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Abstract: - In this work we develop optimized computer codes for the calculation of angular momenta matrix 
elements for overall rotation. We determine the matrix elements using symmetric rotor eigenfunctions. The logic 
of the process is described by three decision tables. By maximizing the information entropy, we transform the 
decision tables in optimal computer codes. In all cases, the codes exhibit an efficiency at least of a 94% of the 
theoretical maximum. In addition, we show that the proposed codifications are optimal for any rotational 
quantum number J. 
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1   Introduction 
The complete rovibrational molecular Hamiltonian is 
defined by the kinetic and potential energy operators 
for the nuclei motion [1-3]. For a full description the 
three parts of the kinetic operator are needed, namely: 
the pure rotational, the pure vibrational, and the 
rotation-vibration coupling. These three elements 
involve the effect of angular momentum operators. In 
this work, we focus in the computation of the angular 
momentum matrix elements for overall rotation 
appearing in any variational treatment of the 
molecular rovibrational Hamiltonian. The calculation 
of these matrix elements is carried out relying in the 
use and code conversion of decision tables. A 
classical Decision Table (DT) is a tabular form 
displaying the full decision logic of a problem [4]. 
Thus, the associated DT describes the existing set of 
conditions, as well as the set of actions to take 
according to these conditions. The conditions define 
an upper block of rows (conditions matrix), whereas 
the actions define a lower block (actions matrix). The 
columns of the DT define the combination of 
conditions corresponding to the different actions 
(decision rules). DT´s are a tool dating back to the 
early 60´s of the 20th century. However, in several 
formats, they are still used for the optimization of 
processes in different research areas [5-7]. 
DT’s can be used to generate an optimized computer 
code for solving the problem at hand. This 
optimization refers to a reduction of: machine 
execution time, required machine memory, or number 

of decision rules. Along the years, several algorithms 
have been developed in order to reach these goals [4, 
8-10]. A key work dealing with the conversion of 
DT’s to computer code was presented by Pollack in 
1965 [9]. In this work, Pollack proposed two 
algorithms: one for reducing computer storage, and 
other for reducing total computer running time. Both 
algorithms are based on the localization of 
indifferences in decision rules [9]. Although this 
procedure is adequate for cases where indifferent 
conditions do exist, it can be ambiguous for problems 
with only independent cases (no indifferences). Here, 
a more general and formally sound method was 
developed by Shwayder [10]. The method applies an 
information theory approach [11, 12] relying in the 
concept of information entropy. Information theory is 
based in the seminal work of Shannon [11], and deals 
with the efficient coding of messages and 
communicating data [12]. Here, the information 
entropy (H) quantifies the number of bits needed for 
representing the result of an uncertain event (i.e., the 
information contained in a message) [11, 12].  
To generalize the variational treatment of 
rovibrational Hamiltonians, we develop in this work 
the optimal algorithms for computing angular 
momentum matrix elements. Thus, we calculate the 
value of the matrix elements, define the 
corresponding DT´s, and generate optimized codes 
from them. In addition, the efficiencies of the codes 
are quantified as proposed by Shwayder’s [10]. 
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2   Theory 
The kinetic energy operator of the rovibrational 
molecular Hamiltonian [13] can be expressed as a 
function of the angular momentum for overall 
rotation, J= (∂T/ω), and for the change on vibrational 
coordinates, p= (∂T/qɺ ). Thus, 
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where GR, GRV, and GV are components of the 
rovibrational G matrix [14], for pure rotation, 
rovibrational coupling and pure vibration, 
respectively. U is the pseudopotential term usually 
included in the potential function.  
Considering the angular momentum operator, J, 
along the molecule-fixed axis (x, y, z), its components 
Jx, Jy, and Jz, satisfy the following commutation 
relations [3]: 
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where: 

yx

m iJJJ ±=±       (3) 

are the ladder operators. 
Using equations (2) and (3), and a complete set of 
basis functions we can obtain the matrix elements 
arising in the variational treatment of the 
rovibrational Hamiltonian. These elements have the 
form:  

mk,J,mJ',k', Ô′     (4) 

Here, Ô represents any angular momentum operator 
and J, k, and m refer to the usual rotational quantum 
numbers. Using symmetric rotor eigenfunctions, we 
can obtain the non-vanishing matrix elements as 
described in [3, 15, 16]. Only three different cases 
can appear: 1) Operators with the form Ja, where a 
indicates the x, y, or z component. 2) Operators with 
the form (Ja)

2. 3) Operators with the form JaJb. Case 
1) corresponds to the rovibrational coupling, whereas 
cases 2) and 3) correspond to the pure rotation. The 
results are collected in Table 1. 

