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PREFACE 
 
These Proceedings are organized in two parts and contain the plenary lectures and the 
regular papers presented at the 7th Summer School Sozopol‘09, which took place in 
Sozopol, Bulgaria, between 20 and 23 Sept. 2009 in the framework of the Days of the 
Science of the Technical University of Sofia. The Summer School covers the 
advanced aspects of Theoretical Electrical Engineering and it is a platform for 
postgraduate training of Ph.D. students and young scientists. During the Summer 
School well-known experts presented some advanced aspects of circuits and systems 
theory, electromagnetic field theory and their applications. Apart from the 
educational part of the Summer School a presentation of original authors’ papers took 
place. 
 
The main topics of the Summer School Sozopol’09 include Circuits and Systems 
Theory, Signal Processing and Identification Aspects, Electromagnetic Fields, 
Theoretical Concepts, Applications and Innovative Educational Aspects. 
 
The Summer School Sozopol’09 has been organized by the Department of 
Theoretical Electrical Engineering of the Technical University of Sofia with the 
sponsorship of the Research and Development Sector of the Technical University of 
Sofia. This has been the seventh edition of the event, after the Summer Schools in 
1986, 1988, 2001, 2002, 2005 and 2007. This Summer School is especially dedicated 
to prof. Mincho Zlatev's 100 years birthday anniversary. 
 
There were 52 participants from 5 different countries at the Summer School this year. 
There were 14 plenary lectures and 29 regular papers that are published in these 
Proceedings. Providing the recent advances in Theoretical Electrical Engineering the 
Proceedings will be of interest to all researchers, educators and Ph.D. students in the 
area of Electrical Engineering. 
 
Special thanks are due to the Research and Development Sector, Faculty of 
Automation and the Section of Social Services of the Technical University of Sofia 
about the overall support of the event. We also want to thank to the World Scientific 
and Engineering Academy and Society (WSEAS) and company Antipodes Ltd. 
which partially sponsored the event. We hope to meet again in the following edition 
of the Summer School to continue the good tradition and collaboration in the field of 
Theoretical Electrical Engineering. 
 
 
 

Organizing Committee 
Sofia, Oct. 2009 
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IN MEMORIAM TO PROF. MINCHO ZLATEV 

 
 

Prof. M. P. Zlatev is one of the pioneers who create and develop the engineer 
education in Bulgaria after the Second World War, particularly in VMEI (the Higher 
Mechanical and Electrical Engineering Institute) presently the Technical University – 
Sofia.  

As man with remarkable erudition, thoroughness, knowledge and scientific 
achievements he exerted positive influence on generations of lecturers, engineers and 
university students both in the field of electrical engineering and their human person-
alities. 

He was born on 11.10.1909 in the town of Sevlievo. He got his secondary school 
diploma from the Aprilovska gimnazia ( Aprilov’s  High School) in the town of Gab-
rovo. 

In 1931 he graduated from the Higher Technical School in Toulouse, France and 
received a diploma for an electrical engineer.  

He defended the DSc thesis in the Leningrad Polytechnical Institute (USSR) in 
1966. His official opponent was academic Neiman.  

Starting in 1945 until his retirement (1976) he was the HOD. 
His main teaching and scientific subject was theoretical electrical engineering.  
 
Following are his administrative and scientific positions: 
» Member of the Academic Council and the Scientific Council of theVMEI from 

1954; 
» Vice rector on R & D and production activities during periods 1960 – 1962 and 

1968 - 1970; 
» Doctor Honoris Causa of the Scientific Academy, Toulouse, France; 
» Senior member of the IEEE, New York, since 1966; 
» A sitting member of the Bulgarian S.I.G.R.E. Delegation since 1956; 
» A member of  International Association of Informatics since 1974; 
» A delegate – expert of Bulgaria in MEK since 1974. 
 
He is a bearer of the following medals: 
„Kiril and Metodi“, I and II classes (1957, 1959, 1972), 
„Cherveno zname na truda“ („A red banner of labour“) – 1970. 
He retired from the VMEI in 1976 and then continued to work in Bulgarian Sci-

ence Academy. 
He passed away on 31.05.1991 in Sofia.   
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In 1931, after he had finished his engineering education in France, he worked in 
Electrotechnics Laboratory in the Office of Trams and Light in Sofia and later he was 
in charge of it.  

In 1945 (16.10.1945) he was elected by the Academic Council in the Higher 
Technical School Sofia (HTS) as an extraordinary professor (the decree № 144 of the 
Bulgarian Regency). Two days later the HTS - Sofia was renamed as State Polytech-
nic (State Journal № 248 / 24.10.1945) with two faculties: Mechanical - Electrical - 
Technological Faculty and Civil Architectural Faculty. 

The first curriculums and syllabuses were worked out by both Prof. M. P. Zlatev 
and Professors Grigor Usunov and Nancho Nanchev. In this respect they are among 
the pioneers in creation and development the engineering education in Bulgaria after 
post - war years. 

Prof. M. P. Zlatev was an HOD of the first Electrical Department at the State 
Polytechnic namely Theory of Electricity and Measurement Technics and he re-
mained in this position until his retirement in 1976. 

He was nominated as a First Secretary of the section of Electricity at the Techno-
logical Faculty of the State Polytechnic. He stayed at this position from 1945 to 1950. 

He became a member of the Faculty Council of the new established Faculty of 
Electrical Engineering at Polytechnic and remained such a mumber till 1974. His De-
partment was renamed as Theoretical and Measurement Technics Department and he 
continued to be the HOD. 

On the 10.06.1953 the State Polytechnic was divided in four Institutes, one of 
each is Mechanical - Electrical Institute with two faculties. The Theoretical and 
Measurement Technics Department was included in the structure of the Electrical 
Faculty at the MEI (26.10.1953) and prof. M. P. Zlatev was elected as a member of 
the Faculty Council.   

The Theoretical and Measurement Technics Department formed two departments: 
the Theoretical Electrical Department (TED) and the Electrical Measurement De-
partment. Prof. M. P. Zlatev remained the HOD of the TED. 

Later on the two departments become a part of the new formed Faculty of Auto-
matics (07.08.1974). 

On the 12.12.1945 prof. M. P. Zlatev delivered his first lecture on the Electricity 
Theory. He also delivered lectures on Electrical Measurement Theory – 1948. 

Prof. Zlatev’s core courses were the Theoretical Electrical Engineering – part I, II 
and III. His lectures were remarkable. Prof. Zlatev gave from memory all mathemati-
cal expressions and conclusions on black broad in a simple and clear way. 

As an examiner he treated every student with respect. Prof. M. P. Zlatev put in his 
notebook all questions of the exams and later, during the defence of the of a diploma 
paper, he used to ask same questions. 

His personal life is an example to follow and it is a good confirmation of the au-
thority of the VMEI. 

Prof. Zlatev is the author of 13 volumes textbooks on Theory of Electricity, Basic 
Electrotechnics, and Theoretical Electrotechnics. 
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Some of the titles of the textbooks written by prof. M. P. Zlatev are: 
 
Zlatev, M. Theory of Electricity, part I, Sofia, 1947 
Zlatev, M. Theory of Electricity, part II, “Science and Art”, 1949 
Zlatev, M. Measurement Electrotechnic, 1950  
Zlatev, M. Basic Electrical Engineering, vol. I, Sofia, “Tehnica”, 1954, 1959 
Zlatev, M. Basic Electrical Engineering, vol. II, Sofia “Tehnika”, 1957, 1961 
Zlatev, M. Basic Electrical Engineering, vol. III, Sofia “Tehnika”, 1958, 1962 
Zlatev, M. Basic Electrical Engineering, Sofia “Tehnika”, 1964 
Zlatev, M. Theoretical Electrotechnics, vol. I, Sofia, “Tehnika”, 1972  
Zlatev, M. Theoretical Electrotechnics, vol. II, Sofia, “Tehnika”, 1973 
Zlatev, M. Theoretical Electrotechnics, vol. III, Sofia, “Tehnika”, 1974 

 
He has written 160 scientific papers and reports. Many of them are published 

abroad. The first scientific paper of the department abroad is his “Ein neues Zahlen-
system zur Berechnung Linear Netzgebilde”, published in 1955 in German magazines 
Dtsch. Electroteschnic. 

Prof. Zlatev has also been responsible for many R & D projects and a co-author of 
11 patents.  

Until now in the Electrical Engineering Department, that was founded by prof. 
Zlatev, four DSc thesises and more than 35 PhD thesises have been defended. In this 
manner a staff of many people has been trained and they constitute a base of similar 
departments in other universities in Bulgaria. 

Some 50 monographs, textbooks and manual connected with the training of the 
electrical engineering students have been published and they are used not only in the 
TU – Sofia but in other universities in Bulgaria. 
 
 
 

Department Theoretical Electrical Engineering,  
Technical University of Sofia 



 

ARTIFICIAL INTELLIGENCE FOR SOLVING PARTIAL  
DIFFERENTIAL EQUATIONS 

Nikos E. Mastorakis 

WSEAS Research Department, Agiou Ioannou Theologou 17-23, Zografou,  
 15773, Athens, GREECE  

and 
Technical University of Sofia, English Language Faculty, Industrial Engineering Department,  

Sofia 1000, BULGARIA, mastor@wseas.org 

Abstract: Genetic Algorithms plus Nelder-Mead Optimization for several problems of FEM 
(Finite Elements Methods) solution of PDEs have been proposed by the author since 1996. Recently 
the method has been applied on Non-linear Problems in Fluid Mechanics. For example the p-
Laplacian operator, or the p-Laplace operator, is a quasilinear elliptic partial differential operator 
of 2nd order. The p-Laplacian equation is a generalization of the PDE of Laplace Equation and in 
this paper, we present a way of its solution using Finite Elements. Our method of Finite Elements 
leads to an Optimization Problem that can be solved by an appropriate combination of Genetic Al-
gorithms and Nelder-Mead. On the other hand recently, the existence of a nontrivial solution to the 
nonlinear Schrodinger-Maxwell equations in R3, assuming on the nonlinearity the general hypothe-
ses introduced by Berestycki & Lions has been proved. In this paper, the Numerical Solution of the 
system of PDEs of Schrodinger-Maxwell equations (with a general nonlinear term) via Finite Ele-
ments and Genetic Algorithms with Nelder-Mead is proposed. The method of Finite Elements and 
Genetic Algorithms with Nelder-Mead that has been proposed by the author recently is also used. 
 
1. INTRODUCTION 
 

Many nonlinear problems in physics and mechanics are formulated in equations 
that contain the p-Laplacian, (i.e. the p-Laplace operator), where the p-Laplacian op-
erator is defined as follows 

⎟
⎠
⎞⎜

⎝
⎛ ∇∇=Δ − uuu p

p
2div:

 
 
In a recent paper, [17], Bognar presented a very interesting numerical and analytic 

investigation of problems of fluid mechanics that are described with PDEs containing 
the p-Laplacian operator. Previous publications (also reported in [17]) include reac-
tion-diffusion problems, non-Newtonian fluid flows [18], fluid flows through certain 
types of porous media ([19], [20], the Lane-Emden equations for equilibrium con-
figurations of spherically symmetric gaseous stellar objects [21], singular solutions 
for the Emden-Fowler equation [22] and the Einstein-Yang-Mills equations [23], the 
existence and nonexistence of black hole solutions, nonlinear elasticity [24], glaciol-
ogy [25] and petroleum extraction [26]. It is clear that for p=2: Δp=Δ The study of 
the p-Laplacian equation started more than thirty years ago. In recent years, rapid de-
velopment has been achieved for the study of equation involving operator Δp and a 
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vast literature has appeared on the theory of quasilinear differential equations.). In 
[27] Strikwerda summarized many Finite Difference Schemes for PDEs. Other rele-
vant studies can be found in [28], [29] and [30].  

In [17], Bognar had studied the equation of turbulent filtration in porous media  
 

 
( )2

div ,
pn nc

t
αρθ λ ρ ρ

−∂
= ∇ ∇

∂  (1) 
 

where 0θ >  and the constants 0>n  and 1>p  satisfy 1>np . If we scale out the con-
stants in (1), we derive 

 
( )n

p u
t
u

Δ=
∂
∂

 (2) 
 
where a particular case of (2) is the non-Newtonian filtration equation  

 

 
u

t
u

pΔ=
∂
∂

 (3) 
 
which is also called evolution p-Laplacian equation. The case  

np 11+>
 is called the slow diffusion and the case 

,1 1
np +<

 the fast diffusion.  
Also in the paper [17], Bognar studied the equation  

 

 
,div 2 qp uuu

t
u λ+⎟

⎠
⎞⎜

⎝
⎛ ∇∇=

∂
∂ −

 (4) 
where ,1>p  0>q  and λ  are some constants, in which the nonlinear term quλ  de-
scribes the nonlinear source in the diffusion process, called "heat source" if 0>λ  
and "cold source" if .0<λ  Just as the Newtonian equation (p=2), the appearance of 
nonlinear sources will exert a great influence to the properties of solutions and the in-
fluence of "heat source" and "cold source" is completely different.  

In [31], an attempt is made by the author to solve the equations (2), (3) and (4) us-
ing various numerical schemes.  

In this paper we will solve the boundary value problem  
 

 ( )2div 0pu u−∇ ∇ =
 

 
where u is known on the boundary of our domain using Variational Techniques (Fi-
nite elements).  

The Problem is reduced to an Optimization problem that can be solved by Genetic 
Algorithms with Nelder-Mead. An early paper of the author with the title “Solving 
Differential Equations via Genetic Algorithms” was presented in [1]. Actually, the 
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author presented in 1996 the solution of ODE and PDE using Genetic Algorithms op-
timization, while the author use the same method to solve various problems in 
[2]÷[9]. 

The main Results are given in Section 2 and a numerical example illustrates the 
method in Section 3. 

A discussion for the numerical solution of (2), (3) and (4) by finite elements is 
also included in Section 4. 
 
2. MAIN RESULTS 
 

We start solving the boundary value problem 
 

 
( )2div 0pu u−∇ ∇ =

 (4) 
 
where u is a known function on the boundary of our domain. 

As one can see in [32] and [33], the solution of this p-Laplacian equation with 
Dirichlet boundary conditions in a domain Ω is the minimizer of the energy func-
tional 

 
( ) pJ u u dv= ∇∫   (5) 

We consider that u is written as  

n n
n

u fλ=∑
 

 
n

n
u f=∑

   (6) 
where nλ  have been incorporated in nf  

So, we have the minimization problem  

 

min ( )
p

n
n

f dv∇ ∑∫
  

 

One can select a triangular mesh and appropriate functions nf  that have non-zero 
value only in the n-th triangle (“finite elements”). So, in a triangular mesh, for exam-

ple of 2 , we can have n n n nf a x b y c= + +  for the n-th triangle. Without loss of gen-
erality we consider the case 2 here u in (4). 

To avoid to write continuity conditions on the common vertices of the triangles 
of the mesh, one can find that in the n-th triangle of the points s,q,r (see Figure 1) 

 

 s n s n s nu a x b y c= + +    (7.1) 

 q n q n q nu a x b y c= + +    (7.2) 
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 r n r n r nu a x b y c= + +    (7.3) 

 
Fig. 1. A triangle in a 2-D mesh 

 

There three equations can be solved with respect to , ,n n na b c  and give 
 

 

1
1
1

s s

q q

r r
n

u y
u y
u y

a
D

=
 (8.1) 

 

1
1
1

s s

q q

r r
n

x u
x u
x u

b
D

=
 (8.2) 

 

s s s

q q q

r r r
n

x y u
x y u
x y u

c
D

=
 (8.3) 

 

1
1
1

s s

q q

r r

x y
D x y

x y
=

 
 

(which is by the way 2*E where E is the algebraic area of the triangle) 
So, from the minimization problem 

min ( )
p

n
n

f dv∇ ∑∫
 

 
we find the equivalent minimization problem 

  

 
min ( ) p

nu dvφ∫    (9) 
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where  
( )nuφ is the function that we find after replacing 

n n n nf a x b y c= + +
 

 

In 

 

( )n
n

f∇ ∑
 

and  
 

, ,n n na b c
 

 
are evaluated using (8.1), (8.2), (8.3) for each triangle of the mesh. 

Equation (9) can be solved now by a variety of techniques. The author uses Ge-
netic Algorithms with Nelder-Meade for Non-linear Problems as in [2], [3], [4], [5], 
[6], [7], [8]. 

The same optimization scheme: Genetic Algorithms with Nelder-Meade will be 
also applied for (9). 

Before proceeding in the solution of the problem, some background on GA (Ge-
netic Algorithms) and Nelder-Mead is necessary. In [4], the author has also proposed 
a hybrid method that includes a) Genetic Algorithm for finding rather the neiborhood 
of the global minimum than the global minimu itself and b) Nelder-Mead algorithm 
to find the exact point of the global minimum itself.  

So, with this Hybrid method of Genetic Algorithm + Nelder-Mead we combine 
the advantages of both methods, that are a) the convergence to the global minimum 
(genetic algorithm) plus b) the high accuracy of the Nelder-Mead method.  

If we use only a Genetic Algorithm then we have the problem of low accuracy. 
If we use only Nelder-Mead, then we have the problem of the possible conver-

gence to a local (not to the global) minimum.  
These disadvantages are removed in the case of our Hybrid method that combines 

Genetic Algorithm with Nelder-Mead method. We recall the following definitions 
from the Genetic Algorithms literature:  

 

Fitness function is the objective function we want to minimize.  
 

Population size specifies how many individuals there are in each generation. We 
can use various Fitness Scaling Options (rank, proportional, top, shift linear, etc), as 
well as various Selection Options (like Stochastic uniform, Remainder, Uniform, 
Roulette, Tournament). Fitness Scaling Options: We can use scaling functions. A 
Scaling function specifies the function that performs the scaling. A scaling function 
converts raw fitness scores returned by the fitness function to values in a range that is 
suitable for the selection function.  

We have the following options:  
Rank Scaling Option: scales the raw scores based on the rank of each individual, 

rather than its score. The rank of an individual is its position in the sorted scores. The 
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rank of the fittest individual is 1, the next fittest is 2 and so on. Rank fitness scaling 
removes the effect of the spread of the raw scores.  

Proportional Scaling Option: The Proportional Scaling makes the expectation 
proportional to the raw fitness score. This strategy has weaknesses when raw scores 
are not in a "good" range.  

Top Scaling Option: The Top Scaling scales the individuals with the highest fit-
ness values equally.  

Shift linear Scaling Option: The shift linear scaling option scales the raw scores 
so that the expectation of the fittest individual is equal to a constant, which you can 
specify as Maximum survival rate, multiplied by the average score.  

We can have also option in our Reproduction in order to determine how the ge-
netic algorithm creates children at each new generation.  

For example,  
Elite Counter specifies the number of individuals that are guaranteed to survive to 

the next generation.  
Crossover combines two individuals, or parents, to form a new individual, or 

child, for the next generation.  
Crossover fraction specifies the fraction of the next generation, other than elite 

individuals, that are produced by crossover.  
Scattered Crossover: Scattered Crossover creates a random binary vector. It then 

selects the genes where the vector is a 1 from the first parent, and the genes where the 
vector is a 0 from the second parent, and combines the genes to form the child.  

