately the same. 

 

 
 
Fig. 6 Model of software quality cost 

 

5.2 Statement Of the Problem 

 
A key metric for measuring and benchmarking the 
software testing efficacy is by measuring the 
percentage of possible defects removed from the 
product at any point in time. Both a project and 
process metric – can measure effectiveness of 
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quality activities or the quality of a all over project 
by: 
 
DRE = E/(E+D)                            (1) 

Where E is the number of errors found before 
delivery to the end user, and D is the number of 
errors found after delivery. The goal is to have DRE 
close to 100%. The same approach is applied to 
every test phase denoted wit i as shown on Fig. 7: 

DREi = Ei / (Ei + Ei+1)    (2) 

Where Ei is the number of errors found in a software 
engineering activity i, and Ei+1 is the number of 
errors that were traceable to errors that were not 
discovered in software engineering activity i. The 
goal is to have this DREi approach to 100% as well 
i.e., errors are filtered out before they reach the next 
activity. Projects that use the same team and the 
same development processes can reasonably expect 
that the DRE from one project to the next are 
similar. For example, if on the previous project, you 
removed 80% of the possible requirements defects 
using inspections, then you can expect to remove 
~80% on the next project. Or if you know that your 
historical data shows that you typically remove 90% 
before shipment, and for this project, you’ve used 
the same process, met the same kind of release 
criteria,  and have found 400 defects so far, then 
there probably are ~50 defects that you will find 
after you release. How to combine Defect Detection 
Technique (DDT) to achieve high DRE, let say 
>85%, as a threshold for IOSTP required 
effectiveness [2-5], is explained in previous Section 
4, which describe optimum combination of software 
defect detection techniques choices. Note that the 
defects discussed in this section include all severity 
levels, ranging from severity 1: activity stoppers, 
down to severity 4. Obviously, it is important to 
measure defect severity levels as well as recording 
numbers of defects. 
 
5.3 The Real Cost Of Software Defects  

It is obvious that the longer a defective application 
evolves the more costly it is to repair. But how 
much more?  The answer might surprise you. 
According to the collected metrics of one software 
development organization, a bug that costs $1 to fix 
on the programmer’s desktop costs $100 to fix once 
it is incorporated into a complete program, and 
many thousands of dollars if it is identified after the 
software has been deployed in the field [10], as 
described on Fig. 8. Barry Boehm, one of the 

industry’s leading experts on software quality, has 
published several studies [11] over nearly three 
decades that demonstrate how the cost for removing 
a software defect grows exponentially for each 
downstream phase of the development lifecycle in 
which it remains undiscovered. Since the original 
study, Boehm’s results have been confirmed in a 
number of subsequent studies [5-7]. 
 

 
Fig. 7 Fault Injection and Fixing Model 
 
Further, another major research project conducted 
recently by the United States Department of 
Commerce, National Institute of Standards and 
Technology (NIST) showed that in a typical 
software development project, fully 80% of software 
development dollars are spent correcting software 
defects. The same  NIST study also estimated that 
software defects cost the U.S. economy, alone, $60 
billion per year. Many organizations view the 
software development lifecycle, in a Conventional 
way, as a linear process with discrete functions: 
design, develop, test and deploy. In reality, the 
software development lifecycle is a cyclical function 
with interdependent phases. Quality assurance has a 
role in every phase of that lifecycle, from 
requirements review and test planning, to code 
development and functional testing, to performance 
testing and on into production. It was unanimously 
agreed that quality and quality assurance is more 
than strictly testing at the end of the development 
process. Starting quality initiatives early and paying 
attention to quality throughout the development, 
deployment and production effort is key in order to 
achieve a baseline goal of zero-defect software. 
 

5.4  Software Testing Economics Formulas 

5.4.1 Techniques To Analyze Return On The 

Testing Investment (ROTI) 
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The ROTI model compares the development cost for 
a conventional  project  with  the  development  cost  
for  a project that uses TDD. 

 

Fig. 8 Engineering Rules for Cost Of Defect 
Removal [10] 

The investment cost is the additional effort 
necessary to complete the TDD project as compared 
to the conventional project.  The life cycle benefit is 
captured by the difference in quality measured by 
the number of defects that the TDD team finds and 
fixes, but the conventional project does not.  

This defect difference is transformed into a 
monetary value using the additional developer effort 
corresponding to finding and fixing these defects in 
the conventional project.  The concepts of the life 
cycle benefit and the investment cost in our context 
are depicted in Fig. 9. The upper horizontal line 
corresponds to the conventional project with 
additional quality assurance phase! The lower 
horizontal line corresponds to the TDD project. Our 
model captures the return on investment for an 
experienced TDD team in software testing process 
improvement (SPI). 

5.4.2 Financial ROI 

From a developer’s perspective, there are two 

types of benefits that can accrue from the 

implementation of good software quality practices 

and tools: money and time. A financial ROI looks at 

cost savings and the schedule ROI than looks at 

schedule savings. Direct financial ROI is expressed 

in terms of effort since this is the largest cost on a 

software project. There are a number of different 

models that can be used to evaluate financial ROI 

for software quality.  

The first is the most common ROI model. We 

will show that this model is not appropriate because 

it does not accurately account for the benefits of 

investments in software projects. This does not 

mean that that model is not useful (for instance, 

accountants that we speak with do prefer the 

traditional model of ROI), only that we will not 

emphasize it in our calculations. 

  

  

Fig. 9 Overview of benefit cost ratio calculation 
 

Methods for return on investment (ROI) include 

benefit, cost, benefit/cost ratio, ROI, net present 

value, and breakeven point are given in Fig. 10. 

ROI methods in general are quite easy, 

indispensable, powerfully simplistic, and absolutely 

necessary in the field of software process 

improvement (SPI). It is ironic that ROI methods are 

not in common practice. The literature does not 

abound with ROI methods for SPI. The ROI 

literature that does exist is very hard to locate, 

appears infrequently, and is often confusing. 

 

 
Fig. 10 ROI metrics showing simplicity of  ROI 

formulas and their order of application 

 

We also look at ROI at the project level, specially 

on return on the testing investment (ROTI), rather 

than at the enterprise level. ROI at the enterprise 

level (or across multiple projects) requires a slightly 

different approach which we will not address 

directly here. 

The most common ROI model, and that has been 

used more often than not in software engineering, is 
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shown below: 

  

InvestmentTest

InvestmentTestSavedCoQTotal
ROTI

⋅

⋅−⋅⋅
=1

  (3) 

 

This ROTI model gives how much the Total Cost of 

Quality (CoQ) savings gained from the project were 

compared to the initial investment. Let us look at a 

couple of examples to show how this model works.  

 

5.4.3 Schedule Benefits 

If software quality actions are taken to reduce 
development cost, then this will also lead to a 
reduction in development schedule. We can easily 
calculate the reductions in the development schedule 
as a consequence of reductions in overall effort. In 
this section we will outline the schedule benefits of 
quality improvements. To do so we will use the 
schedule estimation model from COCOMO [11]. 

