
Simple, Real-Time Obstacle Avoidance Algorithm for Mobile
Robots

IOAN SUSNEA, VIOREL MINZU, GRIGORE VASILIU
Department of Control Engineering

University “Dunarea de Jos”
Galati, Str. Domneasca, 47, 800008,

ROMANIA
ioan.susnea@ugal.ro , viorel.minzu@ugal.ro, vasiliugrigore3@yahoo.com

Abstract: - This paper proposes a novel, reactive algorithm for real time obstacle avoidance, compatible with
low cost sonar or infrared sensors, fast enough to be implemented on embedded microcontrollers. We called
this algorithm “the bubble rebound algorithm”. According to this algorithm, only the obstacles detected within
an area called “sensitivity bubble” around the robot are considered. The shape and size of the sensitivity
bubble are dynamically adjusted, depending on the kinematics of the robot. Upon detection of an obstacle, the
robot “rebounds” in a direction having the lowest density of obstacles, and continues its motion in this
direction until the goal becomes visible, or a new obstacle is encountered. The performances and drawbacks of
the method are described, based on the experimental results with simulators and real robots..

Key-Words: - Real-time robot control, obstacle avoidance, reactive algorithm, embedded systems

1 Introduction
The ability to detect and avoid obstacles in real time
is an important design requirement for any practical
application of autonomous vehicles. Therefore, a
significant number of solutions have been proposed
for this problem. Unfortunately, most of these
solutions demand a heavy computational load,
which makes them difficult, if not impossible, to
implement on low cost, microcontroller based,
control structures.

This paper presents the results of a research
aimed to develop a new algorithm for obstacle
avoidance relying on low cost ultrasonic or infrared
sensors, and involving a reasonable level of
calculations, so that it can be easily used in real time
control applications with microcontrollers.

Besides this introduction, the structure of the
present paper is as follows:

Section II contains a brief overview of the
existing solutions. This section was introduced in
order to facilitate the understanding of the proposed
algorithm. However, only reactive algorithms, of
comparable complexity are considered in this
analysis.

Section III contains a description of the
proposed solution, and notes on the actual
implementation.

Section IV presents the experimental results
used for evaluating the algorithm.

Section V is reserved for conclusions and
discussion.

2 Brief Overview of the Existing
Obstacle Avoidance Algorithms

2.1 The Bug Algorithms
The simplest obstacle avoidance algorithm ever
described is called “the bug algorithm” [1].
According to it, when an obstacle is encountered,
the robot fully circles the object in order to find the
point with the shortest distance to the goal, then
leaves the boundary of the obstacle from this point
(see figure 1).

S

G

H

L

Fig.1 Illustration of the Bug algorithm

This algorithm is obviously very inefficient, and
therefore several improvements have been proposed
([2],[3]).

In the ‘bug2” algorithm (figure 2), the robot starts
following the boundary of the obstacle, but leaves it
as soon as it intersects the line segment that connects
the start point and the goal.

RECENT ADVANCES in COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS

ISSN: 1790-5117 24 ISBN: 978-960-474-144-1

Fig. 2 Illustration of the Bug2 algorithm

Although their simplicity is a major advantage, the
bug-type algorithms have some significant
shortcomings:
• they do not consider the actual kynematics of

the robot, which is important with non-
holonomic robots,

• they consider only the most recent sensor
readings, and therefore sensor noise seriously
affects the overall performance of the robot,

• they are slow.

2.2 The Potential Field Algorithm
While the bug-type algorithms are based on a purely
reactive approach, the following algorithms tend to
view the obstacle avoidance as a sub-task of the path
planning, in a deliberative approach.

The potential field algorithm, described in [4],
and [5], assumes that the robot is driven by virtual
forces that attract it towards the goal, or reject it
away from the obstacles. The actual path is
determined by the resultant of these virtual forces
(see figure 3).

Fig. 3 Illustration of the potential field algorithm

Despite its elegance, this algorithm still does not
solve all the drawbacks of the bug algorithms,
performs poorly on narrow passages, and is more
difficult to use in real time applications.

2.3 The Vector Field Histogram (VFH)
Algorithm
Described for the first time in [6], and later
improved in [7] and [8] by Borenstein et al., the
Vector Field Histogram, or VFH algorithm
overcomes the problem of the sensors noise by

creating a polar histogram of several recent sensor
readings, like the one depicted in figure 4.