Mutation: Mutation makes small random changes in the individuals in the popula-
tion, which provide genetic diversity and enable the GA to search a broader space. 
Gaussian Mutation: We call that the Mutation is Gaussian if the Mutation adds a ran-
dom number to each vector entry of an individual. This random number is taken from 
a Gaussian distribution centered on zero. The variance of this distribution can be con-
trolled with two parameters. The Scale parameter determines the variance at the first 
generation. The Shrink parameter controls how variance shrinks as generations go by. 
If the Shrink parameter is 0, the variance is constant. If the Shrink parameter is 1, the 
variance shrinks to 0 linearly as the last generation is reached. 

Migration is the movement of individuals between subpopulations (the best indi-
viduals from one subpopulation replace the worst individuals in another subpopula-
tion). We can control how migration occurs by the following three parameters.  

Direction of Migration: Migration can take place in one direction or two. In the 
so-called “Forward migration” the nth subpopulation migrates into the (n+1)'th sub-
population. while in the so-called “Both directions Migration”, the nth subpopulation 
migrates into both the (n-1)th and the (n+1)th subpopulation.  
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Migration wraps at the ends of the subpopulations. That is, the last subpopulation 
migrates into the first, and the first may migrate into the last. To prevent wrapping, 
specify a subpopulation of size zero.  

Fraction of Migration is the number of the individuals that we move between the 
subpopulations. So, Fraction of Migration is the fraction of the smaller of the two 
subpopulations that moves. If individuals migrate from a subpopulation of 50 indi-
viduals into a population of 100 individuals and Fraction is 0.1, 5 individuals (0.1 * 
50) migrate. Individuals that migrate from one subpopulation to another are copied. 
They are not removed from the source subpopulation. Interval of Migration counts 
how many generations pass between migrations. 

 

The Nelder-Mead simplex algorithm appeared in 1965 and is now one of the most 
widely used methods for nonlinear unconstrained optimization [33]÷[35]. The 
Nelder-Mead method attempts to minimize a scalar-valued nonlinear function of n 
real variables using only function values, without any derivative information (explicit 
or implicit).  

 

The Nelder-Mead method thus falls in the general class of direct search methods. 
The method is described as follows: Let f(x) be the function for minimization.  

x is a vector in n real variables. We select n+1 initial points for x and we follow 
the steps:  

 
Step 1. Order.  
Order the n+1 vertices to satisfy f(x1) ≤ f(x2) ≤ … ≤ f(xn+1), using the tie-breaking 

rules given below. 
Step 2. Reflect. 

Compute the reflection point xr from 11 )1()( ++ −+=−+= nnr xxxxxx ρρρ  , where  

∑
=

=
n

i
i nxx

1

/
  is the centroid of the n best points (all vertices except for xn+1). 

Evaluate fr=f(xr). If f1 ≤ fr < fn accept the reflected point xr and terminate the iteration. 
 

Step 3. Expand.  
If fr < f1 , calculate the expansion point xe,  

11 )1()()( ++ −+=−+=−+= nnre xxxxxxxxx ρχρχρχχ  
and evaluate fe=f(xe). If fe < fr, accept xe and terminate the iteration; otherwise (if fe ≥ 
fr), accept xr and terminate the iteration. 

 

Step 4. Contract.  
If fr ≥ fn, perform a contraction between x  and the better of xn+1 and xr.  
 

Outside. If fn ≤ fr < fn+1 (i.e. xr is strictly better than xn+1), perform an outside con-

traction: calculate 11 )1()()( ++ −+=−+=−+= nnrc xxxxxxxxx ργργγργ  
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and evaluate fc = f(xc). If fc ≤ fr, accept xc and terminate the iteration; otherwise, go to 
step 5 (perform a shrink). 

Inside. If fr ≥ fn+1, perform an inside contraction: calculate  

11 )1()( ++ +−=−−= nncc xxxxxx γγγ , and evaluate fcc = f(xcc). If fcc < fn+1, 
accept xcc and terminate the iteration; otherwise, go to step 5 (perform a shrink). 

 

Step 5. Perform a shrink step.  
Evaluate f at the n points vi = x1 + σ (xi – x1), i = 2, … , n+1. The (unordered) ver-

tices of the simplex at the next iteration consist of x1, v2, … , vn+1.  
 

After this preparation, we are ready to solve the  

min ( ) p
nu dvφ∫   

of (9) as minimization problem.  
 
The minimization is achieved by using Genetic Algorithms (GA) and the method 

of Nelder-Mead exactly as we described previously. We can use the MATLB soft-
ware package  

(MATLAB, Version 7.0.0, by Math Works).  
 
In the next numerical example (Section 3) our GA has the following Parameters 
 
Population type:  
Double Vector Population size: 30 
Creation function: Uniform 
Fitness scaling: Rank 
Selection function: roulette 
Reproduction: 6 – Crossover fraction 0.8 
 
Mutation: Gaussian – Scale 1.0,  
Shrink 1.0 
Crossover: Scattered 
Migration: Both – fraction 0.2, interval: 20 
Stopping criteria: 50 generations 
 

3. NUMERICAL EXAMPLE 
 
Consider now the following problem (Fig. 2) 

 
( )2div 0pu u−∇ ∇ =

   (4) 
in the domain 

  [0, 2] [0,2] [0,1] [0,1]u∈ × − ×
 

with 0u =  in the external boundary:  
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2, 2 2x y= ± − ≤ ≤   
2, 2 2y x= ± − ≤ ≤  

 

and 1u =  in the internal boundary 
 

1, 1 1x y= ± − ≤ ≤   
1, 1 1y x= ± − ≤ ≤  

 
Fig. 2 

 
Fig. 3 

 
Due to symmetry, we can split the domain in 8 same trapezoids (trapezia). It is 

sufficient to solve the problem  

 
( )2div 0pu u−∇ ∇ =

 
 

in one of them with the boundary conditions 0u =  in the external boundary and 1u =  
in the internal boundary. 
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Taking one of these trapezoids and splitting it into 6 triangles like in Fig. 3, we 
have in some enlargement the following Figure: Fig. 4 

 

 
Fig. 4 

 
We consider as 1 2 3 4 5 6 7, , , , , ,u u u u u u u  the value of the u at the points 
(0, 0), (2, 0), (2, 2), (2, 4), (1,3), (0, 2), (1,1)  
i.e. 

1

2

3

4

5

6

7

(0,0),
(2,0),
(2,2),
(2,4),
(1,3),
(0,2),
(1,1)

u u
u u
u u
u u
u u
u u
u u

=
=
=

=
=

=

=  
 
Then by considering  

 p n s n s nu a x b y c= + +   (7.1) 

 q n q n q nu a x b y c= + +   (7.2) 

 r n r n r nu a x b y c= + +   (7.3) 
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in every one of the 6 triangles, we solve as in (8.1), (8.2), (8.3) and finally we intro-
duce to 

 
( ) pJ u u dv= ∇∫   (5) 

 

We have, considering also that 1 6 1u u= =  and 2 3 4 0u u u= = =  
So, after some algebraic manipulation we find that we have to minimize the quan-

tity I 
where 

 

2 2 2 2
5 5 72 1 (1 2 ) 1 (1 2 )

p ppI u u u= + + − + + − +
 (10) 

               

2 2
7 7 7(2 2 ) 1 (1 2 ) (2 )

pp pu u u+ − + + − +
 

with respect to 5 7,u u  
 

Now, in order to find the global minimum of I we use GA (Population type: Dou-
ble Vector Population size: 30 / Creation function: Uniform /Fitness scaling: Rank / 
Selection function: roulette / Reproduction: 6 – Crossover fraction 0.8 / / Mutation: 
Gaussian – Scale 1.0, Shrink 1.0 / / Crossover: Scattered / Migration: Both – fraction 
0.2, interval: 20 /Stopping criteria: 50 generations) 
and continue with Nelder-Mead 

 

So we find the following results for different values of p. 
 

p 5u  7u  I 
2 0.2500 0.5000 5.5000 
3 0.3145 0.5000 5.4623 
4 0.3471 0.5000 5.4280 
5 0.3678 0.5000 5.3994 
6 0.3824 0.5000 5.3754 
7 0.3935 0.5000 5.3550 
8 0.4024 0.5000 5.3373 
10 0.4155 0.5000 5.3082 
20 0.4468 0.5000 5.2246 
50 0.4721 0.5000 5.1375 
200 0.4903 0.5000 5.0582 

 

(The combined method of Genetic Algorithms and Nelder-Mead was proposed by 
the author in 2005, [2]÷[9] , while the author proposed the solution of ODEs and 
PDES since July 1996 (See[1])). 
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4. SOLUTION OF THE EQUATIONS (2), (3) AND (4) 
 
We remind the problems: 

 
( )2

div ,
pn nc

t
αρθ λ ρ ρ

−∂
= ∇ ∇

∂   (1) 
If we scale out the constants in (1), we derive 
 

 
( )n

p u
t
u

Δ=
∂
∂

  (2) 
 

where a particular case of (2) is the non-Newtonian filtration equation  
 

 
u

t
u

pΔ=
∂
∂

  (3) 
and 

 
,div 2 qp uuu

t
u λ+⎟

⎠
⎞⎜

⎝
⎛ ∇∇=

∂
∂ −

  (4) 
 
Consider that u can be written as  

( )n n
n

u t fλ=∑
 or 

( )n
n

u f t=∑
 where nλ  have been incorporated to ( )nf t  

In this “dynamic” case, in a triangular mesh of 2  we can have 
( ) ( ) ( )n n n nf a t x b t y c t= + +  for the n-th triangle.  

 

 
( ) ( ) ( )s n s n s nu a t x b t y c t= + +   (7.1) 

 
( ) ( ) ( )q n q n q nu a t x b t y c t= + +   (7.2) 

 
( ) ( ) ( )r n r n r nu a t x b t y c t= + +   (7.3) 

 
Of course, we can use higher degree polynomials like quadratic or cubic. 
For quadratic: 

 

2

2

( ) ( ) ( ) ( )

( ) ( )
s n s n s n n s

n s n s s

u a t x b t y c t d t x

e t d h t x y

= + + +

+ +
 

 

 

2

2

( ) ( ) ( ) ( )

( ) ( )
q n q n q n n q

n q n q q

u a t x b t y c t d t x

e t d h t x y

= + + +

+ +  

 

2

2

( ) ( ) ( ) ( )

( ) ( )
r n r n r n n r

n r n r r

u a t x b t y c t d t x

e t d h t x y

= + + +

+ +
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Fig. 5 

 

We express ( ), ( ), ( ), ( ), ( ), ( )n n n n n na t b t c t d t e t h t
 with respect not only u in verti-

ces, but also in a node along the midside of each edge. See Fig. 5. 
Finally using the so-called collocation method or least square method or the 

method of moments ([35]÷[40]) we can obtain a system of non-linear Ordinary Dif-
ferential Equations that can be solved in a variety of methods (Runge – Kutta etc…).  

We have examined the boundary value problem  

 
( )2div 0pu u−∇ ∇ =

 

where u is a known function on the boundary of our domain using Variational Princi-
ple (Finite elements). The Problem is reduced to an Optimization problem that can be 
solved by Genetic Algorithms plus Nelder-Mead search. An early paper of the author 
with the title “Solving Differential Equations via Genetic Algorithms” was presented 
in [1] while the author use the same method to solve various problems in [2]÷[9].  

With the Hybrid method of Genetic Algorithm + Nelder-Mead we have combined 
the advantages of both methods, that are a) the convergence to the global minimum 
(genetic algorithm) plus b) the high accuracy of the Nelder-Mead method.  

 

Also, we have discussed briefly the solution of  
 

 
( )n

p u
t
u

Δ=
∂
∂

 
 

 
u

t
u

pΔ=
∂
∂

 
and 

 

,div 2 qp uuu
t
u λ+⎟

⎠
⎞⎜

⎝
⎛ ∇∇=

∂
∂ −

 
 
using the so-called collocation method or least square method or the method of mo-
ments. 



Advanced Aspects of Theoretical Electrical Engineering Sozopol '2009  23

5. SOLUTION OF THE SCHRODINGER-MAXWELL EQUATIONS 
 
Recently many authors have examined the following system of the non-linear Par-

tial Differential Equations (PDEs) in R3 
 

 
2 ( )u q u g uφ−∇ + =   (11) 

 
2 2quφ−∇ =   (12) 

with (.)g  being a known function. 
The system of (11) and (12) is called:  
Schrodinger-Maxwell equations. This system of Equations arises in many mathe-

matical physics contexts, such as in quantum electrodynamics, in nonlinear optics, in 
nano-mechanics and in plasma physics. 

The greatest part of the literature focuses on the study of the previous system for 
the very special nonlinearity 

1( ) pg u u u u−= − +  
 
and existence, nonexistence and multiplicity results are provided in many papers for 
this particular problem (see [18]÷[28]). 

In [29], Azzollini, D’Avenia and Pomponio that a solution of a boundary problem 
of (11) and (2) yields the minimization of some functional. 

In this paper solve the problem with the method of finite elements 
In this paper we will solve the boundary value problem of  
 

 
2 ( )u q u g uφ−∇ + =   (11) 

 
2 2quφ−∇ =   (12) 

 

where (.)g  is known using Variational Techniques (Finite elements). In Section 2, 
we produce the appropriate functional for minimization. After finding this functional, 
the solution of (1) and (2) with the nexesary boundary conditions can be easily re-
duced to an Optimization problem that can be solved by Genetic Algorithms with 
Nelder-Mead. An early paper of the author with the title “Solving Differential Equa-
tions via Genetic Algorithms” was presented in [1]. 

The author presented in 1996 the solution of ODE and PDE using Genetic Algo-
rithms optimization, while the author use the same method to solve various problems 
in [2]÷[9].  

The main Results are given in Section 2 and a numerical example illustrates the 
method in Section 3. 
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6. VARIATIONAL FORMULATION OF (11) AND (12) AND FINITE  
     ELEMENTS APPROACH WITH GA 

 
Consider that our functional is functional of 

,u φ , i.e. ( , )I I u φ=  
Let the “point” of  

0 0,u φ  that minimize the 
( , )I I u φ=  

Then for another point  
,u φ  

we have 
0 1 1 0 2 1,u u uε φ φ ε φ= + = +  

So, we must have the first order conditions 

1

( , ) 0I u φ
ε

∂
=

∂  and 2

( , ) 0I u φ
ε

∂
=

∂  
 
Working first for (1) we can formulate: 
 

 

2 21 1( ) ( ) ( )
2 2V V V

I u dv q u dv G u dv Bφ φ= ∇ + − +∫∫∫ ∫∫∫ ∫∫∫
 (13) 

with  
( ) ( )G u g u du= ∫  and ( )B φ a function in φ  

 

It is easy to verify by replacing  0 1 1u u uε= +  that the condition 1

( , ) 0I u φ
ε

∂
=

∂  
leads to  

 

 
0 1 0 1 0 1( )( ) ( ) 0

V V V

u u dv q u u dv g u u dvφ∇ ∇ + − =∫∫∫ ∫∫∫ ∫∫∫
 

 
Now by applying the Green's first identity we have  

  

 

2
1 0 1

0 1 0 1

( ) ( )

( ) 0
V

V V

u u n u u dv

q u u dv g u u dvφ

−

∇ + −∇ +

+ − =

∫∫ ∫∫∫

∫∫∫ ∫∫∫
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Considering appropriate 1u  we can have 1( ) 0u u n
−

∇ =∫∫  which means 
 

2
0 1 0 1 0 1( ) ( ) 0

V V V

u u dv q u u dv g u u dvφ−∇ + − =∫∫∫ ∫∫∫ ∫∫∫
or 

2
0 0 0 1( ( )) 0

V

u q u g u u dvφ−∇ + − =∫∫∫
 

But 1u is arbitrary which implies 
2

0 0 0( ) 0u q u g uφ−∇ + − =  i.e. we have (11) 
 
Working analogously with (2) we could have 

 

 

2 21 ( ) ( )
2 V V

I dv q u dv C uφ φ= ∇ − +∫∫∫ ∫∫∫
  (14) 

with ( )C u a function in u . 
We must compromise (13) and (14). To this end we multiply the right hand mem-

ber of (14) with the coefficient -1/2 and finally we propose the functional 
 

 

2 2

2

1 1( ) ( )
2 4

1 ( )
2

V V

V V

I u dv dv

q u dv G u dv

φ

φ

= ∇ − ∇ +

+ −

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫
 

 
So, the solution of the problem of Schrodinger-Maxwell equations  

 

 
2 ( )u q u g uφ−∇ + =   (11) 

 
2 2quφ−∇ =   (12) 

leads to  ,
min

u
I

φ , 

where 

 

2 2

2

1 1( ) ( )
2 4

1 ( )
2

V V

V V

I u dv dv

q u dv G u dv

φ

φ

= ∇ − ∇ +

+ −

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫
 (15) 

We consider that u is written as 
n n

n
u fλ=∑

 and 

~

n n
n

fφ μ=∑
 

or 
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n

n

u f=∑
 ,   

~

n
n

fφ =∑
  (16) 

where nλ  have been incorporated in nf  
So, we have the minimization problem of (15). 
One can select a triangular mesh and appropriate functions nf  and 

~

n
f that have 

non-zero value only in the n-th triangle (“finite elements”). So, in a triangular mesh, 

for example of 2 , we can have n n n nf a x b y c= + +  and 
~ ~ ~ ~

n n nnf a x b y c= + + for the n-th 
triangle. Without loss of generality we consider the case 2 here u in (14). 

To avoid to write continuity conditions on the common vertices of the triangles of 
the mesh, one can find that in the n-th triangle of the points s,q,r (see Figure 1) 

 

 
Fig. 6. A triangle in a 2-D mesh 

 

 s n s n s nu a x b y c= + +   (17.1) 

 q n q n q nu a x b y c= + +   (17.2) 

 r n r n r nu a x b y c= + +   (17.3) 

 
~ ~ ~

s n s n s na x b y cφ = + +  (17.4) 

 
~ ~ ~

q n q n q na x b y cφ = + +   (17.5) 

 
~ ~ ~

r n r n r na x b y cφ = + +   (17.6) 

These 6 equations can be solved with respect to , ,n n na b c , 
~ ~ ~

, ,n n na b c  and give 
 

 

1
1
1

s s

q q

r r
n

u y
u y
u y

a
D

=
  (18.1) 
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1
1
1

s s

q q

r r
n

x u
x u
x u

b
D

=
  (18.2) 

 

s s s

q q q

r r r
n

x y u
x y u
x y u

c
D

=
   (18.3) 

 

~

1
1
1

s s

q q

r r
n

y
y
y

a
D

φ
φ
φ

=
   (18.4) 

 

~

1
1
1

s s

q q

r r
n

x
x
x

b
D

φ
φ
φ

=
   (18.5) 

 

~

s s s

q q q

r r r
n

x y
x y
x y

c
D

φ
φ
φ

=
   (18.6) 

and 
1
1
1

s s

q q

r r

x y
D x y

x y
=

 (which is by the way 2*E where E is the algebraic area of the trian-
gle) 

 
Hence, from the minimization problem 

,
min

u
I

φ  
where 

 

2 2

2

1 1( ) ( )
2 4

1 ( )
2

V V

V V

I u dv dv

q u dv G u dv

φ

φ

= ∇ − ∇ +

+ −

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫
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CONCLUSION 
 

 

We find the equivalent minimization problem 

 

~ ~ ~
min ( , , , , , )n n n n n nW a b c a b c dv∫  (19) 

where 
~ ~ ~

( , , , , , )n n n n n nW a b c a b c  is the function that we find after replacing 
n n n nf a x b y c= + +  

and 
~ ~ ~ ~

n n nnf a x b y c= + +  in the above functional 

and , ,n n na b c , 
~ ~ ~

, ,n n na b c will be replaces using (18.1), (18.2), (18.3) (18.4), (18.5), 
(18.6) for each triangle of the mesh. 