 
Table 1. Non-vanishing (J′=J) matrix elements for angular momentum operators. 

 

Operator (Ô) k′′′′ Matrix element Label 

Jx k−1 ħ/2[(J+k)(J−k+1)]1/2 x1 
 k+1 ħ/2[(J−k)(J+k+1)]1/2 x2 
Jy k−1 −iħ/2[(J+k)(J−k+1)]1/2 y1 
 k+1 iħ/2[(J−k)(J+k+1)]1/2 y2 
Jz k ħ k z1 
Jx

2 k ħ2/2[J2+J−k2] xx1 
 k−2 ħ2/4[J2+J−k2

−k]1/2[J2+J−k2
−3k−2]1/2 xx2 

 k+2 ħ2/4[J2+J−k2+k]1/2[J2+J−k2+3k−2]1/2 xx3 
Jy

2 k ħ2/2[J2+J−k2] yy1 
 k−2 −ħ2/4[J2+J−k2

−k]1/2[J2+J−k2
−3k−2]1/2 yy2 

 k+2 −ħ2/4[J2+J−k2+k]1/2[J2+J−k2+3k−2]1/2 yy3 
Jz

2 k ħ2 k2 zz1 
JxJy k −iħ2/2 k xy1 
 k−2 −iħ2/4[J2+J−k2+k]1/2[J2+J−k2+3k−2]1/2 xy2 
 k+2 iħ2/4[J2+J−k2

−k]1/2[J2+J−k2
−3k−2]1/2 xy3 

JyJx k iħ2/2 k yx1 
 k−2 −iħ2/4[J2+J−k2+k]1/2[J2+J−k2+3k−2]1/2 yx2 
 k+2 iħ2/4[J2+J−k2

−k]1/2[J2+J−k2
−3k−2]1/2 yx3 

JxJz k−1 ħ2/2(k)[J2+J−k2+k]1/2 xz1 
 k+1 ħ2/2(k)[J2+J−k2

−k]1/2 xz2 
JzJx k−1 ħ2/2(k−1)[J2+J−k2+k]1/2 zx1 
 k+1 ħ2/2(k+1)[J2+J−k2

−k]1/2 zx2 
JyJz k−1 −iħ2/2(k)[J2+J−k2+k]1/2 yz1 
 k+1 iħ2/2(k)[J2+J−k2

−k]1/2 yz2 
JzJy k−1 −iħ2/2(k−1)[J2+J−k2+k]1/2 zy1 
 k+1 iħ2/2(k+1)[J2+J−k2

−k]1/2 zy2 
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3   Methods and Implementation 
The results for the three cases shown in Table 1 are 
transformed in three different DT’s as shown in 
Tables 2, 3 and 4. In these DT’s the C’s are the 
conditions, the A’s are the actions, and the R’s 
represent the decision rules (i.e., the matrix elements 
of Table 1). To convert the DT’s in a computer code, 
optimizing the execution time, we use the Shwayder 
approach, which is based in Shannons’s noiseless 
coding theorem [10]. This method establishes that the 
optimal code is obtained by maximizing the 
associated information entropy (H). Therefore, we 
start with a given DT, selecting the condition with the 
highest entropy. Then, for each branch of the 
condition, we will have two sub-DT’s. One of the 
sub-DT’s corresponds to the rules with the initial 
condition set to true (or 1), and the other to the rules 
with the condition set to false (or 0). For each sub-DT 
we select again the condition with the highest 
entropy, and the process is applied recursively until 
no conditions left. In this form, we obtain the optimal 
testing order of the conditions. Considering that we 
have no indifferences and that we use two coding 
characters (1-0 or true-false) the maximum 
information entropy for a given condition is obtained 
as [10]: 
H= − ( P(1) log2 P(1) + P(0) log2 P(0) )  (5) 
 
In equation (5), P(1) represents the probability of the 
condition being true (or 1), and P(0) the probability 
of being false (or 0). For computing P(0) and P(1) we 
need the frequency of apparition (f ) of each decision 
rule (columns of the DT). Therefore, 
P(1)= Σ fi (with condition equal 1)  (6) 
P(0) = 1− P(1) 
 
To determine the frequencies for the different 
decision rules in Tables 2, 3 and 4 tests for J= 5, 10, 
and 50 were carried out. All the tests provide similar 
results. The frequencies differ at most in the second 
decimal place. This fact indicates that the code 
resulting from the DT’s is the same for the different 
values of J. Tables 2, 3, and 4 use the results for 
J=50. With this information we can apply the 
described procedure to transform the three DT’s in 
the corresponding optimized code. 
 