In figure 4, the x-axis represents the angles
associated with sonar readings, and the y-axis
represents the probability P that there really is an
obstacle in that direction.

The probabilities are computed by creating a
local occupancy grid map of the environment
around the robot.

The polar histogram is used to identify all the
passages large enough to allow the robot to pass-
through. The selection of the particular path to be
followed by the robot is based on the evaluation of a
cost function, defined for each passage. This
depends on the alignment of the robot’s path with
the goal, and on the difference between the current
wheel orientation and the new direction. The
passage with the minimum cost is selected.

-90
o

+90
o

0
o

P

Fig. 4 The polar histogram used in VFH algorithm

This algorithm offers better robustness to sensor
noise, and takes into account the kinematics of the
robot, but still involves a considerable computation
load, which makes it difficult to implement on
embedded systems.

2.4 The Bubble Band Technique
Proposed by Khatib, and Quinlan in [9], this
method defines a “bubble” containing the maximum
available free space around the robot, which can be
traveled in any direction without collision. The
shape and size of the bubble are determined by a
simplified model of the robot’s geometry, and by the
range information provided by the sensors (see
figure 5).

With this concept, a band of such bubbles can be
used to plan a path between a starting point and a
goal. Obviously, this technique is more a problem of
offline path planning than one of obstacle avoidance,
but we have included it in this brief presentation,

RECENT ADVANCES in COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS

ISSN: 1790-5117 25 ISBN: 978-960-474-144-1

because the idea of a bubble, seen as a subset of free
space around the robot has some similarity with the
solution proposed in this paper.

Nearest
obstacle

Nearest
obstacle

Fig. 5 Illustration of the bubble band concept

2.5 Other Obstacle Avoidance Algorithms
There are, of course, several other interesting
algorithms for obstacle avoidance. However,
relatively few of them are suitable for real-time,
embedded applications, and will not be discussed
here. Among them, fuzzy logic solutions, like those
presented in [10], and [11] can be integrated as a
natural extension of the fuzzy path following
problem, described in [12].

3 Description of the Proposed Solution

3.1 Detection of Obstacles
Consider a vehicle, having a ring of equidistant
ultrasonic sensors, covering an angle of 180 degrees,
as shown in figure 6.

1

2

3
45

6

7

8

A

B

Current
heading

a

Fig. 6. Robot, ultrasonic sensors, and sensitivity
bubble

If N is the number of sonar sensors, the following
code defines the sensitivity bubble:
unsigned int sonar_readings[N];
unsigned int bubble_boundary[N];
bubble_boundary[i]=Ki*V*delta_t;
int check_for_obstacles(void){
for(i=0;i<N;i++)
 {

if(sonar_readings[i]<=bubble_
boundary[i] return(1);
else return(0);

}

Where, V is the translation velocity of the robot,
delta_t is the time interval between successive
evaluations of sensor data, and Ki are scaling
constants, used for tuning. In our experiment,

]32.0[−∈Ki .

Note that the shape and size of the sensitivity
bubble (curve B in figure 6) defined like this is
dynamically adjusted, depending on the distance that
can be traveled through by the robot, during the time
interval delta_t, provided that the bubble does not
exceed the range of the sonar sensors (curve A in
figure 6).). Also note, that the readings of the
sensors represent the distance between the actual
position of the sensor (which is on the boundary of
the vehicle) and the obstacle. Therefore, the above
definition of the sensitivity bubble indirectly
includes information on the geometric shape of the
robot.

Since the ultrasonic sensors are uniformly
distributed, covering an arc of 180 degrees, the sonar
readings can be represented in a polar diagram, as
shown in figure 7.

-90
o

+90
o

0
o

a

sonar_readings

a

1
2

3

4

-1
-2

-3

-4

Fig. 7 Polar diagram of the sonar readings

3.2 Description of the Algorithm
Initially, the robot moves straight towards the goal.
If an obstacle is detected within the sensitivity
bubble, the robots “rebounds” in a direction found as
having the lowest density of obstacles, and
continues its motion in this new direction until the
goal becomes visible (i.e. no obstacle within the
visibility range of the sonar in that direction), or
until a new obstacle is encountered.

Figure 8 presents an illustration of the rebound
mechanism. In this image, H is the “hit-point” – the
location of the robot at the moment of the detection
of an obstacle, and V is the point where the robot

RECENT ADVANCES in COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS

ISSN: 1790-5117 26 ISBN: 978-960-474-144-1

regains visibility of the goal. The whole process is
summarized in the flowchart presented in figure 9.