 

Equation (19) can be solved now by a variety of techniques. The author uses Ge-
netic Algorithms with Nelder-Meade for Non-linear Problems as in [2], [3], [4], [5], 
[6], [7], [8]. 

The same optimization scheme: Genetic Algorithms with Nelder-Meade is also 
applied for (19). 
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Abstract: We extend the field theory of antiferromagnets to layered structures on BCT crystal 
lattices with nearest-neibour (nn) and next-nearest-neighbour (nnn) ferro- and/or antiferromag-
netic interactions. For this aim the field theoretical counterpart of a lattice Heisenberg model is 
derived by the means of standard theoretical methods: Hubbard-Stratonovich transformation and a 
generalized mean-field approach. It is shown that the inter-layer interactions are a pure thermal 
fluctuation effect whereas the ground state is characterized by a perfect in-layer antiferromagnetic 
order and a lack of inter-layer coupling. This is a demonstration of 2D-3D dimensional crossover 
which is supposed to occur in real antiferromagnets, for example, in the spin-dimer antiferromag-
net BaCuSi2O6.  

 Keywords: antiferromagnetism, magnetic order, exchange interaction, field models, magnet-
ism, thermal fluctuations.  
 
1. INTRODUCTORY NOTES 
 

Several recent studies have focused the interest on crystals with complex anti-
ferromagnetic order [1, 2]. The latter is tuned by both temperature T and external 
magnetic field H = |H|. For example, the spin-1/2 dimer compound BaCuSi2O6 has 
recently attracted much interest [1]. In this compound the spin dimmers align on a 
body-centered tetragonal (BCT) lattice. Due to the lattice geometry, this system can 
be treated as a layered structure consisting of two dimensional (2D) x-y distributed 
regularly along the z-axis. Loops that include inter-layer hoppings are frustrated and 
this leads to a cancellation among inter-layer interactions. An interesting behavior re-
lated to this inter-layer frustration has recently been reported. This type of systems 
can be investigated with the help of spin-1/2 Heisenberg models of XXZ type [3].  

Here we discuss some basic problems of layered antiferromagnets described by a 
XXZ Heisenberg model formulated in Ref. [2]. Our task is to derive a field theoreti-
cal counterpart of the lattice model introduced in Ref. [2]. Our approach could be 
used as an alternative of the Monte Carlo simulations [2] in investigations of the pos-
sible ordered phase which appear at low temperature T as a result nearest-neighbor 
(nn) and next-nearest-neighbor (nnn) exchange interactions. We shall use methods 
from the modern theory of phase transitions [3], including the particular scheme of 
derivation of field models of antiferromagnets [4, 5]. In contrast with the standard 
theoretical approach outlined in Refs. [4, 5] we propose a more detailed derivation of 
the relations between the microscopic parameters (the exchange constants) and the 
macroscopic Landau parameters (bare vertex parameters) of the field theory.  
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Here we shall outline the theoretical approach and report the final result, namely, 
the field theory describing a wide class of layered antiferromagnets with BCT crystal 
structure.  
 
2. GENERAL THEORETICAL FRAMEWORK 
 

Consider (pseudo)spin-1/2 anisotropic antiferromagnets with body-centered 
tetragonal lattice (BCT) of volume V=L2Lz, number of vertices N= N0

2Nz
2321 1010~ −  

and lattice constants (a, a, c); 2
0N  is the number of sites in the xy square lattice of 

area 2
0L , and zN is the respective number along the z-axis. For concreteness and sim-

plicity, the model of nn exchange interactions will be discussed but let us note that 
some generalizations of the present discussion are straightforward. Our main aim is to 
deduce some properties of the phase transitions in this type of systems and compare 
the results with recent Monte Carlo calculations [2].  
 Starting from a microscopic formulation of the system we derive an effective field 
Hamiltonian (alias generalized free energy) which describes the thermodynamics, in-
cluding relevant fluctuation phenomena in a close vicinity of critical points of phase 
transitions. Having this result, we investigate the role of the external magnetic field 
on the symmetry or ordering and the shape of the phase diagrams, as well as the inter-
relationship between the type of the critical behavior and the broken continuous and 
discrete symmetries of the ordered phases. 

The studies of antiferromagnets are performed by dividing the original lattice in 
two sub-lattices with magnetizations of opposite directions. Within this scheme the 
actual order parameter is one of the sub-lattice magnetizations, or, which is the same 
the half of the difference between the two opposite magnetization vectors. Alterna-
tively, for a number of important problems, one may use the so-called alternating 
magnetization as the actual order parameter. The latter will be used in our investiga-
tion.  

The comprehensive spin model is the Heisenberg Hamiltonian 
 

 ∑∑ −−=
RRR

RShRSRSRRJH
rrr

rrrrrrrrr
)(.)'().()',(

2
1

',
, (1) 

 
where the three-dimensional (3D) spatial discrete vector ),( zrR rr

= runs the vertices 
of the lattice [the 2D vector ),( yxr =

r is introduced for a further convenience]. The 
first term in Eq. (1) represents the exchange interaction of classical spins )(RS

rr
 lo-

cated at vertices R
r

 and 'R
r

. The exchange matrix |)(|),( RRJRRJ ′−≡′
rrrr

depends only 
on the distance between the spins. The second term in Eq. (1) represents the Zeeman 
interaction of the spins with a homogeneous external magnetic field BghH μ= /

rr
; g is 

the gyromagnetic ratio (for electrons, 2≈g ), and Bμ  is the Bohr magneton. The lat-
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ter is assumed to be uniform, i.e., “ R
r

- independent”, as it is often in precise experi-
ments (the case of non-uniform magnetic field )(RH

rr
, or, in certain cases “random” 

magnetic field is quite complex and leads to another huge area of research in Physics 
[3].  

Now our task is to take into account a spatial anisotropy of type XXZ, i.e., anisot-
ropy along the z-direction. It is convenient to consider the lattice as a chain of mono-
atomic layer parallel to the (x, y) plane and labeled by the z-component of the 3D spa-
tial vector ),( zrR rr

= , whereas the 2D vector rr  indicates the sites in a given layer. We 
assume that the strength of the exchange interaction between spins located in the 
same layer (in-layer interaction) is different from the exchange interaction strength 
between spins at the same distance but located in different layers (inter-layer interac-
tion). For nn interactions, the exchange matrix |)(| RRJ ′−

rr
of such an antiferromag-

netic system can be written in the form 
 

 ),(),(),()ˆ,()( || zzzrrrJzzrrJRRJ Δ+′δΔ+′δ+′δδ+′δ=′− ⊥
rrrrrrr

, (2) 
 

where ijji δ≡δ ),(  denotes the Kronecker symbol, |||| || ⊥> JJ , the in-layer exchange 
interaction parameter 0<IIJ  corresponds to antiferromagnetic order, and the inter-
layer exchange parameter ||J  may take any sign. In Eq. (2), the vector 

)ˆˆ(ˆ yaxa +=δ with aaa x =≡1  and aaa y ==2  describes the in-layer nn to the site 
),( zrr , whereas cz ±=Δ  and the inter-layer displacement vector )ˆˆ( 21 ybxbr +=Δ  

points out the inter-layer nn. The displacement parameters bbb x ==1  and 
bbb y ==2 can be expressed by the lattice constant a. For the BCT of BaCuSi2O6, 

2/ab = ; see also the discussion in Ref. [2]. 
Now the Hamiltonian (1) can be written in the form 
 

 ∑∑∑ −Δ+Δ+−′−=
Δ

⊥
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J
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J
H
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3. OUTLINE OF THE DERIVATION OF THE EFFECTIVE FIELD THEORY  

 
Our aim is to derive an effective field theory corresponding to the lattice Hamil-

tonian (3). This is made by some reliable coarse-graining procedure which makes 
possible the derivation of the quasi-macroscopic (field) theory from the microscopic 
spin Hamiltonian. Generally such coarse graining procedures in statistical mechanics 
are few but two or three of them are very comprehensive and yield a comprehensive 
description of the thermodynamic properties of both simple and complex condensed 
matter (many-body) systems [3, 4].  
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For antiferrimagnets such a theory can be firstly derived on the basis of a lattice 
field related to the microscopic spin field ),( zrS rr  by introducing two sub-lattices, or, 
alternatively, by introducing the so-called alternating magnetization 

)().exp()( 0 RSrqRSa

rrrrrr
=  which describes the antiferromagnetic order [5, 6]. The alter-

nating magnetization field )(RSa

rr
 is defined with the help of the reciprocal lattice vec-

tor ),( 000 zqkq
rr

=  corresponding to the upper border of the first Brillouin zone: 
akk /|| 0 π=≡

r
, and cq z /0 π= .  

Now one may use the approach in Refs. [5, 6] and derive the field theory. An im-
provement of the method available in Refs.[5, 6] can be made with the help of the 
Hubbard-Stratonovich transformation (see, e.g., Ref. [3]). This transformation and 
related shift and rotation transformations allows for a correct derivation of the rela-
tionship between the microscopic parameters (the exchange interaction parameters) 
and the quasi-macroscopic parameters (“vertex”) parameters of the field theory in 
tree approximation [3]. Besides, one has to use the long wavelength approximation 
[3, 4], too. Note, that the coarse graining procedure outlined so far is equivalent to “a 
generalized self-consistency coarse graining.” [6]. Following the latter we have ob-
tained the following result [7] for the field Hamiltonian 
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where TkB/1=β , the parameters of the field theory are given by the microscopic pa-
rameters ||J  and ⊥J  by the algebraic formulae  

 

⊥

⊥

+

+
=ν

JJ
JJ

2
4

||

||
0 ,   )2(2 || ⊥+=μ JJ , J2=ν ,   (5a)  

2
|||| ||8||2 JJra β−= |,   2

|||| )2|(|8|)|8||2( ⊥⊥ −β−−−= JJJJrf ,  (5b) 

2||2
|| )

2
4( a

J
Jca +β= ,   22 aJca ⊥−=′ ,  (5c) 

0)2|)](||(|81[
2
1 2

|||| >−−β+= ⊥⊥ aJJJJc f , 

0)]2|(|41[ 2
|| >−β+−=′ ⊥⊥ cJJJc f ,  (5d) 

 
and the vector fields )(R

rr
σ  and )(R

rr
ϕ describe the ferromagnetic and antiferromag-

netic order, respectively.  
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These orderings are of in-layer type, i.e. they describe the spontaneous breaking 
of the symmetry in the layers. The only connection between the layers is given by the 
gradient term with coefficient ′

fc . This is a proof of the fluctuation nature of the in-
terlayer coupling. When thermal fluctuations are not present, the layers are absolutely 
independent. This situation is possible only at the absolute zero (T = 0). 

  
4. FINAL REMARKS  

 
The further analysis of the Hamiltonian (4) follows standard rules [3, 5, 6]. One 

may show that this theory describes correctly the antiferromagnetic order in layered 
antiferromagnets of the type mentioned above. For nonzero external magnetic field a 
spin-flop phase may appear for certain values of the material parameters. The phase 
transitions in these systems are tuned by the temperature T and the external magnetic 
field H. Without any loss of generality one may perform the thermodynamic analysis 
of the Hamiltonian (4) by setting a definite direction of the external magnetic field, 
e.g., H = (0, 0, H).  
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Abstract: The theoretical description of the phase diagrams of ferromagnetic unconventional 
superconductors with spin-triplet Cooper pairing are explained and described within a general 
phenomenological theory of Ginzburg-Landau type. The theoretical predictions are in an excellent 
agreement with the experimental data for certain inter-metallic compounds which a itinerant ferro-
magnets and exhibit spin-triplet superconductivity at relatively high pressures (~1 GPa) and low 
temperatures (~1 K). New quantum phase transitions are predicted and proposed for experimental 
search in real materials. This report is based on recently published results by the present authors. 

 Keywords: spin-triplet superconductivity, ferromagnetism, coexistence of superconductivity 
and ferromagnetism, quantum phase transitions. 
 
1. INTRODUCTION 
 

The spin-triplet pairing allows parallel spin orientation of the fermion Cooper 
pairs in super-fluid 3He and unconventional superconductors [1]. For this reason the 
resulting unconventional superconductivity is robust with respect to effects of exter-
nal magnetic field and spontaneous ferromagnetic order, so it may coexist with the 
latter. This general argument implies that there could be metallic compounds and al-
loys, for which the coexistence of spin-triplet superconductivity and ferromagnetism 
may be observed. 

Particularly, both superconductivity and itinerant ferromagnetic orders can be cre-
ated by the same band electrons in the metal, which means that spin-1 electron Coo-
per pairs participate in the formation of the itinerant ferromagnetic order. Moreover, 
under certain conditions the superconductivity is enhanced rather than depressed by 
the uniform ferromagnetic order that can generate it, even in cases when the super-
conductivity does not appear in a pure form as a net result of indirect electron-
electron coupling.  

The coexistence of superconductivity and ferromagnetism as a result of collective 
behavior of f-band electrons has been found experimentally for some Uranium-based 
inter-metallic compounds as, UGe2 [2-5], URhGe [6-8], UCoGe [9, 10], and UIr [11, 
12]. At low temperature (T ~ 1 K) all these compounds exhibit thermodynamically 
stable phase of coexistence of spin-triplet superconductivity and itinerant (f-band) 
electron ferromagnetism (in short, FS phase). In UGe2 and UIr the FS phase appears 
at high pressure (P ~ 1GPa), whereas in URhGe and UCoGe, the coexistence phase 
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persists up to ambient pressure (105 Pa = 1 bar). Experiments, carried out in ZrZn2 
[13], also indicated the appearance of FS phase at T < 1 K in a wide range of pres-
sures (0 < P ~ 21 kbar). In Zr-based compounds the ferromagnetism and the p-wave 
superconductivity occur as a result of the collective behavior of the d-band electrons. 
Later experimental results [14, 15] had imposed the conclusion that bulk supercon-
ductivity is lacking in ZrZn2, but the occurrence of a surface FS phase at surfaces 
with higher Zr content than that in ZrZn2 has been reliably demonstrated. Thus the 
problem for the coexistence of bulk superconductivity with ferromagnetism in ZrZn2 
is still unresolved. This raises the question whether the FS phase in ZrZn2 should be 
studied by surface thermodynamics methods, or it can be investigated by considering 
that bulk and surface thermodynamic phenomena can be treated on the same footing. 
Taking in account the mentioned experimental results for ZrZn2 and their interpreta-
tion by the experimentalists [13-15] we assume that the unified thermodynamic ap-
proach can be applied, although some specific properties of the FS phase in ZrZn2, if 
its surface nature is confirmed, will certainly need special study by surface thermo-
dynamics. 

Here we will investigate the itinerant ferromagnetism and superconductivity of U- 
and Zr-based inter-metallic compounds within the same general thermodynamic ap-
proach. Arguments supporting our point of view are given in several preceding inves-
tigations. We should mention that the spin-triplet superconductivity occurs not only 
in bulk materials, but also in quasi-two-dimensional (2D) systems - thin films and 
surfaces and quasi-1D wires (see, e.g., [16]). In ZrZn2 both ferromagnetic and super-
conducting orders vanish at the same critical pressure Pc, a fact implying that the re-
spective order parameter fields strongly depend on each other and should be studied 
on the same thermodynamic basis [17]. 

The general thermodynamic treatment does not necessarily specify the system 
spatial dimensionality D:D = 3 describes the bulk properties, and D = 2 – very thin 
films and mono-atomic layers. Within Landau theory of phase transitions (see, e.g., 
Ref. [18]), the system dimensionality can be distinguished by the values of the Lan-
dau parameters. Here we specify the values of these parameters from the experimen-
tal data for spin-triplet ferromagnetic superconductors. When the Landau parameters 
are obtained from microscopic theories, their values depend on the dimension D, only 
if the respective theory takes into account relevant fluctuation modes of order pa-
rameter fields, including long-scale fluctuation modes. We are not aware of well de-
veloped theories of this type which may figure out the complex behavior of the men-
tioned systems. Even in simple theories of band electron magnetism, the Landau pa-
rameters are very complex functions of the density of states at the Fermi level and re-
lated microscopic parameters. Such complexity does not allow direct comparison be-
tween the results from microscopic theory and the experimental data. To make a pro-
gress in this situation we assume that the material parameters of our theory are 
loosely defined and may have values, corresponding to various approximate micro-
scopic theories, as mean-field approximation, spin-fluctuation theory, etc. 
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For all compounds, cited above, the FS phase occurs only in the ferromagnetic 
phase domain of the T-P diagram. Particularly at equilibrium, and for given P, the 
temperature TF(P) of the normal-to-ferromagnetic phase (or N-FM) transition is never 
lower than the temperature TFS(P) of the ferromagnetic-to-FS phase transition (FM-
FS transition). This confirms the point of view that the superconductivity in these 
compounds is triggered by the spontaneous magnetization M, in analogy with the 
well-known triggering of the superfluid phase A1 in 3He at mK temperatures by the 
external magnetic field H. Such “helium analogy” has been used in some theoretical 
studies (see, e.g., Refs, [19, 20]), where Ginzburg - Landau (GL) free energy terms, 
describing the FS phase were derived by symmetry group arguments. 

The non-unitary state, with a non-zero value of the Cooper pair magnetic moment, 
known from the theory of unconventional superconductors and super-fluidity in 3He, 
has been suggested firstly in Ref. [19], and later confirmed in other studies [8, 20]; 
recently, the same topic was comprehensively discussed in Ref. [21]. For the spin-
triplet ferromagnetic superconductors the trigger mechanism was recently examined 
in detail [22, 23]. The system main properties are specified by the term in the GL ex-
pansion of type ~|M||ψ|2, which represents the interaction of the magnetization M = 
{Mj; j=1, 2, 3} with the complex superconducting vector field ψ = {ψj}. Particularly, 
this term is responsible for the appearance of ψ (i.e., of superconductivity) for certain 
T and P values. A similar trigger mechanism is familiar in the context of improper 
ferroelectrics [24].  

A crucial feature of these systems is the nonzero magnetic moment of the spin-
triplet Cooper pairs. As mentioned above, the microscopic theory of magnetism and 
superconductivity in non-Fermi liquids of strongly interacting heavy electrons (f- and 
d- band electrons) is either too complex or insufficiently developed to describe the 
complicated behavior in itinerant ferromagnetic compounds. Several authors (see 
[25]) have explored the phenomenological description by a self-consistent mean field 
theory, and we shall use these results. Besides, we will essentially use our previous 
theoretical studies results, in particular, the analysis in Refs. [22, 23]. In this paper, 
we report the main theoretical results achieved in our recent investigations [26, 27] 
based on the general thermodynamic treatment [22, 23].  