It is instructive to understand the relationship 
between project size and schedule as expressed in 
the COCOMO II model [11]. This is illustrated in 
Fig. 12. Here we see economies of scale for project 
schedule. This means that as the project size 
increases, the schedule does not increase as fast. The 
three lines indicate the schedule for projects 
employing different levels of practices. The lower 
risk and good practice projects tend to have a lower 
schedule. 
Another way to formulate the ROTI model in Eqn. 3 
which will prove to be handy is: 
 

CoQTotalOriginal

CoQTotalNewCoQTotalOriginal
ROTI

⋅⋅

⋅⋅−⋅⋅
=2

  (4) 

 
The New Total CoQ is defined as the total cost of 
software quality the project delivered after 
implementing the quality improvement practices or 
tools as in our work [9]. This includes the cost of the 
investment itself. 
We can then formulate the New Total CoQ as 
follows: 
 

)1( 2ROTICoQTotalOriginalCoQTotalNew −⋅⋅⋅=⋅⋅
 

Now, we can formulate the schedule reduction 

(∆SCED or SCEDRED) as a fraction (or 

percentage) of the original schedule as follows: 

 

ScheduleOriginal

ScheduleNewScheduleOriginal
SCED

⋅

⋅−⋅
=∆   (5) 

 

Fig. 12 Relationship between project size and 
schedule in COCOMO II. 
 
By substituting the COCOMO equation for 
schedule, we now have: 
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where: 

PMOriginal - The original effort for the project in 
person-months 

PMNew - The new effort for the project (after 
implementing quality practices) in person-
months 

SFj  -   A series of five Scale Factors that are used to 
adjust the schedule (precedentedness, 
development flexibility, architecture / risk 
resolution, team cohesion, and process 
maturity). 

 

Now, by making appropriate substitutions, we have: 
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Which simplifies to: 
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The relationship between cost savings and 
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schedule reduction is shown in Fig. 13. As can be 

seen, the schedule benefits tend to be at smaller 

proportions than the cost benefits. Nevertheless, 

shaving off 10% or even 5% of your schedule can 

have nontrivial consequences on customer 

relationships and market positioning. 

 

5.4.4 Interpreting The ROI Values 

 
In this section we will explain how to interpret 

and use the ROI values that are calculated. First, it 
must be recognized that the ROI calculations, cost 
savings, and project costs as presented in our models 
are estimates. Inevitably, there is some uncertainty 
in these estimates. The uncertainty stems from the 
variables that are not accounted for in the models 
(there are many other factors that influence project 
costs, but it is not possible to account for all of these 
since the model would then be unusable). Another 
source of uncertainty is the input values themselves. 

These values are typically averages calculated 

from historical data; to the extent that the future 

differs from the past these values will have some 

error. Second, note that the calculated ROI values 

are for a single project. A software organization will 

have multiple on-going and new projects. The total 

benefit of implementing software quality practices 

to the organization can be calculated by generalizing 

the results to the organization. For example, if the 

ROI for a single project is say a 15% saving. 

Assuming that the input values are the same for 

other projects in the organization, then we can 

generalize to the whole organization and estimate 

that if software quality practices are implemented on 

all projects in the organization, the overall savings 

would be 15%. 

If the software budget for all the projects is say 

20 million, then that would translate into an 

estimated sa ving of 3 million. Note that this is not 

an annual saving, but a saving in total project 

budgets hat may span multiple years (i.e., for the 

duration of the projects). To annualize it then the 

15% savings must be allocated across multiple 

years. If you are implementing quality improvement 

on a single project, then these costs would have to 

be deducted from the single project savings. If you 

are implementing quality practices in the whole 

organization, then these costs will be spread across 

multiple projects. 

 

In such a case, these costs would be deducted from 
the organizational savings (the calculation of which 
is described above). 

 
Fig. 13 The relationship between cost savings and 

schedule reduction for up to 50% cost savings. The 

assumption made for plotting this graph was that all 

Scale Factors were at their nominal values. 

 

6 Advanced Quantitative Defect 

Management (AQDM) Model 
 
The answer to RQ5 can be found in our work [7].  
In this section we explain how can Quantitative 
Defect Management (QDM) Model  be enhanced (as 
answer to RQ4) to be practically useful for 
determining which activities need to be addressed to 
improve the degree of early and cost-effective 
software fault detection with assured confidence, 
than definitely, optimality and stability criteria of 
very complex STP dynamics problem control 
(described in Section 7). 
 

6.1 The defect containment measure 
 
An error in an activity of development phase Pi 

(i=1 to N) is made that causes a failure (see Fig. 15-
17). The failure leads to a reported anomaly. When 
the reported anomaly is analyzed, the fault(s) 
causing the failure is found and corrected. Rework is 
about revising an existing piece of software or 
related artifact. Therefore, a typical rework activity 
is to correct reported anomalies. Rework can be 
divided into two primary types of corrective work 
[9]: 

• Avoidable rework is work that would not have 
been needed if the previous work would have been 
correct, complete, and consistent. Such rework 
consists of the effort spent on detecting and fixing 
software difficulties that could have been discovered 
earlier or avoided altogether [2,5]. 

• Unavoidable rework is work that could not 
have been avoided because the developers were not 
aware of or could not foresee the change when 
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developing the software, e.g. changed user 
requirements or environmental constraints [9]. 

Using raw defect containment data and deriving 
AQDM measures early in the development life cycle 
provides opportunities for a project to identify issues 
in defect capture before costs spiral out of control 
and schedule delays ensue. 

This section describes the selected method for 
how to achieve the objectives stated in the previous 
section. The method can be divided into the 
following three steps: 

1. Determine which faults that should have been 
avoided or at least found earlier, 

2. Determine the average cost of finding faults 
in different phases, 

3. Determine the improvement potential from 
the results in (1) and (2). 

The three sub-sections below describe how to 
perform each of the three steps. 

 

6.2 The raw defect containment data 
 
This section is dedicated to a model for assessing a 
plan for SQA defect-removal effectiveness and cost. 
The model, a multiple filtering model as shown on 
Fig. 7, is based on data acquired from a survey of 
defect origins, percentages of defect removal 
achieved by various quality assurance activities, and 
the defect-removal costs incurred at the various 
development phases. The model enables quantitative 
comparison of quality assurance policies as realized 
in quality assurance plans. The application of the 
proposed model is based on three types of data, 
described under the following headings from [1]. 

 
6.2.1 Defect removal effectiveness 

It is assumed that any quality assurance activity 
filters (screens) a certain percentage of existing 
defects. It should be noted that in most cases, the 
percentage of removed defects is somewhat lower 
than the percentage of detected defects as some 
corrections (about 10% according to [4]) are 
ineffective or inadequate. The remaining defects, 
those undetected and uncorrected, are passed to 
successive development phases. The next quality 
assurance activity applied confronts a combination 
of defects: those remaining after previous quality 
assurance activities together with “new” defects, 
created in the current development phase. The main 
objective of the case study presented in this section 
was to investigate how fault statistics could be used 
for removing unnecessary rework in the software 
development process. This was achieved through a 
measure called Faults-Slip-Through (FST) [5,9], i.e. 

the measure tells which faults that would have been 
more cost-effective to find in earlier phases.  
As previously mentioned, FST measurement was 
used for determining this, i.e. it evaluates whether 
each fault slipped through the phase where it should 
have been found or not. The main difference 
between FST measurement and other related 
measurements is when a fault is introduced in a 
certain phase but it is not efficient to find in the 
same phase. For example, a certain test technique 
might be required to simulate the behaviour of the 
function. Then it is not a fault slippage. Figure 14 
further illustrates this difference. A consequence of 
how FST is measured is that a definition must be 
created to support the measurement, i.e. a definition 
that specifies which faults that should be found in 
which phase. To be able to specify this, the 
organization must first determine what should be 
tested in which phase. Therefore, this can be seen as 
test strategy work. Thus, experienced developers, 
testers and managers should be involved in the 
creation of the definition. The results of the case 
study in Section 6.2.2 further exemplify how to 
create such a definition. 