O1

G

S

H

V

Fig. 8 An illustration of the rebound process

START

ADJUST HEADING

TO GOAL

OBSTACLE?

OBSTACLE?

MOVE STRAIGHT

TO GOAL

GOAL

REACHED?

STOP

COMPUTE

NEW HEADING

ADJUST

MOTION

GOAL

VISIBLE?

KEEP MOVING

YES

YES

YES

YES

NO

NO

NO

NO

Fig. 9 Flowchart for the bubble rebound algorithm

3.3 Computing the Rebound Angle
Considering the fact that the sonar cells are
uniformly distributed, at an angular pace:

N

πα =0 (1)

then, the sonar index, i, contains angular
information:






−∈

=

2
,

2

0

NN
i

ii αα
(2)

where N is the total number of sonar cells.
With these notations, the simplest way to compute
the rebound angle is:

∑

∑

−=

−=
=

2

2

2

2
N

N
i

i

N

N
i

ii

R

D

Dα

α (3)

where Di is the value reported by the sonar cell i.

4 Experimental Results
This experiment is part of a more comprehensive
research, aimed to develop cost effective solutions
for real time control of mobile robots, based on
embedded systems.

The experiment was designed to work with the
robots Pioneer3-DX and PeopleBot, manufactured
by MobileRobots Inc. ([13]).

During the simulation phase of the experiment,
we have used the robot simulator software
MobileSim, offered by MobileRobots Inc.,
specifically designed for the Pioneer3 robots.

Various maps of the environment, with multiple
distributions of the obstacles were created with the
software application Mapper3, also from
MobileRobots.

The algorithm was also tested using real robots,
with satisfactory results.

The actual implementation used a low-cost, 8-bit
microcontroller, and was written in C. Besides the
obstacle avoidance task, the microcontroller was
executing additional tasks for fuzzy path following,
and communication, as described in [12].

Figure 10 is a snapshot generated with
MobileSim, to illustrate the basic obstacle
avoidance behavior. Figure 11 shows an example of
corridor navigation, and figure 12 shows the trail of
the robot while performing a more difficult task,
assumming that a higher level global panner, has
defined an intermediate goal.

Start Goal

Fig. 10 Basic obstacle avoidance with simulated
robot

RECENT ADVANCES in COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS

ISSN: 1790-5117 27 ISBN: 978-960-474-144-1

Start Goal

Fig. 11 An example of corridor navigation

Finally, the algorithm was tested with two real
robots, namely the models Pioneer3 and PeopleBot
of MobileRobots, having the same kynematic
model, (see figure 13) in a typical office
enviromnent containing a variety of static obstacles,
plus human operators moving permanently whithin
the visibility range of the sonars.

Fig. 12 An example of navigation in maze-type
environment, with intermediary goals

The control structure used in the experiment was
that described in [14].

The overall performance of the robots in these
conditions was satisfactory.

Most of the failures recorded were due to
cummulative odometric erors.

The average speed of the robots during the
experiments was 0.4m/s, which is reasonable for an
intelligent wheelchair, moving indoors.

Fig. 13. The robots used in the experiment

5 Discussion
Among the advantages of the proposed solution, we
notice:
- It demands very low computational load, and

can be implemented on low-cost
microcontrollers;

- It is capable to avoid any kind of static
obstacles, and even some moving obstacles, like
walking humans;

- It requires low cost sensors;
- It can be easily adapted for other sensors, like

rotating laser rangers;
- It performs very well on narrow corridors.
And the major weaknesses are those common for the
majority of purely reactive algorithms:
- It is far from being optimal;
- Like most purely reactive algorithms, it requires

a higher level path planner to perform
reasonably well in maze-type environments. For
example, in figure 12, the algorithm might fail
to conduct the robot from Start to Goal2, unless
a planner can define intermediary goal Goal1.

- The motion is not smooth;
- Motion is attempted even if there is no path to
goal.;
- Failure is possible even when a valid path to goal

exists;
- It is still vulnerable to sensor noise. This
problem is partly solved with this algorithm because
it considers the readings of all sensors when
computing the rebound angle. However, there is a
common situation, presented in figure 14, when
sonar sensors fail to detect large obstacles.

Fig. 14 A common situation when sonar sensors fail

Possible solutions to this problem could be:
- Using a higher density of sensors,

- Using a mix of sonar and infrared sensors
for obstacle detection,
- Using a rotating laser sensor.