We propose a simple, yet comprehensive, modeling of P dependence of the free 
energy parameters, resulting in a very good compliance of our theoretical predictions 
for the shape the T-P phase diagrams with the experimental data. The theoretical 
analysis is done by the standard methods of phase transition theory. The treatment of 
fluctuation effects and quantum correlations [28-30] is not included in this report. But 
the parameters of the generalized GL free energy may be considered either in mean-
field approximation as here, or as phenomenological re-normalized parameters which 
are affected by additional physical phenomena, as for example, the spin fluctuations. 
The magnetic fluctuations may affect the phase transitions in type-I superconductors 
[18, 31] and here we shall not dwell on this problem. The reason is that the uncon-
ventional ferromagnetic superconductors known so far are of type II.  
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We demonstrate with the help of present theory that we can outline different pos-
sible topologies for the T-P phase diagram, depending on the values of Landau pa-
rameters, derived from the existing experimental data. We show that for unconven-
tional (spin-triplet) ferromagnetic superconductors (FSs) there exist two distinct types 
of behavior, which we denote as Zr-type (or, alternatively, type I) and U-type (or, 
type II). This classification of the FS, first mentioned in Ref. [26], is based on the re-
liable interrelationship between a quantitative criterion derived by us and the thermo-
dynamic properties of the spin-triplet FSs. Our approach can be also applied to 
URhGe, UCoGe, and UIr. Our results shed light on the problems connected with the 
order of the quantum phase transitions at ultra-low and zero temperatures. They also 
raise the question for further experimental investigations of the detailed structure of 
the phase diagrams in the high-P/low-T region. 
 
2. FREE ENERGY AND PHASE DIAGRAMS 
 

Following Refs. [22, 23] the free energy per unit volume, F/V = f(ψ, M), can be 
written in the form  

 

  f = sa |ψ|2 + 
2
sb  |ψ|4 + 

2
su  |ψ2|2 + 

2
sv  4

3

1
||∑

=j
jψ   

                          + fa M2 + 
2

fb
M4 + 0γi M.(ψ×ψ ) + δ .M2|ψ|2.  (1) 

 
The material parameters satisfy, as in [22, 23], bs > 0, bf > 0, as = αs (T-Ts), and af 

= αf [Tn - Tf
 n(P)], where n = 1 gives the standard form of af, and n = 2 applies for the 

spin-fluctuation theory (SFT). The terms proportional to us and vs describe, respec-
tively, the anisotropy of the spin-triplet electron Cooper pairs and the crystal anisot-
ropy. Next, 0 ~ J (with J > 0 the ferromagnetic exchange constant) and δ > 0 are pa-
rameters of the ψ-M interaction terms. 

Previous mean-field studies have shown that the anisotropies represented by the us 
and vs terms in Eq. (1) slightly perturb the size and shape of the stability domains of 
the phases, while similar effects can be achieved by varying the bs factor in the bs|ψ|4 
term. For these reasons, in the present analysis we ignore the anisotropy terms, set-
ting us = vs = 0, and consider bs = b >0 as an effective parameter. Then, without loss 
of generality, we are free to choose the magnetization vector to have the form M = (0, 
0, M). 

A convenient dimensionless free energy can now be defined by )/(~ 4
0Mbff f= , 

where 0]/[ 2/1
00 >α= f

n
ff bTM  is the value of M corresponding to the pure magnetic 

subsystem (ψ ≡  0) at T = P = 0, and ).0(0 ff TT =  On scaling the order parameters as 
m = M/M0 and φ = ψ/ [(bf / b)1/4M0] we obtain 
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where || jj ϕ=φ , ϕ = |φ|, and ϑ  is the phase angle between the complex 2ϕ and 1ϕ . The 

dimensionless constants are )](~~[ PTTt n
f

n −= , )~~( sTTr −κ= with 1
0

2/12/1 / −αα=κ n
fffs Tbb  

2/1
00 ]/[ bT n

ffαγ=γ , and 2/1
1 )/( fbbδ=γ . The reduced temperatures are 0/~

fTTT = , 

0/)()(~
fff TPTPT = , and 0/)()(~

fss TPTPT = . 
The analysis involves making simple assumptions for the P dependence of the t, r, 

5 , and 5 1 parameters in Eq. (2). Specifically, we assume that only Tf has a significant 
P dependence, described by n

f PPT /1)~1()( −= , where 0/~ PPP =  and P0 is a charac-
teristic pressure deduced later. In ZrZn2 and UGe2 the P0 values are very close to the 
critical pressure Pc at which both the ferromagnetic and superconducting orders van-
ish, but in other systems this is not necessarily the case. As we will discuss, the 
nonlinearity (n = 2) of Tf (P) in ZrZn2 and UGe2 is relevant at relatively high P, at 
which the N-FM transition temperature TF(P) may not coincide with Tf (P). 

The simplified model in Eq. (2) is capable of describing the main thermodynamic 
properties of spin-triplet ferromagnetic superconductors. There are three stable 
phases: (i) the normal (N) phase, given by ϕ = m = 0; (ii) the pure ferromagnetic 
(FM) phase, given by 0)( 2/1 >−= tm , ϕ = 0; and (iii) the FS phase, given by 
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We note that FS is a two-domain phase as discussed in Refs. [22, 23]. Although 
Eq. (3) is complicated, some analytical results follow, e.g., we find that the second 
order phase transition line )(~ PTFS separating the FM and FS phases is the solution of  

  

 
2/11 )]([)()( FSFSsFS TtTtTPT −

κ
γ

+
κ
γ

+=
 

(4) 

 
Under certain conditions, the TFS(P) curve has a maximum at )4/(~~

1
2 κγγ+= sm TT  

with pressure Pm found by solving )4/(),( 2
1

2 γγ−=mm PTt . Examples will be given 
later, but generally this curve extends from ambient P up to a tri-critical point labeled 
“B”, with coordinates (PB,TB), where the FM-FS phase transition occurs at a straight 
line of first order transition up to a critical-end point C. The lines of all three phase 
transitions (N-FM, N-FS, and FM-FS) terminate at C. For P > PC the FM-FS phase 
transition occurs on a rather flat, smooth line of equilibrium transition of first order 
up to a second tricritical point A with PA ~ P0 and TA ~ 0. Finally, the third transition 
line terminating at C describes the second order phase transition N-FM. The tempera-
tures at the three multi-critical points correspond to sA TT ~~ = , 
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2
11

2 )1(4/)2(~~ γ+κγ+γ+= sB TT , and )1(4/~~
1

2 γ+κγ+= sC TT , while the P values can 
be deduced from the previous equations. These results are valid when-
ever )()( PTPT sf > , which excludes any pure superconducting phase (|ψ| > 0, m = 0) 
in accord with the available experimental data. Note that, for any set of material pa-
rameters, TA < TC < TB < Tm and Pm < PB <PC. 

A calculation of the T - P diagram from Eq. (2) for any material requires some 
knowledge of P0, Tf 0, Ts , κ , γ , and 1γ . The temperature Tf 0 can be obtained directly 
from the experimental phase diagrams. The model pressure P0 is either identical to or 
very close to the critical pressure Pc at which the N-FM phase transition line termi-
nates at T ~ 0 K. The characteristic temperature Ts of the generic superconducting 
transition is not available from the experiments and thus has to be estimated using 
general consistency arguments. For )()( PTPT sf >  we must have Ts (P) = 0 at P ≥  
Pc, where Tf (P) ≤  0. For 0 ≤  P ≤  P0, Ts < TC and therefore for cases where TC is too 
small to be observed experimentally, Ts can be ignored. For systems where TC is 
measurable this argument does not hold. This is likely to happen for Ts > 0 (for Ts< 0, 
TC is very small). However, in such cases, pure superconducting phase should be ob-
servable. To date there are no experimental results reported for such a feature in 
ZrZn2 or UGe2, and thus we can put Ts = 0. We remark that negative values of Ts are 
possible, and they describe a phase diagram topology in which the FM-FS transition 
line terminates at T = 0 for P < Pc. This might be of relevance for other compounds, 
e.g., URhGe. 

Typically, additional features of the experimental phase diagram must be utilized. 
For example, in ZrZn2 these are the observed values of TFS (0) and the 
slop 00 ]/)([ PPTFS ∂∂=ρ  at P = 0. For UGe2 one may use Tm, Pm, and P0c, where the 
last quantity denotes the other solution (below Pc) of TFS (P) = 0. The ratios κγ /  and 

κγ /1  can be deduced using Eq. (4) and the expressions for Tm, Pm, and 0ρ , while κ  is 
chosen by requiring a suitable value of TC. 

Experiments [13] for ZrZn2 indicate Tf0 = 28.5 K, TFS (0) = 0.29 K, P0 ~ Pc = 21 
kbar, and TF (P) ~ Tf (P) is almost a straight line, so n = 1 describes the P depend-
ence. The slope for TFS (P) at P = 0 is harder to estimate; its magnitude should not 
exceed Tf 0 /Pc = 0.014 on the basis of a straight-line assumption, implying -0.014 <ρ  
< 0. However, this ignores the effect of a maximum, although it is unclear experimen-
tally in ZrZn2, at (Tm, Pm). If such a maximum were at P = 0 we would have 00 =ρ , 
whereas a maximum with Tm ~ TFS (0) and Pm << P0 provides us with an estimated 
range 0 < 0ρ  < 0.005. The choice 00 =ρ  gives 02.0/ ≈κγ  and 01.0/1 ≈κγ , but similar 
values hold for any 003.00 <ρ . The multi-critical points A and C cannot be distin-
guished experimentally. Since the experimental accuracy [13] is less than ~ 25 mK in 
the high-P domain (P ~ 20-21 kbar), we suppose that TC ~ 10 mK, which corresponds 
to κ ~ 10. We employed these parameters to calculate the T – P diagram using 00 =ρ  
and 0.003. The differences obtained in these two cases are negligible, with both phase 
diagrams being in excellent agreement with experiment. The latter value is used in 
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Fig. 1, which gives PA~ Pc = 21.10 kbar, PB = 20.68 kbar, PC = 20.99 kbar, 
0)()( === cFScFA PTPTT  K, TB =0.077 K, TC = 0.038 K, and TFS (0) =0.285 K. The 

low-T region is seen in more detail in Fig. 2, where the A, B, C points are shown and 
the order of the FM-FS phase transition changes from second to first order around the 
critical end-point C. The TFS (P) curve has a maximum at Pm = 6.915 kbar and Tm 
=0.301 K. These results account well for the main features of the experimental be-
havior [13], including the claimed change in the order of the FM-FS phase transition 
at relatively high P. Within the present model the N-FM transition is of second order 
up to PC ~ Pc. Moreover, if the experiments are reliable in their indication of a first 
order N-FM transition at much lower P values, the theory can accommodate this by a 
change of sign of bf, leading to a new tricritical point located at a distinct trP  < PC on 
the N-FM transition line. Since TC > 0 a direct N-FS phase transition of first order is 
predicted in accord with conclusions from de Haas-van Alphen experiments and 
some theoretical studies (see, e.g., the discussion in Refs. [22], 23]). Such a transition 
may not occur in other cases where TC = 0. In SFT (n = 2) the diagram topology re-
mains the same but points B and C are slightly shifted to higher P (typically by about 
1 bar). 

 
 

Fig. 1. T - P diagram of ZrZn2 calculated taking Ts = 0, 003.00 =ρ  K/kbar,  
Tf0 = 28.5 K, P0 = 21 kbar, κ  = 10, and 2.0/2/ 1 ≈= κγκγ .  

The low-T domain of the FS phase is seen more clearly in the following figure 
 

 
Fig. 2. Detail of Fig. 1 with expanded temperature scale 
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The experimental data [2, 4, 5] for UGe2 indicate Tf0 = 52 K, Pc = 1.6 GPa (= 16 
kbar), Tm = 0.75 K, Pm = 1.15 GPa, and P0c = 1.05 GPa. Using again the variant n = 
1 for Tf (P) and the above values for Tm and P0c we obtain 098.0/ =κγ  and 

168.0/1 =κγ . The temperature TC ~ 0.1 K corresponds to κ ~ 5. Using these, together 
with Ts = 0, leads to the T – P diagram in Fig. 3, showing only the low-T region of 
interest. We obtain TA = 0 K, TB = 0.481 K, TC = 0.301 K, PA=1.72 GPa, PB = 1.56 
GPa, and PC = 1.59 GPa. There is agreement with th e main experimental findings, 
although Pm corresponding to the maximum (found at ~ 1.44 GPa in Fig. 3) is about 
0.3 GPa higher than suggested experimentally. If the experimental plots are accurate 
in this respect, this difference may be attributable to the so-called (Tx) meta-magnetic 
phase transition in UGe2, which is related to an abrupt change of the magnetization in 
the vicinity of (Tm ,Pm). Thus, one may suppose that the meta-magnetic effects, which 
are outside the scope of our current model, significantly affect the shape of the TFS (P) 
curve by lowering Pm (along with PB and PC). It is possible to achieve a lower Pm 
value (while leaving Tm unchanged), but this has the undesirable effect of modifying 
Pc0 to a value that disagrees with experiment. In SFT (n = 2) the multi-critical points 
are located at slightly higher P (by about 0.01 GPa), as for ZrZn2. 

  

 
Fig. 3. Low-T part of the T-P diagram of UGe2 calculated taking Ts = 0, Tf = 52 K, 

P0 = 1.6 GPa, Tm = 0.75 K, P0c= 1.05 GPa (κ  = 5, κγ /  = 0.098, and κγ /1  = 0168). 

The estimates for UGe2 imply 9.111 ≈κγ , so the condition for TFS(P) to have a 
maximum found from Eq. (4) is satisfied. As we discussed for ZrZn2, the location of 
this maximum can be hard to fix accurately in experiments. However, Pc0 can be 
more easily distinguished, as in the UGe2 case. Then we have a well-established 
quantum (zero-temperature) phase transition of second order, i.e., a quantum critical 
point [22, 23]. From Eq. (4) the existence of this type of solution in systems with Ts = 
0 (as UGe2) occurs for 1γ<γ . Such systems (which we label as U-type) are essen-
tially different from those such as ZrZn2 where γ<γ1 and hence TFS(0) > 0. In this lat-
ter case (Zr-type compounds) a maximum Tm > 0 may sometimes occur, as discussed 
earlier. We note that the ratio 1/ γγ  reflects a balance effect between the two ψ-M in-
teractions. When the trigger interaction (typified byγ ) prevails, the Zr-type behavior 
is found where superconductivity exists at P = 0. The same ratio can be expressed as 

00 ./ Mδγ , which emphasizes that the ground state value of the magnetization at P = 0 
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is also relevant. In general, depending on the ratio of the interaction parameters γ  and 
1γ , the ferromagnetic superconductors with spin-triplet Cooper fermion pairing can 

be of two types: type I ( 1γ<γ ) and type II ( γ<γ1 ). The two types are distinguished 
in their thermodynamic properties. 

The quantum phase transition near Pc is of first order. Depending on the system 
properties, TC can be either positive (when a direct N-FS first order transition is pos-
sible), zero, or negative (when the FM-FS and N-FM phase transition lines terminate 
at different zero-temperature phase transition points). The last two cases correspond 
to Ts < 0. All these cases are possible in Zr- and U-type compounds. The zero tem-
perature transition at Pc0 is found to be a quantum critical point, whereas the zero-
temperature phase transition at Pc is of first order. As noted, the latter splits into two 
first order phase transitions. 

This classical picture may be changed through quantum fluctuations [22, 23]. An 
investigation [29, 30] of the quantum fluctuations and the quantum dimensional 
crossover by renormalization group methods revealed a fluctuation change in the or-
der of this transition to a continuous phase transition belonging to an entirely new 
class of universality. However, this option exists only for magnetically isotropic order 
(Heisenberg symmetry) and is unlikely to apply in the known spin-triplet ferromag-
netic superconductors. 

Even in its simplified form, this theory has been shown to be capable of account-
ing for a wide variety of experimental behavior. A natural extension to the theory is 
to add a M 6 term which provides a formalism to investigate possible meta-magnetic 
phase transitions and extend some first order phase transition lines. Another modifi-
cation of this theory, with regard to applications to other compounds, is to include P-
dependence for some of the other GL parameters. 
 
3. FINAL REMARKS  
 

Even in its simplified form, this theory has been shown to be capable of account-
ing for a wide variety of experimental behavior. A natural extension to the theory is 
to add a M6 term which provides a formalism to investigate possible meta-magnetic 
phase transitions and extend some first order phase transition lines. Another modifi-
cation of this theory, with regard to applications to other compounds, is to include P-
dependence for some of the other GL parameters. 

The fluctuation and quantum correlation effects can be considered by the respec-
tive field-theoretical action of the system, where the order parameters ψ and M are 
not uniform but rather space and time dependent. The vortex (spatially non-uniform) 
phase due to the spontaneous magnetization M is another phenomenon which can be 
investigated by a generalization of the theory by considering non-uniform order pa-
rameters fields ψ and M. Note, that such theoretical treatments are quite complex and 
require a number of approximations. As already noted in this paper the magnetic fluc-
tuations stimulate first order phase transitions for both finite and zero phase transition 
temperatures. 
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Abstract: In this paper we present some results about the prediction of limit cycles in discrete 
nonlinear systems with relay type nonlinearities by using multiple-input describing functions. 
Sigma-delta modulators (SDMs) are such systems and the approach is applicable for the analysis 
and design of SDMs. The introduction of Describing Functions (DFs) theory is given, together with 
the derivations of different type describing functions for the ideal relay nonlinearity. Then the sam-
pled DFs that describe the nonlinear elements in discrete nonlinear systems are introduced and fi-
nally the application of this approach for analysis of the limit cycles in SDMs is shown. Several ex-
amples and simulation results are presented to demonstrate the applicability of the approach. 

Keywords: Discrete Nonlinear Circuits, Discrete Nonlinear Systems, Sigma- Delta Modulators, 
Multiple-input describing functions. 
 
1. INTRODUCTION 
 

The Describing Functions method (or short DFs method) is an approximate pro-
cedure for investigating the existence of limit cycles in the feedback system shown in 
the figure below. The concept is one of quasilinearization where a static nonlinear 
characteristic is represented by a gain depending upon the magnitude of the input sig-
nal. The input signal is evaluated on the assumption that it is a sinusoid. In this view 
the input signal of the nonlinear block NL will be of the following kind: e=asin(ωt). 

The describing function method’s philosophy is to replace the nonlinear system 
part NL of the given feedback loop given in Fig. 1 with a linear gain. The gain de-
pends on the amplitude of the input. This is done in such a way that when oscillation 
is predicted for the system, the amplitude of the oscillation will also be determined. 
We will use the describing function to predict the value of the amplitude and fre-
quency of limit cycles in these systems. 

 

 
Fig. 1. The feedback system with nonlinearity NL 

 
When a non-linearity is embedded in a system, it may seem odd to use sinusoidal 

inputs to analyze the response. This procedure is justified whenever the nonlinear dy-
namics are such that the output of the nonlinear element is filtered in such a way that 

NL L(s) 
+

-

x e v y 
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the higher frequencies are negligible. Because of the low pass filtering of the transfer 
function L(s) this is justified. 