Case 1. The DT in Table 2 is the simplest one. Three 
conditions (C) are evaluated to generate the five 
decision rules (R). Values of a= x, and y are taken 
into account in the conditions. The a= z component, 
is implicitly taken into account. In the same form, 
only a condition for k’= k+1 or k-1 is needed to 

generate all the remaining decision rules. Five 
decision rules (R) are evaluated corresponding to the 
the five different matrix elements (the actions, A), see 
Table 1. Chart1 shows the resulting code that 
maximizes information entropy. 
 
Table 2. DT for the Ja angular momentum operators. 

 
if C1 then 
  if C3 then 
    <R1> 

  else <R2> 
  end_if 
else 
  if C2 then 
    if C3 then 
      <R3> 
    else <R4> 
    end_if 
  else <R5> 
  end_if 
end_if 

 
Chart 1. Optimal pseudocode for the DT in Table 2. 
 
Case 2. Here, the DT for the double application of the 
Ja operator is presented. This case corresponds to the 
pure rotational terms appearing when using a 
principal axes coordinate system. As shown in Table 
3, we have now four different conditions and seven 
different decision rules. Applying the maximization 
of the information entropy we obtain the code 
presented in Chart 2. 
 
Case 3. This is the most complex case. Here, we have 
seven different conditions and fourteen decision 
rules, see Table 4. Now the cases k′= k, k±2, and k±1 
are taken into account. After maximizing the 
information entropy the time optimal code shown in 
Chart 3 is obtained.  
 
It can be observed in Charts 1 to 3 that the different 
decision rules, i.e., the matrix elements to compute, 
appear just once. Inefficient implementations of the 
problem logic would lead to codes where different 
decision rules appear more than once. 
It is possible to quantify the efficiency of the codes as 
proposed by Shwayder [10]. The idea is to determine 

 Ja R1 R2 R3 R4 R5 
C1 a=x 1 1 0 0 0 
C2 a=y 0 0 1 1 0 
C3 k′=k−1 1 0 1 0 0 
 f (J=50) 0.199 0.199 0.199 0.199 0.201 
A1 x1  X - - - - 
A2 x2 - X - - - 
A3 y1 - - X - - 
A4 y2 - - - X - 
A5 z1 - - - - X 
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the average information entropy per comparison in a 
given code. 
 
Table 3. DT for the (Ja)

2
 angular momentum 

operators. 
 
 (Ja)

2 R1 R2 R3 R4 R5 R6 R7 
C1 a=x 1 1 1 0 0 0 0 
C2 a=y 0 0 0 1 1 1 0 
C3 k′=k 1 0 0 1 0 0 1 
C4 k′=k−2 0 1 0 0 1 0 0 
 f (J=50) 0.144 0.141 0.141 0.144 0.141 0.144 0.141 

A1 xx1 X - - X - - - 
A2 xx2 - X - - - - - 
A3 xx3 - - X - - - - 
A4 yy2 - - - - X - - 
A5 yy3 - - - - - X - 
A6 zz1 - - - - - - X 

 
 

if C1 then 
  if C3 then 
    <R1> 

  else  
    if C4 then 
      <R2> 

    else <R3> 
    end_if 
  end_if 
else 
  if C3 then 
    if C2 then 
      <R4> 

    else <R7> 
    end_if 
  else  
    if C4 then 
      <R5> 

    else <R6> 
  end_if 
end_if 

 
Chart 2. Optimal pseudocode for the DT in Table 3. 
 

Table 4. DT for the JaJb angular momentum operators. 
 