 
 

Fig. 14 Example of Fault Latency and FST 
 
When having all the faults categorized, the next step 
is to estimate the cost of finding faults in different 
phases. From the measure, the improvement 
potential of different parts of the development 
process is estimated by calculating the cost of the 
faults that slipped through the phase where they 
should have been found (see Fig. 7 and 8 in our 
work[7]). The usefulness of the method was 
demonstrated by applying it on two completed 
development projects [1] and [2]. The results 
determined that the implementation phase had the 
largest improvement potential since it caused the 
largest FST cost to later phases, i.e. from 56 to 87 
percent of the total improvement potential in the two 
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studied project scenarios. It is assumed that the 
filtering effectiveness of accumulated defects of 
each quality assurance activity is not less than 40% 
(i.e., an activity removes at least 40% of the 
incoming defects). Typical average defect filtering 
effectiveness rates for the various quality assurance 
activities, by development phase, based on Boehm 
[11] and Jones [4], are listed in Table 2. 

 

6.2.2 Cost of defect removal  
 
Data collected about development project costs 
show that the cost of removal of detected defects 
varies by development phase, while costs rise 
substantially as the development process proceeds. 
For example, removal of a design defect detected in 
the design phase may require an investment of 2.5 
working days; removal of the same defect may 
require 40 working days during the acceptance tests. 
Several surveys carried out by IBM, TRW, GTE, 
Boehm and others, summarized by Boehm [11], 
estimate the relative costs of correcting errors at 
each development phase. Estimates of effectiveness 
of software quality assurance tools and relative costs 
of defect removal are provided by McConnell [10].  
Although defect removal data are quite rare, 
professionals agree that the proportional costs of 
defect removal have remained constant since the 
surveys conducted in the 1970s and 1980s. Instead 
of  average per phase defect removal cost we 
propose average relative defect-removal costs 
injected in phase Pi (i=1 to 7) and detected and removed 
latter in downstream phases Pj , j>i up to the 
operation phase (j=7) as shown in Table 3. 
 

6.2.3 Qunatitative Defect Removal Model 
 
The model is based on the following assumptions: 
■ The development process is linear and sequential, 
following the waterfall model of CMM Level 5. 
Software size is aproximately 100FP (1 injected 
defect/FP) i.e. for Java implementation about 
50KLOC of source code [4].  
 
■ A number of “new” defects are introduced in each 
development phase. For their distributions, see Fig. 
15 and 16.  
 
■ Review and test software quality assurance 
activities serve as filters, removing a percentage of 
the entering defects and letting the rest pass tothe 
next development phase. For example, if the number 
of incoming defects is 30, and the filtering 
efficiency is 60%, then 18 defects will beremoved, 
while 12 defects will remain and pass to be detected 

by the next quality assurance activity. Typical 
filtering effectiveness rates for the Standard quality 
assurance activities are shown in Table 2. 

Table 2 Average filtering (defect removal) 
effectiveness by Standard quality assurance 
activities plan [1] 

 

■ At each phase, the incoming defects are the sum 
of defects not removed by the former quality 
assurance activity together with the “new” defects 
introduced (created) in the current development 
phase.  
 

■ The cost of defect removal is calculated for each 
quality assurance activity by multiplying the number 
of defects removed by the relative cost of removing 
a defect (see Table 3, 3rd column).  
 

■ The remaining defects, unfortunately passed to the 
customer, will be detected by him or her. In these 
circumstances, full removal entails the heaviest of 
defect-removal costs. In this model, each of the 
quality assurance activities is represented by a filter 
unit, as shown for Design in Fig. 15. The model 
presents the following quantities:  

■ POD = Phase Originated Defects (from Fig. 16) 

■ PD = Passed Defects (from former phase or 
former quality assurance activity) 

■ %FE = % of Filtering Effectiveness (also termed 
% screening effectiveness) (from Table 2) 

■ RD = Removed Defects 

■ CDR = Average Cost of Defect Removal (from 
Table 2) 

■ TRC = Total Removal Cost:  TRC = RD ×CDR. 

The illustration in Fig. 16 of the model applies to a 
standard quality assurance plan (“standard defects 
filtering system”) that is composed of six quality 
assurance activities (six filters), as shown in Table 2.  
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Table 3 Representative average relative defect-
removal costs and fixing multiplier because FST  

 

A comprehensive quality assurance plan 
(“comprehensive defects filtering system”) achieves 
the following: (1) Adds two quality assurance 
activities, so that the two are performed in the 
design phase as well as in the coding phase. 

(2) Improves the “filtering” effectiveness of other 
quality assurance activities. 

 

Fig. 15  A filter unit for defect-removal 
effectiveness: example (100 defects) from [1] 

The comprehensive quality assurance plan can be 
characterized as shown in Table 4. 

The main conclusions drawn from the comparison 
are: 

(1)  The standard plan successfully removes only 
57.6% (28.8 defects out of 50) of the defects 
originated in the requirements and design phase, 
compared to 92.0% (46 defects out of 50) for the 
comprehensive plan, before coding begins. 

(2)  The comprehensive plan, as a whole, is much 
more economical than the standard plan as it 
saves 41% of total resources invested in defect 
removal, compared to the standard plan. 

 

(3)  Compared to the standard plan, the 
comprehensive plan makes a greater contribution 
to customer satisfaction by drastically reducing 
the rate of defects detected during regular 
operations (from 6.9 % to 3 %). 

The comparison also supports the belief that 
additional investments in quality assurance activities 
yield substantial savings in defect removal costs. 
Alternative models dealing with the cumulative 
effects of several qualityassurance activities are 
discussed by [2,5,9] as described below. A process-
oriented illustration of the comprehensive quality 
assurance plan and model of the process of 
removing 100 defects is provided in Fig. 17. A 
comparison of the outcomes of the standard 
software quality plan versus the comprehensive plan 
is revealing as shown in Table 5. In general, the 
quantitative results of the comparison comply nicely 
with the SQA approach. 
 

Table 4 Comprehensive quality assurance plan [1] 

 

 

6.3 Simulation results of AQDM 

improvement 
Unlike conventional approaches to software 

testing which are applied to the software under test 
without an explicit optimization goal, as described 
above, the OptimalSQM approach designs an 
optimal testing strategy to achieve an explicit 
optimization goal, given a priori is described in our 
works [5,6].  

We described in this section, as answer to the 
RQ4, a Software Quality Optimization (SQO) 
strategy of OptimalSQM framework, which is a 
continuous, iterative process throughout the 
application lifecycle resulting in zero-defect 
software that delivers value from the moment it goes 
live, with Simulated Defect Removal Cost Savings 
model using net savings that are calculated using 
this formulae: 

 

)(* 11 PrPrPr CMCMFSTNS →+→+→ −= , r=1..6 

for the given large (~11300 FP, Java implementation 
about 600KLOC of source code) project example 
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from [2]. The results determined that the 
implementation phase (P3) had the largest 
improvement potential since it caused the largest 
FST cost to later phases, i.e. from 56 to 87 percent 
of the total improvement potential in the two studied 
project scenarios. 