Sigma-Delta modulation has become in recent years an increasingly popular 
choice for robust and inexpensive analog-to-digital (A/D) and digital-to-analog (D/A) 
conversion [1], [2], [3]. As a result of this, analog-to-digital and digital-to-analog 
converters based on 1-bit Sigma-Delta Modulators (SDMs) are widely used in differ-
ent applications. Sigma delta modulators are the most popular form of analog-to-
digital conversion used in audio and wireless applications. They are also commonly 
used in D/A converters, sample rate converters, and digital power amplifiers. Despite 
the widespread use of SDMs theoretical understanding of sigma delta concept is still 
very limited. This is a consequence of the fact that these systems are nonlinear, due to 
the presence of a discontinuous nonlinearity - the quantizer (relay type nonlinearity). 
Limit cycles are well known phenomena that often appear in practical SDMs. In fre-
quency domain they correspond to discrete peaks in the frequency spectrum of the 
modulator. If these peaks are inside the signal base band, the total harmonic distortion 
increases. Because of this, for data processing applications it is very important to pre-
dict and describe possible limit cycles. As will be stressed further, for many practical 
applications SDMs work on several limit cycles and in [4] this mechanism is investi-
gated in details. In this work a limit cycle model of the SDM operation is created. 
The limit cycle behavior of the SDM is considered as a result of the interaction of the 
internal asynchronous limit cycle mechanism with the external sampling clock. The 
main results in [4] are based on sampled two-sinusoid describing function that has 
been introduced. The aim of this article is to develop further the approach in [4] by 
using sampled three-sinusoid describing functions. 

The paper is organized as follows. In the next chapter we describe Multiple-Input 
Describing Functions [5] and focus our investigation on two-sinusoid-input and 
three-sinusoid input DFs for Ideal relay nonlinearity. Then in chapter 3 we present 
the sampled describing functions. In chapter 4 we show the use of the describing 
functions considered for prediction of limit cycles in SDMs and in chapter 5 we dem-
onstrate the use of sampled describing functions for prediction of limit cycles in 
SDMs. The paper finishes with concluding remarks in the last chapter. 
 
2. MULTIPLE-INPUT DESCRIBING FUNCTIONS 
 

In this chapter we will describe the Multiple-Input Describing Functions [5] re-
garding different input signals applied to the system from Fig. 1. 

If the input signal of the system in Fig. 1 is zero (zero input), then the output of 
the nonlinear block can be written as a function dependent on asin(ωt) i.e. 
v=f(asin(ωt)) where f is the nonlinear function that describes the nonlinear element 
NE. From the Fourier series expansion of the output signal of the nonlinear block we 
get the following equation: 
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The coefficients a1(a) and b1(a) are the fundamental-harmonics determined by the 

Fourier expansion [6], [7]: 
 

1
0

1
0

2( ) ( sin( )) sin( )

2( ) ( sin( )) cos( )

T

T

a a f a t t dt
T

b a f a t t dt
T

ω ω

ω ω

=       

=     

∫

∫
     (2) 

 
The describing function N(a) is the transfer function between the input gain of the 

nonlinear block and the first harmonic in the output: 
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If the nonlinear element is an ideal relay with characteristic 
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shown in Fig. 2, the Fourier coefficients a1(a) and b1(a) are 
 

 
Fig. 2. The nonlinear characteristic of the ideal relay. 
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and thus the describing function becomes 
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For the input signals x of the system given in Table 1, the corresponding error 

signals e (input signals for the nonlinear block NL) are also given there. 
These input signals for the nonlinear element NL of the feedback system are of 

course determined under the assumption that the system is in an oscillating state, i.e. 
the nonlinear block has sinusoidal inputs and therefore a describing function can be 
obtained. 
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Table 1. Reference inputs with corresponding error signals. 

If a certain input signal of the nonlinear element can be separated into different 
parts, then the describing function can also be described in different parts. Consider the 
reference input x=M and error e=b+asin(ωt). The describing function here has one 
part, the complex gain Na(a,b) that relates the sinusoidal input component with the 
fundamental output component. The second gain Nb(a,b) relates the mean output of the 
nonlinear block with its mean input. Just as described in the beginning of this chapter 
these gains can be determined from Fourier expansion. In the case with a bias input M, 
equations (2) can be rewritten and used to determine Na(a,b) in the following way: 
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If the nonlinear element is an ideal relay shown in Fig. 2 the Fourier coefficients 
a1(a) and b1(a) in this case are [5]: 
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For the calculation of the describing functions for a nonlinear block with two si-
nusoid-inputs, double Fourier series expansion is used. The input to the nonlinear 
block is chosen in the following fashion: e= asin(Ψa)+bsin(Ψb), where Ψb=ωbt and 
Ψa=ωat. The output then becomes v=f(asin(Ψa)+bsin(Ψb)). The Fourier coefficients 
Pmn and Qmn used here are: 
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After rewriting the integral for Qmn and some substitutions, it can be proven that 
Qmn=0 for odd m+n. This procedure is fully explained in [5]. Further, the only two 
outputs in terms of frequency we are interested in, are ωa and ωb. The output term of 
frequency ωa only occurs for m=1 and n=0 and the output term of frequency ωb only 
occurs for m=0 and n=1. Thus for these two frequencies it follows that m=0 and 
n=1. The Two-Sinusoid-Input Describing Functions expressions then become: 
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Considering the ideal relay characteristic given in Fig. 2 it is proven in [5] that 
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The Three-Sinusoid-Input describing functions for ideal relay are derived in [8], 

[9]. Here we will describe the approach briefly. The nonlinear element NL is modeled 
by the Three-Sinusoid-Input describing functions when its periodic input e is consid-
ered as a sum of three sinusoids e= asin(Ψa) asin(Ψb)+bsin(Ψc), where Ψa=ωat, 
Ψb=ωbt and Ψc=ωct. Thus the output of NL is v=f(asin(Ψa) asin(Ψb)+bsin(Ψc)). In this 
case the independent input signal x of the system from Fig. 1 consists of two sinu-
soids with frequencies ωb and ωc. The Three-Sinusoid-Input describing functions re-
places the nonlinear block and they are valid of course under the assumption of low-
pass filtering properties of the linear part of the system L(s). The Fourier coefficients 
Plmn and Qlmn of the Fourier expansion of f are: 
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From the Fourier series we can see that the output term of frequency ωa only oc-

curs for l=1, m=0 and n=0. The output term of frequency ωb only occurs for l=0, 
m=1 and n=0 and ωc only occurs for l=0, m=0 and n=1. The three-sinusoid-input de-
scribing functions then become [5] 
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For the ideal relay given in Fig. 2, Qlmn=0 and the describing functions Na(a, b, c), 

Nb(a, b, c) and Nc(a, b, c) are obtained in [9] together with a simple polynomial ap-
proximation 
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where r=b/a and q=c/a. 
The corresponding polynomial approximations of Na(a, b, c), Nb(a, b, c) and Nc(a, 

b, c) are [9] 
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where the coefficients are 
[pa00, pa10, pa01, pa20, pa11, pa02, pa30, pa21, pa12, pa03] = [1.2067, 0.3930, 0.3930, -0.8163, 
-1.3672, -0.8164, 0.0694, 0.7768, 0.7768, 0.0694] 
[pb00, pa10, pb01, pa20, pb11, pb02, pb30, pb21, pb12, pb03] = [0.7103, -0.1785 -0.7732, 0.0588, 
1.8302, 1.4378, 0.1168, -0.4359, -1.9687, -0.2804] 
[pc00, pc10, pc01, pc20, pc11, pc02, pc30, pc21, pc12, pc03] = [1.5851, 0.9697, 1.4346, -2.0483, 
10.6524, -7.7795, 1.7185, -2.2441, -8.7282, 6.5833] 

 
3. SAMPLED DESCRIBING FUNCTIONS 
 

In this chapter a brief description of sampled describing functions approach for 
analysis of the limit cycles in SDM will be presented. The presentation will follow 
[4] and it is important for complete understanding the problem. The starting point is 
the presentation of SDM trough sampled asynchronous SDM. The block diagram of 
SDM based on sampling with frequency fs (period Ts=1/fs) the asynchronous one, is 
given in Fig. 3. In this model a zero order hold (ZOH) is used after the sampling, in 
order to obtain a continuous signal y*(nTs) that is fed back to the continuous input of 
the system. 

 
Fig. 3. Basic block diagram of SDM. 

L(s) ⎦⎡ 
+ 

- 

x(t) e(t) i(t) y(t) 
ZOH 

y*(nTs) 

fs=1/Ts 
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The ideal quantizer is memoryless and its position with respect to the sampling 
operation is of no consequence for the loop operation of the system. To decouple the 
amplitude quantization from the sampling, the sampling is performed after the quan-
tizer. However, it is important to point out that by placing the sampler after the quan-
tizer, the model gives a better representation for continuous time loop filters. For dis-
crete time loop filters, where the sampling is performed before the quantizer, special 
attention has to be paid to the possibility for the introduction of aliased components 
in front of the quantizer. The Limit Cycle Model (LCM) of the SDM assumes a 
steady state oscillation denoted as limit cycle. The quantizer input signal is approxi-
mated with a sinusoid so that the DF theory can be applied. In Fig. 4 the quantizer is 
modeled with its describing function N(a), where a denotes the amplitude of the 
quantizers’ sinusoidal input signal. 

 
 

Fig. 4. Describing Function linearized SDM. 
 
The sampling mechanism is explained in details in [4] and the conclusion is that 

the sampling switch and the ZOH introduce a phase delay φs between the quantizer 
output signal and the SDM output bitstream. This phase delay can take a value be-
tween zero and a clock period. 

Because in idle mode the SDM is in steady state, the clock introduced phase delay 
is fixed and depends on the loop filter parameters. The block diagram of the limit cy-
cle model of the SDM is shown in Fig. 5, where the quantizer, the sampling switch 
and the ZOH are represented by the sampled DF. 

 

 
Fig. 5. SDM with sampled DF. 

 
The separation of the quantization in amplitude from the quantization in time al-

lows the introduction of a modified DF that can be denoted as sampled DF and is de-
fined, as follows: 

( , ) ( ) sj
sN a N a e ϕϕ −=      (24) 

The magnitude of the sampled DF is in fact, the magnitude of the usual DF pre-
sented in Chapter 2, while the sampling is incorporated as a phase component in the 

L(s) N(a,ϕs) 
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x(t) e(t) i(t) y*(nTs) 

L(s) N(a) 
+ 
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x(t) e(t) i(t) y(t) 
ZOH 

y*(nTs) 

fs=1/Ts 
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overall describing function. In [4], sampled DFs of the binary quantizer are intro-
duced for different combinations of DC or harmonics inputs. Here we will present 
only the sampled DFs for two sine wave inputs and will introduce the sampled DFs 
for three sine wave inputs. 

The fundamental observation in [4] is that the only idle oscillations that can exist 
in the SDM loop are even integer multiples 2N of the sampling period Ts and they are 
called sub-harmonic modes (because they have a frequency that is an even integer 
fraction of the applied sampling frequency fs). Due to sampling the phase delay is dif-
ferent for every sub-harmonic mode. Those modes have frequencies fs/2, fs/4 and fs/8. 
They are called respectively first, second and fourth. 

For limit cycle with frequency fs/2, the clock can introduce in the SDM loop a 
maximum phase delay of 180 deg. This is true, because for the first sub-harmonic 
limit cycle, the sampling period corresponds to the half of the period of the limit cy-
cle. For the limit cycle with frequency fs/4, the clock can introduce in the SDM loop a 
maximum phase delay of 90 deg and for the limit cycle with frequency fs/8, the clock 
can introduce in the SDM loop a maximum phase delay of 45 deg. Thus for the idle 
limit cycle oscillations with a lower frequency the impact of sampling on the loop 
phase behavior decreases proportionally. 

When the input signal x is nonzero (busy operation), the phase shift that is intro-
duced by the clock depends on the frequency and the amplitude of the signal in front 
of the quantizer at the particular sampling instance. As this amplitude is continuously 
varying, the phase shift that is introduced is not fixed. That is why for busy operation 
the term phase uncertainty is used in [4] for the clock added phase delays. This phase 
uncertainty remains bounded between the phase limits for each limit cycle mode as 
determined for idle operation. 

According to the above considerations, the idle limit cycle is a stable periodic 
mode that appears in the SDM for zero input. Let for example the linear loop filter 
has a second order frequency transfer characteristic 

 

                   2

.( )( )
( )

z
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G jL j
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ω ωω
ω ω

+
=

+
     (25) 

 
For the SDM that can sustain at least one limit cycle, in analogy to the continuous 

systems [4] - [9], the relation between the linear part of the loop and the DF represen-
tation of the non-linear element is given by: 

 

,

1( )
( , )k

k s k

L j
N a

ω
ϕ

= −      (26) 

 
where ak is the k-sub-harmonic limit cycle amplitude, ωk is the k-sub-harmonic limit 
cycle frequency, and φs,k is the clock added loop phase delay for the k-sub-harmonic 
limit cycle mode. 
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The solutions of equation (26) give the frequency and amplitude of the possible 
limit cycle oscillations. In the studied SDM this expression reveals the 
phase/magnitude relation in the closed-loop at each sampling instance. In fact it al-
lows us to investigate the SDM loop for an inherent asynchronous mechanism. The 
clock operation is treated as superimposed to this internal mechanism and the analy-
sis establishes the interaction of this mechanism with the applied clock frequency. 

The observations in [4] are that a finite set of limit cycles can exist in the studied 
SDM (sampled system), such that in each case the limit cycle frequency is a fraction 
of the applied clock frequency. For each specific idle limit cycle the clock introduces 
some fixed delay in the loop. The limit cycle modes can be identified if this delay is 
taken into account for the evaluation done according to (26). The evaluation can eas-
ily be performed graphically as illustrated in Fig. 6 [4]. 

The clock introduced phase shift for each fs/N frequency is shown as a horizontal 
line originating from the discrete frequency points of the locus L(jωs/N) and with 
length equal to 2π/N as described above. In the asynchronous case an indication for a 
limit cycle is given by an intersection between L(jω) and -1/N(A). 

For synchronous (sampled) SDM the limit cycle modes correspond to those frac-
tions of the clock frequency for which the sampling operation adds enough delay in 
the loop such that the delay lines starting from L(jωs/N) can cross -1/N(A). 

For the example given in Fig. 6, two limit cycle modes are possible with frequen-
cies fs/2 and fs/4 (green points). Limit cycles with lower frequencies are not possible 
because the total phase delay in the loop for lower frequencies does not provide 360 
degrees phase shift and thus cannot satisfy the oscillation conditions. 
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ρ2 ρ2

0 

1ς

 
Fig. 5. Graphical description of the limit cycle model of the SDM operation. 

 
The phase margin λk for the prevention of lower sub-harmonic modes (see Fig. 6) 

(where i is an index for the particular sub-harmonic mode) in the loop, is the distance 
between the maximum phase delay that can be introduced for the particular sub-
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harmonic mode, and the -180 deg. line. The phase boundary ρi for each sub-harmonic 
mode gives a measure for the amount of phase with which the maximum added clock 
phase delay may exceed the -180 deg. phase line. 

Every SDM operates at one or more limit cycles. In fact, the situation when only 
one limit cycle is possible in the system is a very rare case. In most practical situa-
tions, at least two limit cycles should be introduced. As it is stated in [4], the SDM 
limit cycle state depends entirely on the instantaneous values of the input signal. 
Here, we state that, in contradiction with the general perception of the SDM opera-
tion, the limit cycle with frequency fs/2 is not always the only possible one. More-
over, it may not result in the best performance for the system. In fact, it is shown in 
[4] that several sub-harmonic modes have to be implemented, in order to get the best 
trade-off for the system performance. 

It should be stressed that DF method is an approximate technique, often useful in 
engineering practice, which may be used to study the limit cycles in nonlinear sys-
tems. The most important requirement to use the approximation of the nonlinear 
block with DF is that the linear part of the system has to work as a lowpass filter, i.e. 
to attenuate higher frequencies. 

 
4. PREDICTION OF LIMIT CYCLES IN SDMS 

 
The evaluation in the previous chapter showed that SDMs can operate at more 

than one limit cycle. In [4], the limit cycle behavior for DC and harmonic inputs is 
described. The SDM behavior when driven with sinusoidal input signals is evaluated 
also. For the analysis, the sampled two-sinusoid-input DFs are employed. In this arti-
cle, we consider the SDM behavior when driven with two sinusoidal input signals. It 
is inspired by the practical situation when the input signal of the SDM has also very 
high frequency components. This signal can be modeled as a sum of two sinusoids: 
one in the baseband and the second one that is very high and sometimes close to the 
sampling frequency. In order to incorporate the impact of a high frequency signal on 
the SDM operation, it is necessary to utilize the sampled three-sinusoidal-input DFs 
for the binary quantizer (ideal relay) described in Chapter 3. 

The SDM limit cycle behavior with two sinusoidal inputs is governed by the same 
mechanisms as discussed in [4] for DC input and one sinusoidal input. The limit cy-
cle behavior is determined by the possible limit cycles in idle mode. The stability re-
gion for each possible limit cycle is dependent on the phase boundary for each limit 
cycle that is possible for the particular SDM. Transitions between the cycles are de-
pendent on the total phase accumulation at each sampling moment due the loop filter, 
the delay due to the sampling, the input signal and the extra loop delay. 

According to DFs method we suppose that the input signal in front of the quan-
tizer consists of three sinusoids, the limit cycle sinusoid with frequency ωa (even in-
teger fraction of the sampling frequency fs) and two sinusoids with frequencies ωb 
and ωc due to the signals applied to the SDM input: 

( ) sin( ) sin( ) sin( ) sin( ) sin( ) sin( )a b b c c a b ci t a t b t c t a b cω ω θ ω θ ψ ψ ψ= + + + + = + + (27) 
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where a is the amplitude of the limit cycle and b and c are the amplitudes of the sinu-
soids due to the signals applied to the SDM input. 

