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Abstract: - In the recent years, much mathematical research has been observed in the description of 

tumors’ growth, in the early detection of cancer and in the optimization of cancer treatment planning. 

In this paper, the Crank-Nicolson method is proposed for the solution of different mathematical 

models of carcinogenesis and cancer therapy and a Genetic-Algorithms-based method for the optimal 

cancer therapy is also presented. First we intend to provide the Crank-Nicolson for a tumor-immune 

system interaction, which describes the early dynamics of cancerous cells, competing with the 

immune system, potentially leading to either the elimination of tumoral cells or to the viability of a 

solid tumor. Secondly we provide the Crank-Nicolson method for the brain tumors and a Genetic-

Algorithms-based method for the optimal cancer therapy for the brain tumors is also presented. 
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1 Introduction 
Recently, many mathematical research papers 

have been published in the description of 

tumors’ growth, in the early detection of cancer 

and in the optimization of cancer treatment 

planning. The mathematical models on these 

papers are based on mass conservation laws and 

on the reaction-diffusion process for cell 

densities and nutrient concentration within the 

tumor. (see [18]÷[57]). 

 

 

The growth and control of cancers have been 

the subject of medical and scientific scrutiny for 

a very long time (see [18]÷[57]). Roughly 

speaking a tumor, like most cancerous cells 

originates from a single cell, that proliferates 

and effects its neighboring normal tissues. As 

the tumor cells become malignant they become 

more dangerous for the host. The mathematical  

description of the mechanism of tumor 

progression seems to be useful for the cancer 

diagnosis and treatment. The paper [56] 

contains a short presentations related to the 
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mathematical modeling of Cancer. The paper 

[56] introduces a tumor-immune system 

interaction, which describes the early dynamics 

of cancerous cells, competing with the immune 

system, potentially leading to either the 

elimination of tumoral cells or to the viability of 

a solid tumor. In the present paper we propose 

the solution of this model with the Crank-

Nicolson method.  Similarly, in this paper we 

propose the Crank-Nicolson method of the 

model for drug delivery to brain tumor of [57]. 

Finally, a Genetic-Algorithms-based method for 

the optimal cancer therapy for both models is 

also presented. 

 

 

 

2 Mathematical Models 
 

As one can see in [56], At their early stage of 

growth, solid tumors are avascular. They do not 

need a blood network, being small enough to 

get nutrients mainly by tissue diffusion. 

However, their needs are proportional to their -

growing- volume, while the feeding is 

proportional to the surface in contact with the 

host tissue. So, they rapidly reach a critical size 

for which the supply by diffusion is no more 

enough to continue developing. Then, avascular 

tumors sometimes turn into a dormant phase 

during which the growth stops, as a result of 

balance between proliferation and apoptosis -

death- of cancer cells. Tumors which do not 

enter dormancy need ways alternative to 

diffusion. It is now well known that solid 

tumors use vascular supply. Tumor-associated 

neovascularization allows the tumor cells to 

express their critical growth advantage as 

reported by Saaristo et al [54]. The process by 

which solid tumors develop a vascular network 

is called angiogenesis. Angiogenesis is a 

complex process, a complete description of 

which is outside the scope of the present paper. 

Readers interested in fundamental basics, 

particularly in view of mathematical modeling 

could refer to the well documented review paper 

by Mantzaris, Webb and Othmer [51]. Most if 

not all of the above contributions use 

mathematical models of nonlinear parabolic 

reaction-diffusion type. These models are based 

on equations which express balance or 

conservation laws of physical relevant 

quantities like as blood cells or extracellular 

matrix densities. The full dynamics of the tumor 

growth are determined starting from given 

initial conditions. So, we start with the model 

[40] and [56]: 
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where n is the density of the blood vessels, f is 

the density of the matrix tissue, c : 

concentration of angiogenic factors. As one can 

see the term ndn∇∇  expresses the random 

motility, 

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x  expresses  the so-called 

chemotaxis and the term )( fn∇∇ρ  is the 

haptotaxis.  