 

 

Fig. 16 DRE and costs of Standard QA plan and 
model of the process of removing 100 defects [1] 

 
 
Fig. 16 DRE of Comprehensive QA plan and model 
of the process of removing 100 defects [1] 

 
Table 5 Comparison of the standard and 
comprehensive quality assurance plans 
 

 
 

 

 

7 Optimality and stability criteria of 

STP dynamics problem control 
 
A basic rule from cybernetics - that a long time lag 
between the output signal from the controlled 
system and feedback to the controller causes 
instability in the system - applies to SDP-STP 
processes as well. Long design iteration loops with 
late feedback drive cost and schedule overruns in 
SDP-STP. In order that OptimalSQM framework to 

be practically useful for determining which activities 
need to be addressed to improve the degree of early 
and cost-effective software fault detection with 
assured confidence, than definitely, optimality and 
stability criteria of very complex STP dynamics 
problem control is described in this Section as 
answer to RQ5. How should a software 
development organization apply the metric(s) 
suggested above for assessing ongoing and finished 
projects we propose one Dynamic Control Model 
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of SDP-STP in Fig. 17 with optimality and stability 
criteria of very complex STP dynamics problem 
control described in next sub-sections. 

When design and testing activities are not 
coupled, the information testing provides on product 
design is delivered at a wrong point in the process. 
This late information is either not useful any more 
or shows design problems too late, causing 
undesired late rework. Thus, iteration cycles should 
be kept short and rapid. However, this is difficult in 
the context of a number of interrelated activities 
without a model to facilitate process analysis and 
improvement. 

 

 
 
Fig. 17 The feedback control model for SDP-STP 
 
Planning, managing, executing, and documenting 
testing as a key process activity during all stages of 
development is an incredibly difficult process. There 
is strong demand for software testing effectiveness 
and efficiency increases with Planning, Estimating 
SDP-STP [1-9,18,19] and Predicting (PEP): Time 
schedule, Size and tracking current project software 
Quality metrics with explored the true costs of 
software defects and their impact on application 
performance; demonstrated OptimalSQM 
framework simulation to find how quality processes 
implemented throughout the application lifecycle 
can result in measurable performance 
improvements; presented economic model for the 
return on investment of TDD (ROTI) based on a 
variety of ways of calculating ROI (described in 
previous Sections). 

This section describes the selected method for 
how to achieve the objectives stated in the previous 
section. The method can be divided into the 
following three steps: 

1. Determine the Life Cycle Benefit i.e. 
Optimality criteria, 

2. Determine the statistical control limits for 
estimated OptimalSQM metrics, 

3. Determine the execution confidence from the 
results in (1) and (2). 

The three sub-sections below describe how to 
perform each of the three steps. 

 

7.1 The Life Cycle Benefit model parameters 

formulas  for calculations 
 
This  section  describes  those  formulas  of  our 
OptimalSQM  metrics  model which are necessary to 
understand the break-even and ROTI analysis if the 
investment of described STP improvements in 
previous sections pays off. 

Calculating the return on investment ROI means 
to add up all the benefits of the investment, subtract 
the cost, and then compute the ratio of the cost 
according the equation (6) in Section 5.4.2 Financial 
ROI). If the investment in STP improvement pays 
off, the ROTI1 is positive, otherwise negative.  In 
our evaluation of TDD we focus on the benefit cost 
ratio BCR which is easily derived from the return on 
investment. 
 
BCR  =  LifeCycleBenefit/Investment = ROTI1 + 1 

 

Studying the BCR instead of the ROTI1 makes the 
break-even analysis much simpler, see below. 

7.1.1 Investment Cost 

We first look at the investment cost.  For the 
conventional project, the development phase 
includes design, implementation and test.  The 
development phase of the TDD project is comprised 
only of test-driven development. 
As first empirical evidence suggests, we assume that 
the  TDD  project  lasts  longer  than  the  
conventional project. We call the ratio of the project 
durations the test-speed-disadvantage  (TSD). 
 
TSD  =  TimeConv/TimeTDD 
  
Since  we  assume  that  the  development  phase  is 
shorter  for  the  conventional  project, because 
include small number of test activities,  the  test-
speed-disadvantage ranges between 0 and 1:0 < 
TSD < 1. 
 
Using productivity figures to explain the difference 
in elapsed  development  time  between  the  two  
kinds  of project, the TDD development is  (1 − 
TSD) × 100 % less productive than the conventional 
project. Finally, the investment is the difference 
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between the development cost of the TDD project 
and the conventional project as depicted in Fig. 9. 
 
7.1.2 Life Cycle Benefit 

 
Now,  we  consider  the  benefit.    Each  
development process is characterized by a distinct 
defect-removal-efficiency -DRE (recall the section 
5.2).   The  defect-removal-efficiency  denotes  the  
percentage  of  defects  a  developer  eliminates  
during  development.   Initially,  a  developer  
inserts  a  fixed  amount  of  defects  per  thousands  
lines of code (initial-defect-density, IDD), but he 
eliminates DRE × 100 % of the defects during the 
development process. From the increased reliability 
assumed for TDD,we have: 
 

0 < DRE Conv  < DRE TDD  < 1. 
 

The  additional  quality  assurance  (QA)  phase  of  
the conventional  project  compensates  for  the  
reduced defect-removal-efficiency  of  the  
conventional  process. The only purpose of the 
Comprehensive QA plan phase is to remove all 
those defects found by TDD but not by the 
conventional process (recall the section 6.2).  The 
amount of defects to be removed in the 
Comprehensive QA plan phase is mainly 
characterized by: 
 
△DRE = DRE TDD  − DRE Conv . 
 
The benefit of TDD is equal to the cost of the 
Comprehensive QA plan phase for the conventional 
project.  The benefit depends on the effort 
(measured in developer months) for repairing one 
line of code during QA, which is characterized by 

WT

IDDDRT *
QAEffort =  

QAEffort depends on the following: 
•  The defect removal time DRT.   It describes the 
developer effort in hours for detecting (finding) and 
removing one defect. 
•  The inital defect density IDD. The number of de- 
fects per line of code inserted during development. 
•  The working time WT.   The working hours per 
month of a developer. The reciprocal of QAEffort is a 
measure for the productivity during the QA phase. 
 

7.1.3 Benefit Cost Ratio 

The benefit cost ratio is the ratio of the benefit and  
the investment.  Substituting the detailed formulas 
given in [24] of our model, the benefit cost ratio 
becomes: 

)1(

** Prod*
BCR

TSD

TSDDREQAEffort

−

∆
=            (8) 

Where, Prod  is  the  productivity  of  the  
conventional project during the development phase 
measured in lines of code per month.  Values larger 
than 1 for the BCR mean a monetary gain from 
TDD, values smaller than 1 a loss. 
 
7.1.4 Break Even 

 
Setting the benefit cost ratio equal to 1, we get a 
relation between the test-speed-disadvantage of 
TDD and the reliability gain of TDD: 
 

1*

1
TSD

+∆
=

DREc
, or 

TSDc

TSD
DRE

*

1−
=∆ , where c=QAEffort*Prod 

 
As an example, we examine the benefit cost ratio of 
the following scenario. 
Factor    Value 

DRT 10 h/defect 
IDD 0.1 defects/LOC 
WT 135 h/month 
Prod 350 LOC/month 
 

Let  TSD  and △DRE  vary.    Figure 18  shows  the 
benefit  cost  ratio  plane  spanned  by  the  test-
speed-disadvantage  TSD  and  the  defect-removal-

efficiency difference △DRE. Values larger than 4 
are cut off. 