Suppose that we have the case depicted in Fig. 6, where only the first and second 
limit cycle modes with frequencies ω1=ωs/2 and ω2=ωs/4 are possible. When the first 
limit cycle mode is active, (27) has the form 

 

1 1( ) sin(( / 2) ) sin( ) sin( )s b b c ci t a t b t c tω ω θ ω θ= + + + +    (28) 
 
and when the second limit cycle mode is active, (26) has the form 

 

2 2( ) sin(( / 4) ) sin( ) sin( )s b b c ci t a t b t c tω ω θ ω θ= + + + +    (29) 
 
At each sampling instant, operation at only one limit cycle mode is assumed such 

that the signal in front of the quantizer can be described by either i1 or i2. From (27), 
when only two idle limit cycles are possible, the SDM operation with two sinusoidal 
input signals can be described by three groups sampled Three-Sinusoidal-Input DFs 
defined as follows: 

a) Two Three-Sinusoidal-Input DFs, which describe the quantizer response to the 
limit cycle in the presence of two sinusoidal components: 

,1

1 1( , , ) sj
aN a b c e ϕ− – sampled three-sinusoidal-input DF of the quantizer for limit 

cycle 1 in the presence of two sinusoidal components with amplitudes b and c; 
,2

2 2( , , ) sj
aN a b c e ϕ− – sampled three-sinusoidal-input DF of the quantizer for limit 

cycle 2 in the presence of two sinusoidal components with amplitudes b and c; 
b) Two Three-Sinusoidal-Input DFs, which describe the quantizer response to the 

first sinusoidal component in the presence of the limit cycle and the second sinusoidal 
component: 

,1
1( , , ) sj

bN a b c e ϕ− – sampled three-sinusoidal-input DF of the quantizer for the si-
nusoidal component with amplitude b in i1 in the presence of limit cycle 1 and the si-
nusoidal component with amplitude c in i1; 

,2
2( , , ) sj

bN a b c e ϕ− – sampled three-sinusoidal-input DF of the quantizer for the si-
nusoidal component with amplitude b in i2 in the presence of limit cycle 2 and the si-
nusoidal component with amplitude c in i2; 

c) Two Three-Sinusoidal-Input DFs, which describe the quantizer response to the 
second sinusoidal component in the presence of the limit cycle and the first sinusoidal 
component: 

,1
1( , , ) sj

cN a b c e ϕ− – sampled three-sinusoidal-input DF of the quantizer for the si-
nusoidal component with amplitude c in i1 in the presence of limit cycle 1 and the si-
nusoidal component with amplitude b in i1; 

,2
2( , , ) sj

cN a b c e ϕ− – sampled three-sinusoidal-input DF of the quantizer for the si-
nusoidal component with amplitude c in i2 in the presence of limit cycle 2 and the si-
nusoidal component with amplitude b in i2. 
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The system behavior at each sampling instant is described by a set of three DFs 
from the above: one DF for the limit cycle and two for the input signals. In the case 
when a1 > b > c and a2 > b > c, based on the current research the analytical descrip-
tion of the magnitude components of the sampled Three-Sinusoidal-Input DF have 
the following approximate form: 
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with [pa00, pa10, pa01, pa20, pa11, pa02, pa30, pa21, pa12, pa03] = [1.2067, 0.3930, 0.3930, -
0.8163, -1.3672, -0.8164, 0.0694, 0.7768, 0.7768, 0.0694] 
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with [pb00, pa10, pb01, pa20, pb11, pb02, pb30, pb21, pb12, pb03] = [0.7103, -0.1785 -0.7732, 
0.0588, 1.8302, 1.4378, 0.1168, -0.4359, -1.9687, -0.2804] 
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with [pc00, pc10, pc01, pc20, pc11, pc02, pc30, pc21, pc12, pc03] = [1.5851, 0.9697, 1.4346, -
2.0483, 10.6524, -7.7795, 1.7185, -2.2441, -8.7282, 6.5833] 

It should be pointed out that the relation between the amplitudes of the first and 
second limit cycles modes is a1<a2.  
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Let L(jω)=|L(jω)|ejζ(ω)e-jρ , where ρ is an additional phase delay added to the loop. 
This phase delay corresponds to a time delay τ and ρ= ωτ. Taking into account the 
limit cycle condition (26) [4] – [9] we get 

 
,( ). ( , , , ) 1, 1, 2

kk a k s kL j N a b c kω ϕ = − =    (30) 
 
where ω1 and ω2 are the frequencies of the first and second limit cycle modes and 
ρ1=ω1τ and ρ2= ω2τ. 

Taking into account (30) the phase conditions for limit cycle oscillation on the 
first or second limit cycle in the presence of two sinusoidal input signals are given by 
the solution of the equations 
 

, ,( ) . ( , , ) sin( ( ) cos( ) cos( ( ) ) sin( ) 0 ,

1, 2
kk a k k k s k k k s kL j N a b c

k

ω ζ ω ρ ϕ ζ ω ρ ϕ⎡ ⎤− − − =⎣ ⎦
=

 (31) 

where ( , , ) , 1, 2
ka kN a b c k =  are given by the approximate formulas above. 

 
The magnitude conditions for limit cycle oscillation on the first or second limit 

cycle are given by the solution of the following equations 
 

, ,( ) . ( , , ) cos( ( ) ) cos( ) sin( ( ) )sin( ) 1,

1,2
kk a k k k s k k k s kL j N a b c

k

ω ζ ω ρ ϕ ζ ω ρ ϕ⎡ ⎤− + − = −⎣ ⎦
=

 (32) 

 
To compare the results for the modeling of the limit cycle behavior with more 

than one input signal with the results obtained in [4], where the dual-input DFs model 
has been utilized for the analysis of the limit cycle behavior of SDMs and to check 
the above results in which the model with three-sinusoid-input DFs make sense we 
consider the following example: a simple first order SDM with sampling frequency 
fs=1e9 Hz with linear part described by first order frequency transfer characteristic 
 

7

5

1( )
( 1 )

eL j
j e

ω
ω

=
+      (33) 

 
and additionally added time delay in the loop is chosen to be τ=ts/4 (ρ=ω τ). 

In this case there are two active limit cycle modes illustrated in Fig. 6 by the in-
tersection between the line at -180 deg. and the horizontal lines originating from the 
discrete frequency points L(jωs/2) and L(jωs/4) of the locus L(jω) with lengths equal 
to 2π/2 and 2π/4. 
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Fig. 6. Graphical description of the limit cycle model of the SDM operation considered  

in the example 

When the input signal of the SDM of Fig. 3 is x(t)=0.01sin(2π106t) the limit cycle 
model, developed in [4], based on sampled two-input-sinusoid DFs is used for 
evaluation of the switching between both limit cycles modes. The results are con-
firmed by simulations. The Simulink model for this case is given in Fig. 7. 
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Fig. 7. Simulink model of the SDM with one sin wave input signal considered in the example. 
 
The time domain behavior of the quantizer input is given in Fig 8. It is easy to ob-

serve that the SDM works on the first and second limit cycle modes. The switching 
conditions between both modes are predicted with the limit cycle model developed in 
[4]. 
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Fig. 8. Quantizer input waveform of the SDM considered in the example 

The number of zero crossings in a period of 1000Ts=10-6 sec. is a measure of the 
time that the SDM works on both limit cycles mode. If the SDM operates only on the 
first limit cycle mode the number of zero crossings should be 500, whereas if it works 
on the second limit cycle mode the number of zero crossings should be 250. In the 
case considered the number of zero crossings is 339.66, i.e. the SDM operates on 
both limit cycle modes. From the power spectrum of the output bitstream one can ob-
serve the peaks at the frequency of the input signal 1e6 Hz and at the first and second 
limit cycles modes at fs/2=0.5e9 Hz and fs/4=0.25e9 Hz. SNR in this case is 18.57 dB. 

When the input signal of the SDM of Fig. 6 consists of two sinusoids i.e. 
x(t)=0.01sin(2π106t)+0.3sin(2π108t) the developed in [4] limit cycle model using 
sampled two-input-sinusoid DFs could not predict the switching between both limit 
cycles modes. 

For the analysis of this case, the new sampled three-sinusoid-input DF approach 
elaborated in this report has been used. The switching conditions between two limit 
cycle modes are calculated through (32). The Simulink model for this case is given in 
Fig. 9. The model is similar to this from Fig. 7, but in this case an additional sine 
wave input signal 0.3sin(2π108t) is used. 

The time domain behavior of the quantizer input is given in Fig. 10. It is easy to 
observe that the SDM also works on the first and second limit cycle modes. The 
switching conditions between both modes are predicted with the limit cycle model 
developed in this article. They are different from the case with one sinusoidal signal, 
but we have to stress again that the SDM operates only on the first and second limit 
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cycle modes like in the previous case. The switching conditions however are different 
and can be predicted only with the developed theory based on sampled three-
sinusoidal-input DFs. In the case considered the number of zero crossings is 340.00, 
and this confirms that the SDM operates only on the first and second limit cycle 
modes. It should be stressed that for this case we used the approximate three-
sinusoid-input DFs Na(a1,b,c) and Na(a2,b,c) given above, for which we obtained the 
best polynomial approximation with a mean squared error of the approximation 
1.0570e-004. 
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Fig. 9. Simulink model of the SDM considered in the example with two sine waves input signals 

 
 

0 0.5 1 1.5 2 2.5 3

x 10-7

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
input=0.01sin(2.pi.1e6.t)+0.3sin(2.pi.e8.t); number of zero crossings in a period of 1000*ts=340.00

time)

va
lu

e

 
Fig. 10. Quantizer input waveform of the SDM considered in the example  

with two sine wave input signals 
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From the power spectrum of the output bitstream one can observe clearly the 
peaks at the frequencies of the input signal 1e6 Hz and 1e8 Hz and at first and second 
limit cycles modes at fs/2=0.5e9 Hz and fs/4=0.25e9 Hz. The SNR in this case is 26.56 
dB i.e. better than in the case with one sinewave input signal. The conclusion of the 
example with two sinewave input signals is related to the incorporation of a high fre-
quency signal in the developed limit cycle model of the SDM. This incorporation is 
limited by the actual frequency difference of this signal and the limit cycle mode with 
the lowest frequency. 

On the other hand, the insight of the limit cycle behavior of SDMs helps us to say 
immediately what the impact of such high frequency signal on the SDM operation 
would be. It is going to disturb all lower frequency limit cycles. For the example that 
we consider, there is only one possible low frequency limit cycle and it is disturbed 
as this can be observed comparing the quantizer input waveforms given in Fig. 8 and 
Fig. 10. In practice, this situation can be very useful. With a high frequency signal 
with sufficient amplitude one can actually decrease the loop operation at the low fre-
quency limit cycle and in fact to dither it out. Thus it is actually going to improve the 
SDM performance. 

 
5. CONCLUSIONS 
 

In this article the application of the multiple-input describing functions approach 
for adequate modelling of the changes in the limit cycle behaviour of SDMs due to 
two sinusoidal input signals was discussed. For this purpose a SDM limit cycle model 
has been investigated by use of sampled DF. Further in the article the sampled three-
sinusoid-input DFs for analysis of SDMs have been introduced. The results for the 
modelling of the limit cycle behaviour with two sine wave input signals have been 
presented. The switching conditions between the possible limit cycles modes have 
been given as well. These results could not be obtained based on sampled two-
sinusoidal-input DF developed in [4]. Based on elaborated results the effect of the in-
corporation of a high frequency signal in the developed limit cycle model of the 
SDMs has been investigated. 

It should be stressed that to the best of our knowledge there are no any published 
results about the analysis of limit cycles based on sampled three-sinusoidal-input DFs 
and only a few results about general use of three-sinusoidal-input DFs. In this sense 
the presented results are new and there are many things that have to be elaborated fur-
ther. 
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Abstract: The state-space analysis is not very popular in the Theoretical Electrical Engineering 
- it is used mostly in Control Engineering. However, it has a considerable potential for transient 
analysis of complex nonlinear circuits, and good pedagogical effect in teaching – the analysis of 
circuits and systems can be performed using matrix methods to write and solve first-order state-
variable differential equations. This paper explain the basics of the method, how it is used it the 
Theoretical Electrical Engineering and outlines its perspectives. Two examples are solved to dem-
onstrate the method using different numerical platforms. 

Keywords: theoretical electrical engineering, state space, transient analysis  
 
1. INTRODUCTION  
 

Two methods have wide popularity for transient analysis of electric circuits in the 
subject Theoretical Electrical Engineering: 

1. The classical method for integration of differential equations 
2. Laplace transforms method 

The first method is suitable for simple circuits of 1st or 2nd order. For higher-order 
circuits it becomes cumbersome, because many dependent initial conditions and inte-
gration constants has to be determined. The second method is more suitable for 
higher order circuits and computer applications, but it is only applicable for linear 
circuits.  

In general, these methods have the following drawbacks: 
1. are not applicable to nonlinear circuits; 
2. are not easily programmed for computer solution; 
3. do not give much information about the circuit, except when full detailed solu-

tion for all variables is done. 
The missing properties in these methods can be found in another method for tran-

sient analysis – the state-space analysis, which is mostly used in the Control Engi-
neering for analysis of dynamical systems. It can be easily applied to nonlinear time-
dependent systems and gives as a result a system of equations, that can be easily pro-
grammed on digital computer [1,2]. 

The state-space analysis is not very popular in the Theoretical Electrical Engi-
neering. However, it has a big potential for transient analysis of complex nonlinear 
circuits and a considerable pedagogical effect in teaching - the analysis of circuits and 
systems can be performed using matrix methods to write and solve first-order state-



Advanced Aspects of Theoretical Electrical Engineering Sozopol '2009 67

variable differential equations. The aim of this paper is to explain the basics of the 
method, its advantages, how it is used it the Theoretical Electrical Engineering and to 
outline its perspectives in the future. 

 
2. STATE SPACE ANALYSIS BASICS  

 
2.1. General notions 
The essence of the state-space analysis is that it is a technique for determining  

the state of a system. If the energy stored in one of the system elements changes, the 
system will be in a different state. For electric circuits, the amount of energy stored at 
any instant in each type of element is given as 

 

 0=RW  , 2

2
1 LiWL = , 2

2
1 CuWC =   (1) 

 
These expressions suggest that the current in each inductor and the voltage across 

each capacitor in the circuit can be chosen as the set of variables to describe the state 
of the electric circuit.  

At any instant of time, a given distribution of stored energy in the system’s ele-
ments uniquely determines the location of a point in a coordinate system, in which 
each axis is labeled with a different state variable. As time goes on and the amount of 
energy stored in each storage element changes, the point moves, describing a path, or 
trajectory, in the coordinate system. This coordinate system is called a state space 
because the instantaneous location of a point in that space specifies exactly how 
much energy is stored in each element at that instant and thus describes the state of 
the system. A vector that always reaches from the origin to the point is called the 
state vector. As the point moves in the state space, the state vector changes in both 
magnitude and direction. 

An illustration of the state space and the state vector is shown below. Let’s con-
sider the discharge of a capacitor through resistor and inductor. The independent ini-
tial conditions are:  

 
( ) ( ) A000 =+=− LL ii ; ( ) ( ) V100 =+=− CC uu   

 
Fig. 1: Simple example for illustration of the state space  

The solutions for Li  and Cu  are: )
4

sin(2)( π
+= − tetu t

C ;  teti t
L sin)( −=  
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The ( )tuC , ( )tiL  and the state space trajectory described by the state variables, are 
shown on Fig. 2: 

 
Fig. 2. ( )tuC , ( )tiL  and the state space trajectory  

 
In Fig. 2, the state trajectory is shown for ∞÷= 0t . The state vector for a specific 

time moment is also shown. This trajectory has ending point in the beginning of the 
coordinate system. For a source-free system, the point where the time derivatives of 
every state variable are simultaneously zero is called equilibrium point. An equilib-
rium point is called unstable, if a slight displacement of the system vector away from 
that point results in the state vector's moving away on a new trajectory. An equilib-
rium point is called stable if the state vector stays in the neighborhood of the equi-
librium point after being displaced slightly. In any source-free linear system, the origin 
is the only equilibrium point. Nonlinear systems can have more than one equilibrium 
point, the location and description of which are of interest for the researcher. 

 
2.2. State-space analysis algorithm 
The main steps in the state-space analysis are [1]: 
1. The currents in the inductors and the voltages across the capacitors in the cir-

cuit are chosen as state variables. In more general case, the state variables can 
be the magnetic fluxes and the capacitor charges; 

2. All remaining variables - the voltages across the inductors and the currents in 
the capacitors, are expressed using the state variables;  



Advanced Aspects of Theoretical Electrical Engineering Sozopol '2009 69

3. Applying the Kirchhoff’s Current Law (KCL) and the Kirchhoff’s Voltage 
Law (KVL), a non-homogeneous system of differential equations is written, 
which describes the transients in the circuit.  

4. The obtained system of equations is reduced to normal form, i.e., for each state 
variable, Cu  or Li , a first-order differential equation is obtained solved in re-
spect to the first time derivative of that state variable.  

5. The system in normal form is integrated at specified initial conditions. The ini-
tial conditions are determined from the steady state of the circuit before the 
commutation.  

6. After the integration, the required output variables are expressed using the state 
variables and the available sources. 

Some recommendations exist for the choice of normal tree for the circuit [3]: 
1. All capacitors and voltage sources must be included in the normal tree. If they 

are not sufficient, resistive branches are added. 
2. All inductors and current sources are taken as links. If they are not sufficient, 

resistive branches are added. 
These rules facilitate the formation of the state equations. 

Example of forming the state-space system of equations.  
For the circuit on Fig. 3 find the inductor current ( )ti L  and the capacitor voltage 
( )tuC  as functions of time. Find also ( )ti1  and ( )tuR2 . 
 

 
Fig. 3: Example circuit 1 

 

The independent initial conditions, ( )0Cu  and ( )0Li , are found from the circuit be-
fore commutation and considered as known. 

For the circuit after the commutation (the switch is closed) – Fig. 4, the following 
equations can be written using KCL and KVL: 

 

 

0

0

32

211
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=++−−

=++
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L

CC

CC
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iR
dt
diLiRu

EiRuiR
Jiii

 (2) 
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Fig. 4: Example circuit 1 after the commutation 

 
We choose as state variables the inductor current Li  and the voltage across the ca-

pacitor Cu . The aim is to transform this system of equations in state-space form - as 
two first-order differential equations solved with respect to the first time derivatives 
of Li  and Cu , and the right hand sides being functions only to Li  and Cu . 

As the capacitive current is 
dt

duCi C
C = , after the substitution of Ci  the system is: 
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C
C

eL
C

iR
dt
diL

dt
duCRu

E
dt

duCRuiR

Ji
dt

duCi

 (3) 

 
The current 1i  is expressed from the 1st equation  
 

eL
C Ji

dt
duCi −+=1  

 
and substituted into the 2nd equation:  
 

E
dt

duCRuJRiR
dt

duCR C
CeL

C =++−+ 2111  

 
After solving for dtduC /  , the first state-space equation will be: 
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Then, dtduC /  is substituted into the 3rd equation of the system (3) and it is solved 
for dtdiL /  : 

( ) ( ) ( ) ( ) eLC
L J

LRR
RRE

LRR
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LRR
RRRu

LRR
R

dt
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1 1
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The final state-space system of equations will be: 
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 (4) 

 

Introducing the vector of the state variables ⎥
⎦

⎤
⎢
⎣

⎡
=

L

C

i
u

x , and the vector of external 

sources ⎥
⎦

⎤
⎢
⎣

⎡
=

eJ
E

f  (also called forcing vector), the matrix form of the first state-space 

equation is obtained: 

 )(t
td

d fBxAx
+=  , (5) 

where the matrices A and B are: 
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The matrix A  is always a square matrix. It is called characteristic or system ma-

trix. When the lengths of the vectors x  and ( )tf  are not the same, the matrix B  is 
rectangular. 

The second equation from the state-space system of equations has the form: 
 
 )(tfDxCy +=   (7) 
 
It is used to obtain the remaining variables in the circuit, except the space vari-

able.  
For the example above, the following equations can be written using the 

Kirchhoff’s Voltage Law, in which the additional variables ( )ti1  and ( )tuR2  (not state 
variables) are present:  
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 E
dt

duCRuiR C
C =++ 211  (8) 

  

 
dt

duCRu C
R 22 =  (9) 

 
Substituting the already found time derivative dtduC / , the following expressions 

are obtained for 1i  and 2Ru : 
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The matrix C  will contain the coefficients before the state variables Cu  and Li  

and matrix D  will contain the coefficients before the sources E  and eJ : 
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Taking into account Eqs. (5) and (7), it can be determined, that the transients in a 

linear lumped-element circuit are described in the state space transient analysis by the 
following system matrix equations:  
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The application of the state space method is connected to the resolution of several 

basic problems: 
1) Finding the number of the state variables nп.  
The quantity nп is the same as the circuit order n and is less or equal of the total 

number nΣ of capacitors and inductors. Similar inequality (nп < nΣ) arises when induc-
tor cuts or capacitor loops are present.  