 JaJb R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

C1 a=x 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
C2 a=y 0 0 0 0 0 1 1 1 1 1 0 0 0 0 
C3 b=x 0 0 0 0 0 1 1 1 0 0 1 1 0 0 
C4 b=y 1 1 1 0 0 0 0 0 0 0 0 0 1 1 
C5 k′=k 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
C6 k′=k−1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 
C7 k′=k−2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 
 f(J=50) 0.072 0.070 0.070 0.071 0.071 0.072 0.070 0.070 0.071 0.071 0.071 0.071 0.071 0.071 

A1 xy1 X - - - - - X - - - - - - - 
A2 xy2 - X - - - - - X - - - - - - 
A3 xy3 - - X - - - - - - - - - - - 
A4 xz1 - - - X - - - - - - - - - - 
A5 xz2 - - - - X - - - - - - - - - 
A6 yx1 - - - - - X - - - - - - - - 
A7 yz1 - - - - - - - - X - - - - - 
A8 yz2 - - - - - - - - - X - - - - 
A9 zx1 - - - - - - - - - - X - - - 
A10 zx2 - - - - - - - - - - - X - - 
A11 zy1 - - - - - - - - - - - - X - 
A12 zy2 - - - - - - - - - - - - - X 

 
Since the theoretical maximum is 1 bit of entropy per 
comparison, the average entropy directly gives how 
close we are to the maximum possible information 
entropy. This value, therefore, represents a measure 
of the efficiency of the code proposed. The average 
entropy per comparison can be determined as 
follows. First we identify the conditions that appear 
in the code, some can appear more than once. For 
instance, in the pseudocode of Chart 1 we test four 
conditions, C1, C3, C2 and C3. For each condition 
we determine its frequency of evaluation (f) by 
adding the probabilities of all the decision rules than 
can be reached from it. In addition we compute the 

maximum information entropy (H) of each condition 
using equation (5). The P(1) and P(0) probabilities 
for each condition are obtained from the frequencies 
of the decision rules below it using equation (6). The 
weighted entropies (WH) are defined as the product 
f*H for each condition. The efficiency is obtained 
from the quotient of total WH to total f. Table 5 
shows the results for the codes in Charts 1 to 3. Table 
5 shows that the three implementations, Charts 1, 2, 
and 3, have efficiencies of 97%, 98%, and 94%, 
respectively. 
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if C1 then 
  if C4 then 
    if C5 then 
      <R1> 

    else 
      if C7 then 
        <R2> 

      else <R3> 
      end_if 
    end_if 
  else  
    if C6 then 
      <R4> 

    else <R5> 
    end_if 
  end_if 
else 
  if C2 then 
    if C3 then  
      if C5 then  
        <R6> 

      else  
        if C7 then 
          <R7> 

        else <R8> 
        end_if 
      end_if 
   else  
     if C6 then 
       <R9> 

     else <R10> 
     end_if 
   end_if 
  else 
    if C4 then  
      if C6 then 
        <R13> 
      else <R14> 
    else 
      if C6 then  
        <R11> 
      else <R12> 
      end_if 
    end_if 
  end_if 
end_if 

 
Chart 3. Optimal pseudocode for the DT in Table 4. 
 

4   Conclusions 
In this paper, we obtain the most efficient algorithms 
for computing angular momentum matrix elements 
for overall rotation. Using symmetric rotor 
eigenfunctions we determine the matrix elements 
needed for the variational treatment of overall 
rotation and rovibrational coupling. The process logic 
is described using three decision tables (DT’s). Then, 
the optimal computer code corresponding to each DT 
is obtained by maximizing the information entropy 
(H) of the resulting algorithm. The efficiency of each 
codification is quantified by comparison with the 
theoretical maximum value of H. We find efficiencies 
of 97%, 98% and 94% for the three considered DT’s. 
These results show that the codifications are 
extremely efficient. In addition, we find that the 
frequency of apparition of each matrix element is 
almost constant for different values of the rotational 
quantum number J. Since this frequency is the factor 

determining the resulting computer code, the 
codifications proposed are optimal for any J. 
 
 
Table 5. Efficiencies of the algorithms corresponding 
to the codes in Charts 1 to 3. 
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Case 1. DT in Table 2. 

Decision  
node 

Condition H f WH 

1 C1 0.9704 1.0000 0.9704 
2 C3 1.0000 0.3992 0.3992 
3 C2 0.9204 0.6007 0.5528 
4 C3 1.0000 0.3992 0.3992 
Total   2.3992 2.3216 
Efficiency= 97 % 
Case 2. DT in Table 3. 

Decision  
node 

Condition H f WH 

1 C1 0.9848 1.0000 0.9848 
2 C3 0.9226 0.4277 0.3946 
3 C3 0.9999 0.5722 0.5722 
4 C4 1.0000 0.2832 0.2832 
5 C2 1.0000 0.2889 0.2889 
6 C4 1.0000 0.2832 0.2832 
Total   2.8555 2.8072 
Efficiency= 98 % 
Case 3. DT in Table 4. 