 

Fig. 18 Benefit cost ratio dependent on TSD and △DRE  
 
For large values of the test-speed-disadvantage 
(TSD > 0.9) the TDD project performs almost 
always better than the conventional project, even for 
a small defect-removal-efficiency  difference.   On  
the  other  hand,  if the test-speed-disadvantage is 
very small (TSD < 0.2), TDD does not produce any 
benefit regardless how large the defect-removal-
efficiency difference is. 
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The TSD can be estimated with formula (10) for 
∆SCED in Section 5.4.3. The relationship between 
cost savings defined by ROTI2 and schedule 
reduction is shown in Fig. 14 in the same Section. 

Next section describes the selected method for 
how to achieve the objectives stated in the previous 
section i.e. step two. 
 

7.2 Statistical control limits for estimated 

OptimalSQM metrics 
 
Advanced Quantitative process management 
implemented in OptimalSQM framework is among 
the advanced features of highly mature processes as 
defined in capability maturity model integration 
(CMMI), which provides insights on the degree of 
goal fulfillment and root causes of significant 
process/product deviation [25]. Quantitative defects 
management predicts the number of defects 
expected to be detected in each stage of software 
development, enabling proactive measures to be 
taken early in development [26]. Quantitative 
defects management is the key to ensure the 
production of high-quality software, which has been 
an important part of quantitative process 
management. Unfortunately, how to quantitatively 
manage defects across multiple test iterations 
remains a challenging issue [26]. Two process areas 

(OPP, organizational process performance; QPM, 

quantitative project management) and some 

statistical techniques (e.g. statistical process 

control) are described in CMMI for implementing 

quantitative process management. However, most 
software organizations still do not know clearly how 
to apply quantitative process management. 
Therefore, detailed, experience-based guidance 
would be helpful for software organizations 
applying or planning to apply quantitative process 
management. 
In this section, we introduce a process performance 
Baselines (PPBs) based on Advanced Quantitative 
Defects Management (AQDM) method [2] and its 
application in a Chinese telecommunications 
company (named ZZNode) published in [26] which 
we adapted for our purpose in OptimalSQM 
framework. The AQDM method covers all defect 
detection activities, e.g. review, inspection, and 
testing which has successfully applied in 
OptimalSQM framework in quantitative defect 
control as depicted in Fig. 19. 
AQDM method of quantitatively managing the 
testing process, which supports high-level process 
management mentioned in CMMI. As shown in Fig. 
1, the four steps of the AQDM method are to: (1) 
identify the performance objectives (P-Objs) to be 

managed quantitatively and construct data samples; 
(2) establish the P-BL for the identified P-Objs; (3) 
establish the process-performance model for fixing 
effort; and (4) establish the process-performance 
model for fixing schedule. 
 

 

Fig. 19 The illustration of the AQM method [26] 
 
As shown in Fig. 19, by using the methodology, the 
empirically based models for the testing process can 
be established based on the analysis of historical 
data, which will be described in next Section. 
Software projects can use the model to estimate and 
control the defects, effort and schedule 
quantitatively. 

7.2.1 Identify P-Objs and Construct Data 

Samples 

Normally, the effort of detecting and fixing defects, 
and the defect-injected phase are sensitive data that 
we should consider for testing process. A general 
assumption is that the effort of detecting and fixing 
defects should consume a certain percentage in the 
total development effort, and the effort of fixing 
defects is influenced by the defect number and the 
defect-injected phase. In the AQDM method, four P-
Objs have been identified as follows: 
1. Percentage of Detecting Effort (%EffDetect) or 

PDE: Detecting effort means the effort for all 
detecting activities including test planning, test case 
preparation, test implementation and fix verification. 
The percentage of the detecting effort in the total 
effort is %EffDetect. 
2. Defect Injection Distribution (DID): In general, 
many software organizations collect defect data for 
quality control. There are always some defects 
injected in the early phases, which are only detected 
during the testing activities, even in high-maturity 
organizations. In our method, three primary phases, 
namely requirements, design and coding, are used to 
classify the corresponding injected phases for each 

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 93 ISBN: 978-960-474-124-3



defect. The corresponding percentages of defects 
injected in these phases are denoted as: 
requirements, (%DIReq); design, (%DIDesign); and 
coding, (%DICode) respectively. The principles of 
assigning the injected phase are described as: (i) 
defect injected in the requirements phase: a defect 
that is due to poor requirements, such as inconsistent 
and unclear requirements;(ii) a defect injected in the 
design phase: a defect that is due to poor design, 
such as unclear interface, misunderstanding of 
requirements and incomplete data verification; and 
(iii) a defect injected in the coding phase: a defect 
that is due to poor coding, such as incorrect words in 
a Web page and inconsistent code against 
requirements or design. 
3. Schedule Factor for Defect Fixing (SFFix). For 
each defect, the opening date is the day the defect is 
being submitted, and the closing date is the day the 
defect is being confirmed as repaired. The schedule 
of defect fixing (ScedFix) can be calculated by the 
formula below. 
 

ScedFix = closing date − opening date + 1. 
 

Sometimes, certain defects are assigned ‘deferred’ 
and not to be fixed in the current release due to 
business pressures. In this case, we take the day the 
defect is being deferred and calculate the ScedFix as 
shown below. 
 

ScedFix = deferred date − opening date + 1. 
 

The ScedFix for deferred defects means the schedule 
of the defect being dealt with. 
For each project, the average schedule of fixing one 
defect (AScedFix) injected in each phase can be 
calculated by the formula below.  
 

AScedFix of each phase = total ScedFix/ total defects 

injected in the phase 
 

Normally, the AScedFix of coding phase (AScedCode) 
is the shortest. We use the AScedCode as the 
benchmark (i.e. SFCode), and calculate the ratio of 
AScedFix of requirements phase (AScedReq) to 
AScedCode, as well as the ratio of AScedFix of design 
phase (AScedDesign) to AScedCode by the formula 
below borowed from [26]. 
SFCode = 1 
SFReq = AScedReq/AScedCode 
SFDesign = AScedDesign/AScedCode 

As we mentioned before, many software projects are 
delayed due to the slippage of the testing process. In 
fact, many testing processes are delayed due to the 
schedule overrun of defect-fixing activity. To solve 
this problem, AQDM uses a more effective method 
on estimating schedule of defect-fixing activity 
[5,26]. An algorithm to help estimate the schedule of 
defect-fixing activity is established based on the 

analysis of SFFix and the effort of defect fixing. The 
algorithm applies the following principles: 
• Shortest schedule. Based on the total effort of 
defect fixing, the defect-fixing schedule should be as 
short as possible. 
• Concurrent defect fixing. Defects which require a 
long fixing schedule should be fixed concurrently if 
there are sufficient human resources available. 
 