2) How to solve the matrix Equation 5, representing the state space equations  
Several methods exist, and many numerical packages can be used for this aim. 

These are covered in Chapter 2.3 and 3. 
3) How to form the state equations for more complex circuits  
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There is a method based on the superposition principle, suitable for software im-
plementation. It will be covered in Chapter 2.4. 

The solutions of these problems are shortly described below. 
 
2.3. Solution of Eq. (5)  
The Equation (5) has normal form or Cauchy form. It has to be solved at specified 

initial conditions :  
 ( ) 0xx =+0  (14) 
 
There are several approaches to solve this matrix equation. 
 
2.3.1 Analytical solution of Eq. 5: 
The matrix equation (5) at initial conditions (14) has general solution in the form 

[1]: 

  ∫ −+=
t

tt deeet
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)()( τττ fBxx AA
0

A  (15) 

 
Here, the matrix exponent teA  is used (also called transition matrix). It is defined 

by the absolutely convergent for every t  matrix series:  
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In general, the transition matrix is a square matrix. A typical element a(i,j) of the 

transition matrix is the response of the i-th state variable due to an initial condition on 
only the j-th state variable.  

An example program that integrates the solution (15) can be found in reference 
[2]. It uses summation of infinite series and numerical integration. 

After the state variables are found, the output variables can be obtained using the 
matrix equation (7).  

 
2.3.2 Solution using numerical integration 
The numerical solution of Eq. 5 can be performed using any mathematical pack-

age (Matlab, Octave, Mathematica, Derive, Maple) that has functions for numerical 
integration of ODE. For example, Matlab has 7 functions for initial value problems 
for ordinary differential equations (ODEs), of different order and accuracy, for gen-
eral or stiff differential equations (e.g., ODE45, ODE23, ODE23S). The application 
of ODE45 will be shown later in Example 1. 
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2.3.3 Solution using symbolic derivation 
The symbolic solution of Eq. 5 can be performed using mathematical packages 

that support symbolic computations (e.g., Matlab, Maple, Mathematica). The big ad-
vantage is the possibility to find analytical solution of Eq. 5. For example, Matlab has 
the function dsolve for symbolic solution of ordinary differential equations, which 
can be used to find analytical solutions of the state space equations. The use of dsolve 
will be shown later in the solution of Example 1. 

 
2.4. Forming the state space equations for complex circuits  
A basic question at the application of the state space analysis is the forming of the 

system of state space equations (5):  
The forming of this system can be achieved by application of the superposition 

principle [1]. The method will be shown for the circuit from Example 1 (Fig. 3). The 
circuit after the commutation is considered (Fig. 4). The Equation (5) will be formed 
initially.  

The algorithm consists of the following four steps:  
1. It is accepted, that Li  and Cu  are given; 
2. The reactive elements are substituted as follows (Fig. 5):  
• L – with ideal current source having current value Li  and the same direction 

 as Li ;  
• C – with ideal voltage source having voltage value Cu  and the opposite di-

rection to Cu . 

 
Fig. 5: The circuit after the substitution of Cu  and Li  with sources 

 
3. The current Ci  and the voltage Lu  are found using the superposition princi-

ple, leaving only a single source to be active at a time. 
The application of the superposition principle follows the next steps: 
Find iC with only one source to be active at a time: 
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Find uL with only one source to be active at a time: 
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At the end, after superimposing all separate contributions, Ci  and Lu  will be: 
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4. Substituting 
dt

duCi C
C =  and 

dt
diLu L

L =  and solving with respect to 
dt

duC  and 

dt
diL , we obtain the system of differential equations in normal form: 
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This approach can easily be programmed using an algorithm and program for DC 

analysis of general circuits. Such a program, written in Fortran, can be found in [2] 
and can be used to verify the obtained by hand A, B, C and D matrices, especially for 
large, complex circuits, where the manual derivation is difficult and prone to errors. 
 
3. RESULTS OF THE STATE SPACE TRANSIENT ANALYSIS  
    FOR TWO EXAMPLES 
 

3.1. Example 1 
Let’s find the inductor current ( )ti L , the capacitor voltage ( )tuC , the current ( )ti1  

and the voltage ( )tuR2  for the circuit from Fig. 3. The circuit parameters are: 
;101 Ω=R  ;202 Ω=R  ;203 Ω=R  ;H1=L  ;μF1000=C  .;V25 constE ==  

.A2 constJ e ==  
First, the state space equations must be determined, as shown in the previous chap-

ter. The already found state space equations (19) will be used here. Then, the equa-
tions can be solved using Matlab or PSpice. The advantage of using Matlab and its 
symbolic toolbox function dsolve is that it gives analytical solutions. PSpice gives 
numerical solution that can be represented as graphs. 

 
3.1.1. Solution with Matlab using the function dsolve: 
The function dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v') symbolically solves the or-

dinary differential equations specified by eq1, eq2,... using v as the independent vari-
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able and initial conditions specified by cond1,cond2,.. The default independent vari-
able is t. 

The code segment with Matlab solution follows: 
 
% EXAMPLE 1 - state space analysis using dsolve 
clear all 
% declaration of symbolic variables 
syms s t x y dx dy X F Y 
 
% input of circuit parameters 
R1=10; R2=20; R3=20; 
L=1; C=1e-3; E=25; J=2;  
 
% input of independent initial conditions 
iL0=J 
uC0=R3*J 
 
% create state space equations, with x=uc; y=iL 
dx=-1/((R1+R2)*C)*x-R1/((R1+R2)*C)*y+1/((R1+R2)*C)*E+R1/((R1+R2)*C)*J 

dy=R1/((R1+R2)*L)*x- 
(R3+R1*R2/(R1+R2))/L*y+R2/((R1+R2)*L)*E+R1*R2/((R1+R2)*L)*J  
 
% converts symbolic equations to character strings 
z1=char(dx); z2=char(dy);  
s1=strcat('Dx= ',z1,' ,','Dy= ',z2) 
in1=num2str(uC0); in2=num2str(iL0); 
s2=strcat('x(0)=',in1,' ,','y(0)=',in2) 
 
% call dsolve 
[x,y]=dsolve(s1,s2); 
x=vpa(x,4); y=vpa(y,4); 
x=expand(x); y=expand(y); 
x=vpa(x,4) 
y=vpa(y,4) 
 
% create output matrices C and D 
C=[-1/(R1+R2) R2/(R1+R2); -R2/(R1+R2) -R1*R2/(R1+R2) ] 
D=[ 1/(R1+R2) -R2/(R1+R2); R2/(R1+R2) R1*R2/(R1+R2) ] 
 
X=[x; y] 
F=[E; J] 
% compute output variables 
Y=C*X+D*F; 
I1 =vpa(Y(1),4) 
UR2=vpa(Y(2),4) 
 

The results are: 
 
x=uc=30.-20.*exp(-30.*t)*sin(10.*t)+10.*exp(-30.*t)*cos(10.*t) 
y=iL=1.500+.5000*exp(-30.*t)*sin(10.*t)+.5000*exp(-30.*t)*cos(10.*t) 
I1 =1.000*exp(-30.*t)*sin(10.*t)-.5000 
UR2 =10.00*exp(-30.*t)*sin(10.*t)-10.00*exp(-30.*t)*cos(10.*t) 
 

These results coincide exactly with the results found by the classical method. 
 
3.1.2. Solution with Matlab using numerical integration of the state equations 
with the function ODE45 
The code segment with Matlab numerical solution follows: 
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% main program for using function k50 (Ex 1) and ode45  
clear all 
[t,y] = ode45(@k50,[0 0.25],[40; 2]); 
subplot(3,1,1);  
plot(t,y(:,1),'-') 
title('Ex 1 - Uc'); 
xlabel('time t'); 
ylabel('uc'); 
subplot(3,1,2);  
plot(t,y(:,2),'-') 
title('Ex 1 - iL'); 
xlabel('time t'); 
ylabel('iL'); 
subplot(3,1,3);  
plot(y(:,1),y(:,2),'-') 
title('State space'); 
xlabel('uc'); 
ylabel('iL'); 

 
The function k50, that computes the right hand sides of the state equations, must 

be prepared initially in a separate file k50.m 
 

function dydt=k50(t,y) 
dydt=[ -100/3*y(1)-1000/3*y(2)+1500; 1/3*y(1)-80/3*y(2)+30 ]; 

 
The graphs of ( )ti L  and ( )tuC  are shown on Fig. 8. 
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Fig. 8: Graphs of ( )ti L , ( )tuC  and the state space 
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ODE45 is a function that solves non-stiff differential equations, with medium or-
der method. The call of ODE45 is 

 [TOUT,YOUT] = ODE45(ODEFUN,TSPAN,Y0)  
with TSPAN = [T0 TFINAL] 
This function integrates the system of differential equations ( )ytfy ,'=  from time 

T0 to TFINAL with initial conditions Y0. For a scalar T and a vector Y, ODE-
FUN(T,Y) must return a column vector corresponding to ( )ytf , . Each row in the so-
lution array YOUT corresponds to a time returned in the column vector TOUT.  

How to find the final time – TFINAL / TF /. 
The duration of the transient in an electric circuit is determined by the eigenvalues 

of the matrix A. These eigenvalues coincide with the roots of characteristic equation 
of the circuit: 

 ( ) ( ) 0det =Δ=− pp A1  (20) 
 
where 1  is the unit matrix with the dimension of A . 

To cover the full duration of the transient (till the steady state is reached), the fol-
lowing condition must be fulfilled [5]: 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
÷>

k
k p

TF 1max53  (21) 

 
where TF is the integration interval, and kp  - the eigenvalues of the matrix A . 

If the eigenvalues are complex conjugate numbers, only their real part is taken. 
Matlab has a special function eig( ) for computing the eigenvalues of a matrix. 
Let the matrix A is specified as: 
 

A =[ -100/3 -1000/3; 1/3 -80/3] 
 
The statement: E=eig(A) produces a column vector containing the eigenvalues. 

For this matrix, the eigenvalues are complex:  
 

% E = 
% -30.0000 +10.0000i 
% -30.0000 -10.0000i 

 

For this example the final time TF must be  
 

( ) s0.17 0.1
30
153 ÷=⎟
⎠
⎞

⎜
⎝
⎛÷>TF  

 
In order to be more conservative, we can choose а longer final time TF=0.25 s. 
In the case of stiff systems of differential equations (having big difference be-

tween the maximum and minimum eigenvalues) improved numerical integration pro-
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grams are available – in Matlab such a function is ODE23S, which solves stiff differ-
ential equations with low order method. 

 
3.1.3. Solution using PSpice and ABM (Analog Behavioral Modeling) 
The Analogue Behavioral Modeling (ABM) allows the designer to model ana-

logue circuit functions using mathematical equations, tables, and transfer functions. 
The designer can then simulate systems as a combination of blocks, each of which 
performs a specific function. PSpice has a library of about 50 ABM functions 
(blocks), which can be used also for state space transient analysis. Most helpful for 
this aim are the functions (blocks) INTEG, ABM1, ABM2 and ABM3. In the next 
solution of Example 1 two kinds of ABM blocks from PSpice are used. 

 

 
Fig. 9: Using ABM blocks in PSpice 

 
1) INTEG - represents an integrator, one for every differential equation written in 

normal form. The right hand side of the differential equation in normal form enters as 
input there. The initial condition for the integration must be specified, as well as the 
gain, which is usually equal to 1.  

 
2) ABM2 - creates the right hand side of the equation using as input signals the 

two state variables Cu  and Li , that are obtained at the outputs of the two integrators, 
and applying mathematical functions over them. 

 
The Transient Analysis parameters are: Print Step: 3ms; Final Time: 300ms; Step 

ceiling: 0.3ms; Skip Initial transient solution: Y 
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Fig. 10: Graphs of Cu  and Li  vs. time 

It can be seen that the graphs of Cu  and Li  are the same as in Ch. 3.1.2. 

3.2. Example 2 
A generator circuit with lambda-diode is shown on Fig. 11. The frequency of gen-

eration is specified by the LC elements. The circuit parameters are: Ω= 900R ; 
mH10=L ; nF10=C ; V2.3=E . The lambda diode has I-V characteristic with 

falling part (it has negative differential resistance there, which is used to compensate 
the losses in the LC-circuit). The aim is to model the transients in this generator and 
to obtain the waveforms of ( )tuC  and ( )tiL  and their period and frequency.  

 
Fig. 11: The circuit for Example 2 

 
Using the Kirchhoff’s laws, the following equations that describe the transients in 

the circuit can be written: 
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As state variables, the capacitor voltage and the inductor current are chosen, as 
they describe the energy status of the circuit. To obtain the state space equations, the 
system (22) must be expressed in normal form, as a function of the space variables 

Cu  and Li . 

From the Eq. 22c the current Ri  is expressed as 
R
ui C

R= . Also, it is known that 

dt
duCi C

C = , so these two currents are substituted in Eq. 22a: 

( ) 0=+++− Cd
CC

L ui
dt

duC
R
ui  

 
This equation is solved in respect to dtduC /  to obtain the first state space equa-

tion: 
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The second equation can be found by solving Eq. 22b for dtdiL / : 
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Thereby, the full state space system of equations will be: 
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The system can be solved numerically using Matlab or PSpice. 
 
3.2.1. Solution with Matlab and ODE45 
The following program section uses ODE45 from Matlab to integrate the state-

space equations derived above: 
 
% Example 2 - main program for using ode45 integration function  
% the state space equations are in the function k51  
clear all 
clc 
clf 
global R L C E p 
R=900; 
% R=900 -> sin; R=3000 -> distorted 
L=10e-3; 
C=10e-9; 
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E=3.2; 
% polynomial approximation of the i-v characteristic of lambda diode  
% u=[V] i=[mA] 
p=[ -0.0095 0.1385 -0.5925 0.2601 2.1798 0.0273]; 
TFINAL=0.4e-3 
[t,y] = ode45(@k51,[0 TFINAL],[0.01; 0.0]); 
% [0.01; 0.0] are the initial conditions for uc and iL 
subplot(3,1,1);  
plot(t,y(:,1),'-') 
title('Ex 2 - Uc'); 
xlabel('time t'); 
ylabel('uc'); 
subplot(3,1,2);  
plot(t,y(:,2),'-') 
title('Ex 2 - iL'); 
xlabel('time t'); 
ylabel('iL'); 
subplot(3,1,3);  
plot(y(:,1),y(:,2),'-') 
title('State space'); 
xlabel('uc'); 
ylabel('iL'); 
 

The right hand side of the state space equations must be programmed in a separate 
file k51.m: 

 

function dydt=k51(t,y) 
% uc=y(1) ; iL=y(2) 
global R L C E p 
id=polyval(p,y(1))*1e-3; 
dydt=[ -y(1)/(R*C)+y(2)/C-id/C ; -y(1)/L+E/L ]; 
 

The obtained graphs for ( )tuC  and ( )tiL  are shown on Figs. 12 and 13, for two 
cases: Ω= 3000R  - distorted sinusoid, and Ω= 900R  - nearly perfect sinusoid. 

For Ω< 800R  and Ω> 3400R  generations do not exist. For Ω= 900R , the pe-
riod, found from Fig. 13, is sμ8604.62  and the frequency of generation is 

Hz15905=f . The theoretical frequency of the generated oscillations can be found 
using the analytical formula for resonant frequency of LC-circuit: 

 

  Hz15915
2

1
==

LC
f

π
 (24) 

 
3.2.2. Solution with PSpice and ABM 
The schematics in Fig. 14 uses ABM blocks from PSpice and follows the state 

space system in Eq. 23. Several ABM blocs are used: two integrators INTEG for cal-
culating the state variables, the blocks ABM2, ABM3 and ABM1. In ABM1, the I-V 
characteristic of the lambda-diode is specified, approximated by a 5th order polyno-
mial in Horner representation, to form the right hand side of the equations. The re-
sults of the simulation are shown on Figs. 15 and 16 for two cases:  

Ω= 900R  – where pure sinusoids are generated, and  
Ω= 3000R  – where distorted sinusoids are generated.  
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The frequency of the generated waveforms for Ω= 900R  is Hz15908=f , which 
is very close to the frequency obtained from the Matlab solution ( Hz15905=f ). 
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Fig. 12 : ( )tuC  and ( )tiL  for Ω= 3000R  - distorted sinusoid 
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Fig. 13: ( )tuC  and ( )tiL  for Ω= 900R  - nearly perfect sinusoid 
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Fig. 14: PSpice schematics for Example 2, using ABM 
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Fig. 15: Graphs of ( )tuC  and ( )tiL  at Ω= 900R   
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Fig. 16: Graphs of ( )tuC  and ( )tiL  at Ω= 3000R  

 
4. STATE SPACE ANALYSIS OF NONLINEAR CIRCUITS USING  
    LINEARIZATION 

 
The state space analysis method can be used also to analyze nonlinear circuits by 

linearization [4]. For nonlinear circuits the set of state equations for a source-free sys-
tem has the general form 
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where the ix  are the state variables, and if  are nonlinear functions of ix  (or at least 
one of them is nonlinear) 

If the fluctuations of the state variables are considered within a small enough re-
gion of the state space, the system can be approximated by a set of linear functions. 
These functions usually can describe the behavior of the state variables, but in that 
local region only. If the system is source-free, the equations for this linearized system 
are:  

 xAx
=

dt
d   (26)

where  
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is a matrix called the Jacobian matrix. 

 
The partial derivatives in the Jacobian, when evaluated at any given point in the 

state space, yield linear state equations that are valid at that point.  
It is particularly useful when analyzing a nonlinear system to: 
(1) find the equilibrium points (where the time derivative of every state variable 

equals zero); 
(2) linearize the system at each such equilibrium point and find the eigenvalues of 

the linear model that is valid in that neighborhood.  
Any eigenvalues having positive real parts will produce natural responses that in-

crease with time, the system thus being unstable in the neighborhood of that equilib-
rium point.  

The stability of a nonlinear system in small region around an equilibrium point 
can be determined using the linearized in the vicinity of this point state equations. 
The Lyapunov’s theorem is important here: If the eigenvalues of the linearized space 
state system are: 

1) only with real negative part, then this equilibrium point is stable; 
2) if at least one eigenvalue has positive real part, the equilibrium point is unsta-

ble; 
3) if one or more eigenvalues have zero real part, and the remaining – have nega-

tive real part, then the stability can not be determined using this linearized system. 
 
This analysis will be applied to the generator circuit with lambda-diode (Example 

2 – Fig. 11). 
First, the equilibrium points will be found, then the system will be linearized at 

any such points, the eigenvalues will be found and stability of the circuit will be de-
termined, together with the frequency of generation, if it exists. 