Decision  
node 

Condition H f WH 

1 C1 0.9401 1.0000 0.9401 
2 C4 0.9714 0.3569 0.3467 
3 C2 0.9912 0.6430 0.6374 
4 C5 0.9226 0.2138 0.1973 
5 C6 1.0000 0.1430 0.1430 
6 C3 0.6752 0.3569 0.2410 
7 C4 1.0000 0.2861 0.2861 
8 C7 1.0000 0.1416 0.1416 
9 C5 0.9226 0.2138 0.1973 
10 C6 1.0000 0.1430 0.1430 
11 C6 1.0000 0.1430 0.1430 
12 C6 1.0000 0.1430 0.1430 
13 C7 1.0000 0.1416 0.1416 
Total   3.9263 3.7016 
Efficiency= 94 % 

RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY

ISSN: 1790-5125 49 ISBN: 978-960-474-141-0



References: 

[1] Meyer R., Günthard Hs.H., General Internal 
Motion of Molecules, Classical and Quantum-
Mechanical Hamiltonian, Journal of Chemical 
Physics, Vol. 49, No. 4, 1968, pp. 1510-1520. 

[2] Watson J.K.G., Simplification of the molecular 
vibration-rotation Hamiltonian. Molecular 

Physics. Vol. 15, No. 5, 1968, pp. 479-490. 
[3] Papousek D., Aliev M.R., Molecular Vibrational-

Rotational Spectra, Academia, Prague, 1982. 
[4] Kirk H.W., Use the Decision Tables in Computer 

Proggramming. Communications of the ACM, 
Vol. 8, No. 1, 1965, pp. 41-43. 

[5] Nijssen S., Fromont E., Mining Optimal Decision 
Trees from Itemset Lattices, KDD'07 August 12-
15, ACM, San Jose, California, USA, 2007, pp. 
530-539. 

[6] Smith J.A., RNA Search with Decision Trees and 
Partial Covariance Models, IEEE/ACM 

Transactions on Computational Biology and 

Bioinformatics, Vol. 6, No. 3, 2009, pp. 517-527. 
[7] Chen Y., Xu W., Sundaram H., Rikakis T., Liu 

S.-M., A Dynamic Decision Network Framework 
for Online Media Adaptation in Stroke 
Rehabilitation, ACM Transactions on Multimedia 
Computing, Communications and Applications, 

Vol. 5, No. 1, 2008, pp. 4:1-38. 
[8] Press L.I., Conversion of Decision Tables To 

Computer Programs. Communications of the 

ACM, Vol. 8, No. 6, 1965, pp. 385-390. 
[9] Pollack S.L., Conversion of Limited-Entry 

Decision Tables to Computer Programs. 
Communications of the ACM, Vol. 8, No. 11, 
1965, pp. 677-682. 

[10] Shwayder K., Conversion of Limited-Entry 
Decision Tables to Computer Programs −A 
Proposed Modification to Pollack’s Algorithm, 
Programming Techniques, Communications of the 

ACM, Vol. 14, No. 2, 1971, pp. 69-73. 
[11] Shannon C.E., A Mathematical Theory of 

Communication. The Bell System Technical 

Journal, Vol. 27, 1948, pp. 379-423, 623-656. 
[12] Gray R.M., Entropy and Information Theory, 

Springer-Verlag, New York, 2009, on-line version 
http://ee.stanford.edu/~gray/it.html, last visit 
October 22, 2009. 

[13] Podolsky B., Quantum-mechanically correct 
form of Hamiltonian function for conservative 
systems, Physical Review, Vol. 32, 1928, pp. 812-
816. 

[14] Harthcock M.A., Laane J., Calculation of kinetic 
Energy Terms for the Vibrational Hamiltonian: 
Application to Large-Amplitude Vibrations Using 
One-, Two-, and Three-Dimensional Models. 

Journal of Molecular Spectroscopy, Vol. 91, 
1982, pp. 300-324. 

[15] Shaffer W.H., Operational Derivation of the 
Wave Functions for a Symmetrycal Rigid Rotor, 
Journal of Molecular Spectroscopy, Vol. 1, 1957, 
pp. 69-80. 

[16] Burkhard D.G., Factorization and Wave 
Functions for the Symmetric Rigid Rotator. 
Journal of Molecular Spectroscopy, Vol. 2, 1958, 
pp. 187-202. 

RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY

ISSN: 1790-5125 50 ISBN: 978-960-474-141-0