 

Consider now the influence of a drug. Let us 

denote d the concentration of the drug, then this 

system will be modifies as follows 
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2321 ,,,,,,,,,,,, εελµρδ mmmwxck    represent 

appropriate functions and u is the appropriate 

input for the drug. 

In the therapy of angiogenesis the objective 

functional is taken to be a quadratic form of 

running and terminal costs 
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Our goal is to minimize the functional with 

respect to the drug input rate ),( tvd  
3

321 ),,( ℜ∈= xxxv  our space vector of 3ℜ  

and t is the time ( ft is the final time of our 

therapy). 21 ,, ssr  represent appropriate positive 

constants.  

 

Before proceeding we consider that for the case 

of 
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It can be easily seen that we can consider  
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and this is a realistic approximation in our 

problem for biological quantities. 

 

 

Therefore, a numerical scheme for the solution 

of (1.1), (1.2), (1.3) and (1.4) could be the 

following Crank-Nicolson numerical scheme: 
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4
th

  Finite Difference Equation: 
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Now, we can solve via PC the system of  1
st
  , 

2
nd

, 3
rd

 and 4
th

 Finite Difference Equation: 

i.e. (5.1), (5.2) ,(5.3), (5.4) 

 

 

 

In the therapy of angiogenesis, we have to find 

the appropriate input for the drug in order to 

minimize 
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Our goal is to minimize this functional with 

respect to the drug input rate ),( tvd  
3

321 ),,( ℜ∈= xxxv  our space vector of 3ℜ  

and t is the time ( ft is the final time of our 

therapy). 21 ,, ssr  represent appropriate positive 

constants.  

What we must do is to find the appropriate input  

Before proceeding in the solution of the 

problem, some background on GA (Genetic 

Algorithms).  

Fitness function is the objective function we 

want to minimize.   

Population size specifies how many individuals 

there are in each generation. We can use various 

Fitness Scaling Options (rank, proportional, top, 

shift linear, etc), as well as various Selection 

Options (like Stochastic uniform, Remainder, 

Uniform, Roulette, Tournament). Fitness 

Scaling Options: We can use scaling functions. 

A Scaling function specifies the function that 

performs the scaling. A scaling function 

converts raw fitness scores returned by the 

fitness function to values in a range that is 

suitable for the selection function.  

 

We have the following options:  

Rank Scaling Option: scales the raw scores 

based on the rank of each individual, rather than 

its score. The rank of an individual is its 

position in the sorted scores. The rank of the 

fittest individual is 1, the next fittest is 2 and so 

on. Rank fitness scaling removes the effect of 

the spread of the raw scores.  

Proportional  Scaling Option: The Proportional 

Scaling makes the expectation proportional to 

the raw fitness score. This strategy has 

weaknesses when raw scores are not in a "good" 

range.  

Top Scaling Option: The Top Scaling scales the 

individuals with the highest fitness values 

equally.  

 

Shift linear Scaling Option: The shift linear 

scaling option scales the raw scores so that the 

expectation of the fittest individual is equal to a 

constant, which you can specify as Maximum 

survival rate, multiplied by the average score.  

We can have also option in our Reproduction in 

order to determine how the genetic algorithm 

creates children at each new generation.  

For example,  

Elite Counter specifies the number of 

individuals that are guaranteed to survive to the 

next generation.  

Crossover combines two individuals, or parents, 

to form a new individual, or child, for the next 

generation.  

Crossover fraction specifies the fraction of the 

next generation, other than elite individuals, that 

are produced by crossover.   

Scattered Crossover:  Scattered Crossover 

creates a random binary vector. It then selects 
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the genes where the vector is a 1 from the first 

parent, and the genes where the vector is a 0 

from the second parent, and combines the genes 

to form the child.  

Mutation: Mutation makes small random 

changes in the individuals in the population, 

which provide genetic diversity and enable the 

GA to search a broader space. Gaussian 

Mutation: We call that the Mutation is Gaussian 

if the Mutation adds a random number to each 

vector entry of an individual. This random 

number is taken from a Gaussian distribution 

centered on zero. The variance of this 

distribution can be controlled with two 

parameters. The Scale parameter determines the 

variance at the first generation. The Shrink 

parameter controls how variance shrinks as 

generations go by. If the Shrink parameter is 0, 

the variance is constant. If the Shrink parameter 

is 1, the variance shrinks to 0 linearly as the last 

generation is reached. 