The basic ideas of the algorithm are: (1) the fixing 
schedule of defects injected in requirements should 
be allocated first since the AScedReq is the longest, 
which is the basis of the fixing schedules of defects 
injected in design and coding; (2) if the number of 
defects injected in the design and the number of 
defects injected in the coding are similar, as well as 
if the SFReq is longer than the sum of SFDesign and 
SFCode, then the fixing schedule of defects injected in 
design and coding could be allocated serially. 
Especially, in the algorithm, we assume that if ½ < 

numbers of defects injected in design/numbers of 

defects injected in coding <2, it means that the 
numbers of defects injected in design and coding are 
similar; and (3) in the other cases, the schedule of 
defects injected in design and the schedule of 
defects injected in coding should be allocated 
concurrently. According to P-BLs of SFFix , 
published in [26] it is obvious that the earlier in the 
phase the defects get injected, the longer is the 
schedule needed to fix the defects. 
Based on the AScedFix of the 16 projects and the P-
BL of SFFix, the organization defined some rules for 
defects management as shown in Table 6. Based on 
the P-BLs of SFFix, we establish the process-
performance model for fixing the schedule.  
4. Percentage of Fixing Effort (%EffFix) or PFE: 
Fixing effort data means the effort for all defect-
fixing activities including defect analysis and fixing. 
%EffFix is the percentage of the fixing effort in the 
total effort. 
 
Defect fixing is an important activity of software 
development, which demands a certain amount of 
effort. In the International Software Benchmark 
Standard Group (ISBSG), (www.isbsg.org), the 
fixing effort is collected and counted in rework 
effort. However, many effort estimation methods do 
not pay sufficient attention to the effort of defect 
fixing; instead, they just include it in the testing 
activities. Normally, defect detecting is performed 
by a testing team, and defect fixing is performed by 
a development team. Estimating their effort 
separately is helpful for an organization to plan its 
human resources and schedules. In addition, the 
fixing effort is strongly correlated with the number 
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and injected phase of defects. Splitting them and 
establishing their P-BLs are very useful to manage 
testing process quantitatively. 
 
Table 6 Defects management rules for fixing the 
schedule 
 

 

 

In CMMI, the process-performance model is a 
description of the relationships among attributes of a 
process and its work products that are developed 
from historical process-performance data, and 
calibrated using collected process and product 
measures from the project, and are used to predict 
results to be achieved by following a process [25]. 
In the testing activities, there is a consensus that the 
earlier a defect is injected, the more effort is needed 
to fix it as we described in previous sections. In 
contrast, the later a defect is injected, the less effort 
is needed to fix it. So, defects injected in an earlier 
phase, such as the requirements phase, have the 
effect of increasing the defect-fixing effort,whereas, 
defects injected in a later phase, such as the coding 
phase, have the effect of decreasing the defect-fixing 
effort (recall the Table 2 in 6.2.3 Qunatitative Defect 
Removal Model). After constructing defect-related 
data samples, software organizations can discover 
some more precise correlation between defects and 
fixing effort. The process-performance model for 
fixing effort is based on this hypothesis. There are 
some statistical methods which can be used to 
analyze the correlation between DID and %EffFix, 
such as multiple regression analysis. After the 
correlation between DID and %EffFix has been 
analyzed, the regression equation between DID and 
%EffFix can be used to refine the estimation of fixing 
effort after testing. The outcome can provide a 
guideline to estimate the effort of defect fixing 
based on the defects and the distribution of injection 
phases. So, after testing, project managers could 
reestimate and replan their fixing effort effectively. 
The factors of regression equation could be refined 
and calibrated based on the historical data of 

software organizations. Thereafter, it can be better 
applied in these organizations. We adopted factors 
of regression equation derived from the the 
historical data and for the fixing model as follows 
[26]: 

%EffFix = 0.1065 × %DIReq − 0.0043 × %DIDesign − 

0.3925 × %DICoe + 0.3597 

 
For high-maturity software organizations, the 
defect-related process performance, such as defect 
injection, defect removal, and defect density, also 
has some common and stable properties. Many 
methods discuss the defect removal ratio and defect 
density. These are very useful and easy to 
understand. Here we focus on the defect injection 
and the correlation between the defects and effort 
needed to fix them. 
Process Performance Baselines - PPB is a 
measurement of performance for the organization’s 
set of standard processes at various levels of detail, 
as appropriate [25]. When all functions are coded 
and passed unit testing, integration testing (IntT) for 
all functions is performed. After all iterations are 
finished, product integration and system testing 
(Int&SysT) for products developed by all iterations 
are performed. 
Before establishing PPBs, ten defect related 
measures that provide appropriate insight into the 
project’s quality and process performance, as shown 
in Table 7 were selected. The principles of selecting 
these measures are: 
1. the measures can be collected easily, e.g. there is 
tool support for data collection; 
 
2. the measures are closely related to the Advanced 
Quantitative process management implemented in 
OptimalSQM framework's objectives of 
development projects. 
 
In Table  7, the measure numbers 1–4 focus on all 
kinds of defects, including defects detected in 
review, inspection, unit testing, integration testing, 
system testing, etc.; the measure numbers 6, 9, and 
10 just focus on defects detected in system-testing 
activity. In Table 7, the measure number 1 is used to 
manage the distribution of defect injection in 
different kinds of activities which is applied in the 
DRE model; the measure number 2 is used to 
management the effectiveness of defect removal 
activities which is applied in the DRE model; the 
measures numbers 3 and 4 are used to manage the 
quality of product; the measure number 5 describes 
software productivity of the project; the measure 
number 6–8 are used to management system-testing 
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activity which are applied in the fixing model; the 
measures numbers 9 and 10 describe the efficiency 
of testing and rework activities which are applied in 
the DRE model. 
PPB contains two important indicators: process 
performance and capability. The process 
performance is a measure of actual results achieved 
by following a process, specified by central line 
(CL). The process capability is the range of 

expected results that can be achieved by following a 
process, specified by Upper Control Limit (UCL) 
and Lower Control Limit (LCL). We use the 
baseline – statistic – refinement method [26] and the 
XmR (individuals and moving range) control chart  
to establish PPBs. Due to space limit, we do not 
describe the process of calculating CL, UCL, and 
LCL in detail. 
 
Table 7 Measures that should be collected in 

iterative development projects 

No.   Measures_____________                                                 

1  Defect injection rate of requirements, 
design, coding, and testing activities = 
number of defects injected at the 
activity/total number of defects of the 
project 

2  Defect removal effectiveness of 
requirements, design, coding, and testing 
activities = number of defects removed at 
the activity/(number of defects existing on 
activity entry + number of defects injected 
during development of the activity) 

3  Pre-release defect density = number of 
defects removed before product 
release/product size 

4  Post-release defect density = number of 
defects detected within 1 year after product 
release/product size 

5  Productivity = product size/total effort of 
project 

6  Defect injection distribution = number of 
defects injected in requirements (or design, 
coding, and testing)/total number of defects 
removed in system testing × 100% 

7  Percentage of detecting effort = effort of 
defect-detecting activity in system-testing 
stage/total effort of project × 100% 

8  Percentage of fixing effort = effort of 
defect-fixing activity in system-testing 
stage/total effort of project × 100% 

9  Test efficiency = number of defects/defect-
detecting effort 

10  Rework efficiency = number of 
defects/defect-fixing effort 

________________________________________ 
 

7.2.2 The Control Limits for of a Process -

Performance Model for Fixing Effort 

 
For the 16 projects in Web application domain, from 
the the historical data published in [26], all the 
defects considered were detected in the testing 
activities. These defects were classified into four 
categories: critical defects, serious defects, 
noncritical defects and cosmetic defects. 
In this article, we only describe the total defects 
collected without distinguishing them. The XmR 
(individuals and moving range) control chart is 
applied to analyze the DID (Defect Injection 
Distribution) data. Assume that the sequence of data 
sample is Xi, the moving range (mR) is:  

mRi = |Xi − Xi−1| , i = 2 . . . n 

According to the theory of statistics, we can get the 
upper control limit (UCL), central line (CL), and 
lower control limit (LCL) for mR-chart and X-chart 
as follows: 

 
 
Figures 20-22 show the XmR control charts for 
%DIReq, %DIDesign and %DICode respectively. For the 
three XmR charts in Figures 20–22, all data points 
are distributed between the UCL and the LCL in 
both mR-chart and X-chart. Hence, the %DIReq, 
%DIDesign and %DICode were converged and the 
distribution of defect injection appears to be stable. 
In telecommunication application domain as a 
reference, for the range of expected results, you can 
use data from Table 8. 