In principle, the bubble rebound algorithm
remains compatible with all of the above mentioned
solutions.

RECENT ADVANCES in COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS

ISSN: 1790-5117 28 ISBN: 978-960-474-144-1

Despite the above mentioned drawbacks, the
proposed algorithm may be of interest in
applications where a higher level path planner is
available, and when the cost criterion is particularly
important.

Further work is required to improve the overall
smoothness of the motion. This is possible, because
at this time, the robot stops and adjusts its heading
each time an obstacle is detected. Most of the
avoidance maneuvers can actually be executed on
the fly, without the need to stop the robot.

The experiments with the simulator, and with
real robots suggest that such simple algoprithms can
be used in the implementation of low-cost embedded
control devices for intelligent wheelchairs, and other
service robots, contributing to a drastic cost
reduction of these equipments.

Actually, the algorithm was developed with this
type of applications in mind

References:
[1] Lumelsky, V., Skewis, T., “Incorporating Range
Sensing in the Robot Navigation Function.” IEEE
Transactions on Systems, Man, and Cybernetics,
20:1990, pp. 1058–1068..
[2] Lumelsky, V., Stepanov, A., “Path-Planning
Strategies for a Point Mobile Automaton Moving
Amidst Unknown Obstacles of Arbitrary Shape,” in
Autonomous Robot Vehicles. New York, Spinger-
Verlag, 1990
[3] Kamon, I., Rivlin, E., Rimon, E., “A New
Range-Sensor Based Globally Convergent
Navigation Algorithm for Mobile Robots,” in
Proceedings of the IEEE International Conference
on Robotics and Automation, Minneapolis, April
1996.
[4] Khatib, O., 1985, "Real-Time Obstacle
Avoidance for Manipulators and Mobile Robots."
1985 IEEE International Conference on Robotics
and Automation, March 25-28, St. Louis, pp: 500-
505.

[5] Koren, Y., Borenstein, J., “High-Speed Obstacle
Avoidance for Mobile Robotics,” in Proceedings of
the IEEE Symposium on Intelligent Control,
Arlington, VA, August 1988, pp: 382-384.
[6] Borenstein, J., Koren, Y., “The Vector Field
Histogram – Fast Obstacle Avoidance for Mobile
Robots.” IEEE Journal of Robotics and Automation,
7, pp: 278–288, 1991.
[7] Ulrich, I., Borenstein, J., “VFH+: Reliable
Obstacle Avoidance for Fast Mobile Robots,” in
Proceedings of the International Conference on
Robotics and Automation (ICRA’98), Leuven,
Belgium, May 1998.
[8] Ulrich, I., Borenstein, J., “VFH*: Local Obstacle
Avoidance with Look-Ahead Verification,” in
Proceedings of the IEEE International Conference
on Robotics and Automation, San Francisco, May
24–28, 2000.
[9] Khatib, O., Quinlan, S., “Elastic Bands:
Connecting, Path Planning and Control,” in
Proceedings of IEEE International Conference on
Robotics and Automation, Atlanta, GA, May 1993
[10] Kim J.H.,Park J.B., Yang H. “Implementation
of the Avoidance Algorithm for Autonomous
Mobile Robots Using Fuzzy Rules” in Fuzzy
Systems and Knowledge Discovery, Springer 2006.
[11] Tzafestas S.G. and Zavlangas P. Industrial and
Mobile Robot Collision–Free Motion Planning
Using Fuzzy Logic Algorithms, Industrial-Robotics-
Theory-Modelling-Control, ARS/plV, Germany,
2006, pp. 964, 995
[12] Susnea I, Vasiliu G, Filipescu A, Real-Time,
Embedded Fuzzy Control of the Pioneer3-DX Robot
for Path Following, Proceedings of 12th WSEAS
International Conference on SYSTEMS, Heraklion,
Greece, July 22-24, 2008, pp.334-338,
[13] www.mobilerobots.com
[14] Susnea I . Vasiliu G, Filipescu A, Coman G.,
On the Implementation of a Robotic Assistant for
the Elderly. A Novel Approach, 7th WSEAS Int.
Conf. on Computational, Intelligence Man-machine
Systems, CIMMACS2008

RECENT ADVANCES in COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS

ISSN: 1790-5117 29 ISBN: 978-960-474-144-1