Migration is the movement of individuals 

between subpopulations (the best individuals 

from one subpopulation replace the worst 

individuals in another subpopulation). We can 

control how migration occurs by the following 

three parameters.  

Direction of Migration: Migration can take 

place in one direction or two. In the so-called 

“Forward migration” the nth subpopulation 

migrates into the (n+1)'th subpopulation. while 

in the so-called “Both directions Migration”, the 

nth subpopulation migrates into both the (n-1)th 

and the (n+1)th subpopulation.  

Migration wraps at the ends of the subpopulations. 

That is, the last subpopulation migrates into the first, 

and the first may migrate into the last. To prevent 

wrapping, specify a subpopulation of size zero.  

Fraction of Migration is the number of the  

individuals that we move between the 

subpopulations. So, Fraction of Migration is the 

fraction of the smaller of the two subpopulations 

that moves. If individuals migrate from a 

subpopulation of 50 individuals into a population of 

100 individuals and Fraction is 0.1, 5 individuals 

(0.1 * 50) migrate. Individuals that migrate from 

one subpopulation to another are copied. They 

are not removed from the source subpopulation. 

Interval of Migration counts how many 

generations pass between migrations. 

 

After this preparation, we are ready to solve the  
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We propose the following algorithm 
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i.e. we consider that we grant the drug at a the 

time moments MTTT ,...,2,,0  at constant and 

uniform doses U. So, we have only two 

unknowns:  the dose U and our integer T. 

With these two unknowns we construct our 

chromosome - vector x and  

Population type:  

Double Vector Population size: 30 

Creation function: Uniform 

Fitness scaling: Rank 

Selection function: roulette 

Reproduction: 6 – Crossover fraction 0.8 

Mutation:  Gaussian – Scale 1.0,  

Shrink 1.0 

Crossover: Scattered 

Migration: Both – fraction 0.2, interval: 20 

Stopping criteria: 50 generations 

 

For every member of the population we run the  
 

the Finite Differences System of (5.1), 

(5.2),(5.3), (5.4) and we compute )(dJ . Then 

by applying our GA finally we find the 

optimum U and T. 

 

 

Similarly consider the model of [57] with the 

notation of [57] we have: 
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1n  is assumed to be the density of the tumor 

cells in the brain 2n is the density of the normal 

cells. Other details can be found in [57]. 

Therefore, a numerical scheme for the solution 

of the previous 3 equations could be the 

following Crank-Nicolson numerical scheme: 
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We propose the following algorithm 
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i.e. we consider that we grant the drug at a the 

time moments MTTT ,...,2,,0  at constant and 

uniform doses U. So, we have only two 

unknowns:  the dose U and our integer T. 

With these two unknowns we construct our 

chromosome - vector x and  

Population type:  

Double Vector Population size: 30 

Creation function: Uniform 

Fitness scaling: Rank 

Selection function: roulette 

Reproduction: 6 – Crossover fraction 0.8 

Mutation:  Gaussian – Scale 1.0,  

Shrink 1.0 

Crossover: Scattered 

Migration: Both – fraction 0.2, interval: 20 

Stopping criteria: 50 generations 

 

For every member of the population we run the  
 

the Finite Differences System of (5.1), 

(5.2),(5.3), (5.4) and we compute )(dJ . Then 

by applying our GA finally we find the 

optimum U and T and roughly speaking our 

results agree with the following results of [57]. 

 

 
 

Tumor density  versus the one-dimensional  

patial coordinate x with time t at the rounded 

quartile values {0, tq1=0.25tf , tmid=0.5tf , 

tq3=0.75tf , tf }, where tf = 5 days. The targeted 

tumor density rapidly decays in this simulated 5 
day trial. The Figure is from [57] 

 

 

 

3   Conclusion 
The Crank-Nicolson numerical scheme has been 

proposed  for the solution of different 

mathematical models of cancer frowth and a 

Genetic-Algorithms-based method for the 

optimal cancer therapy is also briefly outlined. 
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