We applied this empirical method on an ongoing 
project of the organization to estimate, plan and 
manage its testing process quantitatively. The P-BLs 
and correlation established above plus (recall 
previous sections) some other baselines to compose 
the Advanced Quantitative process management 
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implemented in OptimalSQM framework of the 
organization process management system. 

 
Fig. 20 XmR chart for %DIReq data of the 16 
projects [26] 
 

 
Fig. 21 XmR chart for %DIDesign data of the 16 
projects [26] 
 

 

Fig. 22 XmR chart for %DICode data of the 16 
projects [26] 
 
The steps of applying the quantitative management 
model for testing process are: (1) based on the P-BL 
of the P-Objs, estimating the defect detecting effort, 
defect fixing effort and number of defects injected in 
each phases during the project planning; (2) through 
the testing activities, collecting the defect related 
data and re-estimating the effort of defect fixing 
when the actual P-Objs has abnormality which we 

can reveal by the Statistical-Risk-Based Test 
with Assured Confidence, explained in next 
sub-section. 
 

7.3 The Statistical-Risk-Based Test with 

Assured Confidence as a stability criteria 
 
In order to prevent endless regresion test of defect 
detection and fixing loop (recall the Fig. 17, The 

feedback control model for SDP-STP) i.e. 
abnormality of planned test activities and 
established control limits we must before the 
process starts, determine the threshold failure 
density and the corresponding confidence level. 
 
Table 8 PPBs for telecommunication projects 

 
 
The threshold failure density must be determined by 
the requirements only. The number of daily test and 
fixing transactions and criticality of failures 
determine the threshold failure density. For 
example, if the system is mission-critical and no 
failure can be tolerated, the threshold should be low, 
say 0.0001. Once the threshold failure density is 
determined, the confidence level can be determined, 
and this again can be determined by the 
requirements.  Note that higher confidence level and 
lower threshold on failure density increase the 
number of test cases needed. This process starts 
from module testing, to integration testing, and 
finally to end-to-end testing, and this process can be 
easily embedded in most software development 
processes. If a module fails at any stage of the 
Statistical-Risk-Based Test with Assured 
Confidence (SRBTAC) testing [8], it should be 
subjected to software modification and testing 
before it can be used for the next phase of the 
SRBTAC testing. Only when a module passes the 
SRBTAC module testing, it can be subjected to the 
SRBTAC integration testing. Similarly, only when a 
module pass the SRBTAC integration testing, it can 
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be subjected to the SRBTAC end-to-end testing. 

This process has a feedback mechanism: if a 
fault is detected in integration, the 
corresponding module(s) must be subjected to 
another round of testing. The process helps in 
identifying areas that need further testing and/or 
rework. 
 
7.3.1 SRBTAC Statistical Model (I) 

 
The statistical model requires that test cases for 

the SRBTAC must be selected randomly and 
independently. However, completely random test 
cases may not cover all the important partitions in 
the input domain. Thus, this paper recommends that 
the input domains are thoroughly analyzed to 
identify major partitions, and then test cases are 
generated from these partitions to ensure coverage. 
Major partitions can be identified by examining the 
constraints on inputs, outputs and major execution 
paths in the code or design and avoid any apparently 
dependent test cases. At each level of SRBTAC 
testing, only test cases from that level can be used. 
For example, at the SRBTAC end-to-end testing, 
only end-to-end test cases can be counted, but not 

integration or module test cases. In addition to 
regression testing, new test cases can be 
developed by composing and reusing existing 
test cases. During integration testing and end-
to-end testing, the operating environment 
should be considered, and this may include 
external systems interfacing, physical 
environment, input data, system operators and 
end users.  For each factor, identify those that 
are SRBTAC related and identify contingency 
plans for environment components that can not 
be certified. 

The following equation is used to calculate the 
number of test case required to achieve a certain 
level of confidence C that the failure density is no 
more than a desired bound B. All N test cases must 
execute correctly without causing the software to 
fail. 

 C= 1 - (1-B)N                   (9) 
 

– C is the confidence level desired. 
– B is the failure density(threshold). 
– N is the number of test cases required and  N = 
Ln(1-C)/Ln(1-B). 
• For example, if desired confidence level is 0.95, 

and  the target failure rate 0.05, we need 58 test 
cases, because 0.95 = 1 - (1- 0.05)N , so N needs 
to be 58. The computation can be done using 

Microsoft’s Excel or calculators to prepare table 
1 that can be handy too. 

• In this process, at each level, we need 58 test 
cases to certify that the target software achieved 
0.95 confidence with 0.05 failure density.  

 
The formula (12) is applicable when every test case 
is successful. If one or more test cases fail, 
Statistical Model (II) shoul be used. 
 
7.3.2 SRBTAC Statistical Model (II) 

 

During the SRBTAC experiments at several testing 
sites, it is apparent that some of the testing projects 
have some failures, but it is still necessary to 
compute the confidence. 
 
Table 9 The number of test cases required for 
various C and B when there is no failure. 

 
 
Thus, the  formula is now changed to: 

          (10) 
where 

 
And N random test cases are executed with Q 
failures, one has the confidence C that the true 
failure rate is no more than B.  In other words, with 
a probability of at least C, one will see more than Q 
failures in N test cases when the failure density is 
more than B.  Table 10 shows some computation 
results. 
This model has the following characteristics: 
1. Confidence value is between 0 and 1. 
2. The maximum confidence from a given set of N 

test cases is obtained when there are no failures. 
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By substituting Q = 0, one can obtain the 
original equation.  

3. As the failure increases, the confidence 
decreases rapidly.  When all test cases result in 
failures, the confidence is zero. 

4. As the targeted failure density decreases, more 
test cases or fewer failures are required to 
achieve the same confidence. 

Table 10 Some combinations of N, Q, B and C when 
there are failures. 
 

 
 
Figure 23 shows how the confidence varies with the 
number of test cases for the target failure density 
0.05, for the failures between Q = 0 and 5.  Note 
that as the failures increases, the confidence 
decreases rapidly which is evident from the graphs 
becoming closer to the x-axis. When the failures 
increases from 0 to 5 out of 100 test cases,  the 
confidence drops from 0.99 to around 0.4.  

Test cases vs. Confidence (B=0.05)
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Fig. 23 Confidence in the Presence of Failures 
 
In Fig. 24, for a fixed bound B = 0.1 the confidence 
is a function of failures detected for various number 
of test cases.  For a 0.1 target failure rate with 0.95 
confidence, the failures should be less than 5 out of 
100 test cases.  If the targeted confidence level is 
0.8, the failures should be less than 7 out of 100 test 
cases.  Note that reduction in the confidence does 
not increase the failures significantly. This is to be 
expected because the confidence decreases rapidly 

with each additional failure.  Hence, in practice only 
few failures can be tolerated. 

Failures vs. Confidence for various no. of test cases (N) 
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Fig. 24 Change in Confidence with Increasing 
Failures 
 
Another important issue in using this new model is 
that the failures detected should not be critical. A 
single critical failure can disable mission-critical 
applications. Failures detected must be handled and 
tested after the SRBTAC process.  
 

The SRBTAC end-to-end testing 3-Step Process 

 

• Step 1: Run the regression testing. If the system 
fails at this step, it should be rejected; otherwise go 
to the next step. 
– If the modified system cannot pass this step, the 
statistical models say that it is highly unlikely that 
the system will be able to pass the SRBTAC 
requirements. 
– This step is relatively cheap because it reuses the 
existing test resources only. 
 

Benefits and Experience of SRBTAC (II) 

 

• It is relatively easy to identify which parts of 
subsystems are over tested and which are under 
tested or to prevent endless regresion test of defect 
detection and fixing loop of the feedback control 
model view for SDP-STP i.e. abnormality of 
planned test activities and established control limits . 
• The testing team indicated that they can easily 
incorporate the SRBTAC requirements in their test 
projects if they were informed at the beginning of 
the project. 
• The testing team indicated that it is easy to apply 
the SRBTAC process after some training. 
 

7.3.3 Cost Means Risk 

 

Is there a correlation between increasing the cost of 
testing and the ability to meet overall test goals? In 
our paper [17], we presented a model which showed 
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that testing can be minimized by assessing the 
probability of successfully conducting the test based 
on cost. Analysis showed that for one-shot test 
events, such as bullets, bombs and missiles, the 
more expensive the test, the cost (in terms of 
achieving overall test goals) of failure (poor test 
attempt or failed test) increased. Costs are weighted 
by the probability of the cost being incurred by 
failing a test. These "costs" are not only the direct 
cost of the test itself (assets, range time, fuel, etc.) 
but also living with the results. Generally speaking 
the cost of incorrect evaluation (passing when it 
should be failed, or failing when it should be passed) 
exceeds the cost of correct evaluation (passing when 
it should be passed, or failing when it should be 
failed). The probability model analyzed past test 
history to determine if testing should continue, stop 
with system pass, or stop with system failure. Figure 
25 graphically depicts a generalized output of the 
behavior of the OptimalSQM framework in 
advanced quantitative defect control model used in 
the analysis. The regions are defined as follows: 
Pass - Indicates that one should quit testing and pass 
the system, Test - Indicates that one should test 
further, Fail - Indicates that one should quit testing 
and fail the system. It was shown that the Test 
(uncertain) region narrowed and shifted to the left as 
test costs increased and that the region of Pass 
(acceptance) region decreased. The Test region also 
necks down as the number of tests increases. As the 
cost per test is raised, it ultimately becomes too 
expensive to test the system and one uses what data 
is on hand to assess the system. Conversely as the 
cost of the test is lowered, one could test to system 
pass or quit and declare success earlier and 
minimize total expected cost. The author 
recommended that a test manager use a probabilistic 
based approach to minimize the expected total cost 
rather than to some fixed statistical pass threshold 
criteria. It can thus be shown analytically that a 
more costly test increases the risk of not meeting 
test requirements. 
 
It can be safely stated that the least cost test strategy 
model above can be applied to complex tests. The 
logical conclusion is that simpler tests allow you 
meet overall test goals sooner with a higher 
probability of success. Statistical-Risk-Based Test 
management procedure can be run by these steps: 

1. Define all system requirements  
(potentially to be tested) 

2. Identify Risk Assessment techniques 
3. Identify high risk requirements 

a. Identify consequence of faults for 
each requirement 

b. Identify fault probability indicators 
(if possible) 

c. Prioritise the requirements based on 
risk exposure 

4. Plan and define tests according to 
requirement prioritisation and coverage 
criteria as set out in test plan) 

5. Execute test according to prioritisation and 
acceptance criteria as defined in the test 
plan 

6. Collect metrics to monitor progress and 
report on priority level coverage (i.e. How 
many of the requirements per priority level 
have been tested) 

7. Repeat until acceptance criteria per priority 
level has been met (i.e. Number of 
outstanding faults for each priority level is 
acceptable) 

 

 
 
Fig. 25  Narrowing and shifting of the "Continue 
Test" 
 

5 Conclusion 
 
During the work on this project1 several research 
questions were formulated which the research then 
was based upon. The initial main research question 
that was posed for the complete research in this 
project was: How can software testing be performed 
efficiently and effectively i.e. Optimal, that is, do 
we have a framework model targeted specific 
software testing domains or problem classes 
described in the paper? To be able to address the 
main research question several other research 
questions needed to be answered first (RQ2–RQ5). 
Thus, since this project is based upon the main 
research question, it was worthwhile taking the time 
to examine the current practice in different projects 
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and see how software quality is measured and, 
especially, software testing was practiced [1-8] as 
we described in Section 2. In Section 3 and 4 we 
described our OptimalSQM framework which 
presents a set of best practice models and techniques 
integrated in optimized and quantitatively managed 
software testing process (OptimalSQM), expanding 
testing throughout the SDLC. It includes best 
practice from Design of Experiments, Modeling & 
Simulation, integrated practical software 
measurement, Six Sigma strategy, Earned 
(Economic) Value Management (EVM) and Risk 
Management (RM) methodology. Through 
simulation-based software testing scenarios at 
various abstraction levels of the software under test 
we are capable to manage stable (predictable and 
controllable) software testing process at lowest risk, 
at an affordable price and time according established 
stability criteria. To put it short, the answer to RQ2 
divided the research, as presented in this paper, into 
two areas:(1) covering effectiveness in software 
testing techniques, and (2) efficiency in software 
testing. We described how to implement 
development-testing alignment (DTA) methodology 
into OptimalSQM [5-9] which posits that such 
alignment leads to beneficial effects such as lower 
costs and shorter time of development, greater 
system quality, fewer errors and a better relationship 
between the corporate IT unit and customers in 
business functions who have commissioned new 
systems. To begin with, the research aimed at 
exploring the factor of defect detection and 
removing effectiveness DRE during SDLC (RQ3) 
while later focusing on early aspects of software 
cost of quality.  In Section 6, we explained how can 
Advanced Quantitative Defect Management 
(AQDM) Model  be enhanced (as answer to RQ4) is 
practically useful for determining which activities 
need to be addressed to improve the degree of early 
and cost-effective software fault detection. To 
enable software designers to achieve a higher 
quality for their design, a better insight into quality 
predictions for their design choices, test plans 
improvement using Simulated Defect Removal Cost 
Savings model is offered in paper. The model which 
enables to minimize the cost of switching between 
test plan alternatives, when the current choice 
cannot fulfill the quality constraints, corresponding 
optimality and stability criteria are proposed. Much 
rather we aim to define a simulation method with 
which it is possible to assist the test manager in 
evaluating test plan alternatives and adjusting test 
process improvement decisions in a systematic 
manner.To be practically useful for determining 
which activities need to be addressed to improve the 

degree of early and cost-effective software fault 
detection with assured confidence, than definitely, 
optimality and stability criteria of very complex 
STP dynamics problem control is described in 
Section 7 as answer to RQ5.  
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