The lambda-diode current di  is approximated as: 
 
( ) ( ) 32345 10027301798226010592501385000950 −++++= ..u.u.u.-u.u.-ui CCCCCCd  

 
The already found state equations (23) will be used: 
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The equilibrium points for Cu  and Li  can be found by setting equations (23) to 

zero. Only one equilibrium point is found for these data: 
 

VuC 2.3= , 0051417.0=Li  
 

Now, let’s find the Jacobian matrix of the functions 1f  and 1f  on the right sides 
of equations (23): 
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Evaluating A at VuC 2.3=  and 0051417.0=Li  gives 
 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
0100

107332.4 8

A  

So, the eigenvalues are found by 
 

 [ ] 0det =− AIλ  , 0
100

107332.4
det

8

=⎥
⎦

⎤
⎢
⎣

⎡ −−
λ

λ
 (29) 

0104.7332 102 =+− λλ  
 

 99933 3666.2
2

10.44.73324.7332 102

j±=
−±

=λ  (30) 

 
999332 =fπ    Hz15905=f  

 
Since the complex-conjugate eigenvalues have positive real parts, the equilibrium 

point will be unstable, and there will be generations with Hz15905=f . 
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Some conditions can be derived here, giving the relation between the circuit pa-
rameter R (loss resistance) and the dynamic resistance dR  of the nonlinear I-V char-
acteristic of the lambda-diode at the bias point. 

From the state equations (23), the following 2nd order differential equation can be 
found for the equilibrium point (where the differential conductance of the I-V charac-

teristic is S
844

11

V2.3

−=−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= duC

d

Rdu
di
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⎛
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2

2

 (31) 

 
The characteristic equation is: 
 

 011112 =+⎟⎟
⎠
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⎜⎜
⎝

⎛
−+

LC
s

RRC
s

d

 (32) 

with solutions: 

 
2

4111111
2

2,1

LCRRCRRC
s dd

−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−±⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−
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If the expression under the square root is negative in order to have complex-

conjugate roots, the real part of the roots will be positive, if  
 

 011
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

dRR
, or Ω=> 844dRR   (34) 

The expression under the square root will be negative and there will be complex-
conjugate roots, if: 

 
dRL

C
R

121
+< , or Ω> 314R  (35) 

 
Both conditions (34) and (35) must be fulfilled in order to have complex conju-

gate eigenvalues with positive real part, and consequently, to have exponentially 
growing oscillatory waveform, i.e. Ω=> 844dRR . This growth cannot continue in-
definitely. As the diode voltage variation gets large, the end points of the negative 
slope region of the diode I-V characteristic are attained, and the diode introduces 
more loss into the system, which acts as a limiting condition and a steady-state oscil-
lation is produced. The numerical experiments prove that stable sinusoidal oscilla-
tions arise starting from Ω−> 900850R . 
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5. CONCLUSIONS 
 

On the basis of the presented features and the solved problems, the following con-
clusions can be made regarding the applicability of state space method in the Theo-
retical Electrical Engineering: 

1) The state space method offers easy and systematic way of forming the transient 
equations. 

2) The obtained equations can be solved in several ways, using software packages 
like Matlab, Mathematica and PSpice, including symbolically, which is very 
precious for obtaining analytic solutions in the course on TEE. 

3) Powerful algorithms and computer programs exist for full computer implemen-
tation of the state space transient analysis. 

4) The method allows nonlinear circuits to be easily analyzed. 
5) The method is very universal and suitable for transient analysis not only in 

electrical circuits, but in many other kinds of systems: mechanical, thermal, 
fluid flows, economical systems, etc. 

6) The method can be used in combination with the classical method after finding 
the state equations: the roots of the characteristic equation can be found using 
Eq. (20), and the dependent initial conditions can be easily calculated from the 
state equations. 

7) The method can be used also in combination with the Laplace transform 
method: The state space equations can be transformed to Laplace form and 
symbolically solved using Matlab. Then, inverse Laplace transformation can be 
applied to find the originals. 

8) The state space transient analysis is a valuable method of transient analysis that 
deserves more attention and space in the curriculum on Theoretical Electrical 
Engineering and in the Electrical Engineering education as a whole. 
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HAMILTONIAN DYNAMICAL SYSTEMS WITH FINITE  
DEGREES OF FREEDOM AND OPTICAL SWITCHING 

Ivan M. Uzunov 

Department of Applied Physics, Technical University – Sofia 

Abstract. Hamiltonian two-degrees of freedom continuous nonlinear dynamical system [4] for 
description of dual-core nonlinear directional coupler has been studied. The stationary points of 
this dynamical system are calculated as a function of dimensionless parameter that describes the 
material and pulse properties. The dimensionless parameter controls the distance to the integrable 
case [11]. The stability of obtained stationary points is analyzed by means of approach suggested in 
[17]. Depending on the value of dimensionless parameter, different kinds of motion has been nu-
merically identified. In the case of small value of dimensionless parameter, when the dynamics can 
be considered as near-integrable, stochastic motion has been observed. Suggestion has been done 
for a new way of reducing of the original system of nonlinear partial differential equations describ-
ing optical switching to dynamical system of finite degrees of freedom by means of one of the group 
invariant solutions of original system recently found in [15-16]. 

Keywords: (nonlinear fiber couplers, Hamiltonian dynamical systems, stochastic motion) 
 
INTRODUCTION 

 
One possibility to study nonlinear guided waves is to transform the corresponding 

nonlinear partial differential equations with infinite degrees of freedom to dynamical 
systems with several degrees of freedom [1-4]. For example, recently possibility of 
application of variational approach in analysis of transmission characteristics of dual-
core nonlinear directional coupler was discussed [5]. It was shown that a properly 
introduced two-degrees of freedom continuous Hamiltonian nonlinear dynamical sys-
tem can properly describe transmission characteristics of dual-core nonlinear direc-
tional coupler. Another type of two-degree of freedom Hamiltonian dynamical sys-
tem has been introduced in [4]. Two-degree of freedom Hamiltonian nonlinear dy-
namical system close to this analyzed in [4] has been earlier studied in [6, 7]. 
Nonlinear dynamical systems close to these considered in [4, 6-7], has been further 
analyzed in [8-10,12-14]. Question of the integrability of two-degree of freedom con-
tinuous nonlinear Hamiltonian dynamical system systems has been solved in [11] by 
means of the Painleve properties of corresponding equations.  

First aim of this paper will be to discuss of the way of simplification of the origi-
nal system of nonlinear partial differential equations describing optical switching (see 
Eq.(1) below) in the reduced system of ordinary differential equations. The idea sug-
gested here is that the best choice of trial fuction should be one of the group invariant 
solutions of the original system found soon in [15-16] (see Eq. (2a-b) below). Main 
aim of this paper is to investigate the two-degrees of freedom nonlinear Hamiltonian 
dynamical system (see Eq.(5) below), derived in [4]. The dynamical behavior of this 
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system is analyzed as function of dimensionless parameter k that describes the mate-
rial and pulse properties. The stationary (fixed) points of system given by Eq.(5), will 
be calculated as a function of dimensionless parameter k . The stability of obtained 
stationary points will be studied.As the system given by Eq.(5) in the case 0=k , is 
integrable [11], for small values of parameter k it can be treated as near-integrable 
system. The conditions for appearance of stochastic behavior will be discussed.  
 
BASIC EQUATIONS 
 

Equations describing a dual-core nonlinear directional coupler 
The propagation of pulses in a dual-core nonlinear directional coupler can be de-

scribed in terms of following system of linearly coupled nonlinear Schrödinger equa-
tions [1-4]: 

 
0

2
1

0
2
1

2

2

2

2

2

2

=++
τ∂

∂
+

ξ

=++
τ∂

∂
+

ξ

KUVVV
d
dVi

KVUUU
d
dUi

 (1) 

  
where ( )τξ,U  and ( )τξ,V  are envelope functions of two pulses. The normalized cou-
pling coefficient between the two envelope functions is equal to the linear coupling 
coefficient between two cores times the dispersion length. 

 
Symmetry group consideration 
Important remark is in order. Eq. (1) has been systematically analyzed by means 

of Lie group techniques in [15-16], where the most general Lie of point symmetries 
and its Lie algebra has been identified. Eq. (4) (see below) can be derived by means 
of case C) considered in [15- 16]. (See Eq.(6) in [16]) In this case after substituting 
the invariant solution of Eq.(1): 

 

 
( ) ( ) ( )( )[ ]
( ) ( ) ( )( )[ ]εξ+ττ=τξ

δξ+ττ=τξ

giqV

fipU

exp,

exp,
 (2a) 

 

following system of differential equations was obtained (case of 0=γ ): 
 

 

( )
( )

( ) ( )
( ) ( ) 0cos222

0cos222
0sin22
0sin22

32

32

=−+ε−+′−′′
=−+δ−+′−′′

=−+′′+′′
=−+′′+′′

gfKpqqgqq
fgKqppfpp

gfKpgqgq
fgKqfpfp

 (2b) 

where prime denotes differentiation. The most important feature of Eq. (2b), is the 
presence of phase functions ( )tf  and ( )tg , which describe the time depending phases 
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of the envelope functions of pulses in dual-core directional coupler. In its general 
form however, the analysis of solutions of Eq.(1) in the form of Eq. (2), requires con-
sideration of 8-dimensional dynamical system (or nonlinear dynamical system with 4 
degrees of freedom).  
 

Basic reduced system 
Following [4] stationary pulse solutions are represented in the form: 
 

( ) ( ) ( ) ( ) ( ) ( )ξτ=τξξτ=τξ iqqvViqquU exp,,,exp,, , (3) 
 

where q is the parameter of soliton state family of solutions and ( )qu ,τ  and ( )qv ,τ  are 
real functions. By rescaling the functions and variables in the resulting system of or-
dinary equation for ( )qu ,τ  and ( )qv ,τ  so that: 
 

qKkqtgqvfqu ==τ== ,,, , 
 
following set of equations for functions f and g has been derived: 
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gd

kgff
dt
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 (4) 

  
The parameter qKk =  describes the material (K) and pulse (q) properties. As we 

can see, assuming that, δ=ε , ( ) ( ) 0== tgtf  from Eq. (2b) immediately follows 
Eq.(4). We can therefore, conclude that the Eq.(4) used in [4], as well as a trial func-
tion used in [5], reflects in a different ways the basic group symmetry properties of 
the Eq.(1) . In my understanding the best trial function for analyzing of Eq.(1) should 
be the group invariant solution Eq.(2b) (or Eq. (6) of [15]). Finally the change of 
variables: ( ) ( ) 2,2 yxgyxf −=+=  leads to the system of equations 

   

 
( )
( ) 0312
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1

0312
2
1

23
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2

23
2
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=+++−

=++−−

yxyyk
dt

yd

xyxxk
dt

xd

 (5) 

 
The magnitude of the parameter k controls the possibility of existing of symmet-

ric ( )1>k  and antisymmetric soliton states ( )0>k  [4]. Dynamical system represented 
by Eq.(5) is the basic reduced system of this analysis. 

The Hamiltonian of this system is: 
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 VTH +=  (6) 

where ⎟
⎟
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dt
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dt
dxT  is the kinetic energy and 

( ) ( ) ( ) ( )2222222222 4121 yxyxyxkyxV −−++−++−=  is the potential energy. 
 

Dynamical system given by Eq. (5) can be considered as governing the motion of 
a particle in a two-dimensional potential well or as a two nonlinearly coupled har-
monic oscillators. In the general case ( )0≠k , Eq. (5) represents Hamiltonian, but not 
integrable two degrees of freedom dynamical system. Four integrable Hamiltonian 
two degree of freedom systems similar to (5) have been found in [11]. One of them 
1(ii) (see the notations of [11]) corresponds to the famous Manakov system and re-
cently has been investigated from point of view of dynamical systems in [12].  

The other - case 1(i) [11] coincides with Eq.(5) in the case 0=k . 
 

( )22 yxkVV LAKSH −+=  
 

Of course, 0=k  corresponds to the Hamiltonian and integrable system case 1(i) 
[11]. The second integral of motion of Eq.(5) in case of 0=k is [11]: 

 

 ( )222 yxxyxy
dt
dy

dt
dxI ++−=  (7)  

 
As has been shown in [11], dynamical system represented by Eq.(5) ( 0=k  ) is not 

only Hamiltonian and integrable, but also separable. So parameter k controls how far 
is the potential energy of dynamical system Eq.(5) from the potential energy of inte-
grable variant case 1(i) [11]. This observation allows us to consider dynamical system 
given by Eq.(5) for small values of parameter k as nearly-integrable system.    

Let us rewrite the system Eq.(5) in a following form: 
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 (8) 

 

where ( ) ( ) ( ) ( ) ( ) ( )
dt
dytytyty

dt
dxtytxty ==== 4321 ,,, . 
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STATIONARY POINTS OF BASIC REDUCED SYSTEM 
 

The stationary points (fixed points) of system (8) are the points, where 0=y& , 
which are the critical points of Hamiltonian H . Therefore, we should solve the fol-
lowing system as a function of the parameter k : 

 
 0=yDH , (9) 

where yDH  is the derivative of H  at y .The stationary points of Eq. (9) have been 
calculated and results are presented in Appendix A. For convenience, the notation for 
the different stationary points has been introduced. We have also studied the minima 
and maxima of potential function in Eq. (6), as a function of 31, yy , and parameter k . 
The obtained results are presented graphically in Appendix B, by means of 3D-
dimensional plots of potential function. The obtained results for the coordinates of 
potential extrema, coincide with the results for stationary points of Eq. (9). The val-
ues of potential function at these points have been determined and results are pre-
sented in the Appendix C. In the brackets is shown the number of points with a given 
value of the potential energy. Clearly can be seen how strong is the influence of the 
change of the parameter k on the number and location of the stationary points. The 
number of fixed points reduces from 9 in the integrable case ( )0=k , till 5 ( )5.0=k , 
and, finally till 3 ( )1=k .  
 
STABILITY OF STATIONARY POINTS OF BASIC REDUCED SYSTEM 
 

Linearization about an equilibrium points, is given by: 
  

 ,yLy δ=δ&  (10)  
 

where 0
2 HJDL =  is infinitesimally symplectic matrix .  

Eigenvalues of linear problem determine the stability of equilibrium points. The 
general solution of the problem of linear stability of stationary points is found by 
conditions that all the eigenvalues have negative real part [20]. The marginal case is 
when the eigenvalues lie on the imaginary axis.  

The stationary point is spectrally stable if every solution of the linearization is 
bounded as ∞→t , that requires that all eigenvalues of L  lie on the imaginary axis or 
in the left half plane. The stationary point is linearly stable, if it is spectrally stable 
and in addition, in the case of multiple eigenvalues, all Jordan blocks are one-
dimensional [17].  

L  in Eq. (10) is infinitesimally symplectic, therefore, the eigenvalues appear in 
pairs σ± . Since L  is real, eigenvalues must also come in complex conjugate pairs. 
Eigenvalues for Hamiltonian system may occur in one or more of the following 
groups: a) pairs on the imaginary axis: 0, ≠ωω± i ; b) pairs on the real axis: 

0, ≠σσ± ; c) complex quadruplets: 0,, ≠±± baiba , and d) zero [17].  
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As was shown in [17], the degree of the characteristic polynomial that corre-
sponds to Eq.(11) can be reduced by a factor of two. For the case of two degrees of 
freedom system, in terms of 2σ−=τ  corresponding reduced characteristic polyno-
mial is [17]: 

 ( ) 22 , σ−=τ+τ−τ=τ BAQ , (11) 
 
where ( ) 22LTrА −=  is the sum of the principal (2x2) minors, and LB det= . Note 

that 0=TrA . The roots of Eq.(11) are given by: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−±=τ BAA 2

4
1

2
1  .  

An stationary point is spectrally stable if all eigenvalues lie on the imaginary axis. 
Therefore both roots should be non-negative, or 

 
 40,0 2ABA ≤≤≥ . (12a) 

 
An stationary point is on the boundary of spectral stability if there is a root at 0=τ : 

 
 ,0,0 =≥ BA  (12b) 

or a multiple root at 0>τ : 
 4,0 2ABA =≥ . (12c) 

 
We have performed linearization about all obtained above determined equilibrium 

points for all considered values of the parameter k. The corresponding characteristic 
and reduced characteristic polynomials have been derived and solved. Obtained val-
ues for the eigenvalues are presented in Appendix A. As we can see, eigenvalues in 
agreement with earlier results of [17], occur in one or more of the expected groups: a) 
pairs on the imaginary axis: 0, ≠ωω± i ; b) pairs on the real axis: 0, ≠σσ± ; c) zero. 
Many of the obtained eigenvalues are with the zero real parts therefore nonhyperbolic 
ones [21-22]. 

Stability of each stationary point has been calculated by means of Eq. (12). Ob-
tained results are also reported in Appendix C, last column. Note that in case of 

0=k , stationary points 98642 ,,,, MMMMM  are unstable, while 7531 ,,, MMMM  are 
points on the boundary of stability. With increase of the parameter k, from 0=k  
till 4.0=k , the unstable points 82 , MM  move toward stable point 1M  , while unstable 
points 64 , MM  move toward stable point 5M . In the case of 5.0=k there are only five 
stationary points: the points 82 , MM  collapses with 1M , while 64 , MM  collapses 
with 5M . In fact, if we look at the evolution of the eigenvalues of the linearized prob-
lem for the points 51, MM  for the values of the parameter k between 0.4 and 0.6 we 
can see that in the beginning ( )4.0=k  these are stable points, after these ( )5.0=k  
one of their pairs of imaginary eigenvalues transformed into double zero, and finally 
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( )6.0=k  a pair of real on the real axis appear. Such kind of transformation of eigen-
values of linearized problem for Hamiltonian system under perturbation (in our case, 
change of the parameter k) was earlier described in [19], case (iv). Further increase of 
the parameter k, leads to the collapses between the unstable points 51, MM  and 9M . 
In the case 1=k , configuration of two stable stationary points 73 , MM  and one un-
stable point 9M  appears.  
 
GENERIC BEHAVIOR OF BASIC REDUCED SYSTEM 
 

Integrable case 0=k  
Here, I will perform numerical solution of Eq. (8). Periodic motion appears in the 

vicinity of stable fixed points (centers), or fixed points with eigenvalues with pure 
imaginary eigenvalues of linearized problem. Several possibilities to represent the 
periodic solution will be used. First, time dependences of functions ( )ty1  and ( )ty3  
will be examined. Second, the basic parametric dependences ( )21 yy  and ( )43 yy  will 
be constructed. In some cases a trajectory of motion will be shown in a three -
dimensional space by means of 3D – parametric plots. Finally, Poincare surface of 
sections ( ( )21 yy , or ( )43 yy ) will be build.  

Initial conditions for the solution of Eq. (8) are determined in the following 
way. First, we choose the stable fixed point in the vicinity of which we analyze the 
periodic potion. Second, the value of the Hamiltonian or energy ( EH = ) is fixed, 
taking into account the value for the extrema of the potential function at this fixed 
point. Next, the initial values of coordinates ( ) ( )0,0 31 yy , are chosen close to the coor-
dinates of the chosen fixed point. The value of ( )02y  is arbitrary, but the value of 

( )04y  is calculated using the given value of energy EH = .  
Let us consider the motion in the vicinity of the fixed point 

0;414.1;0;0: 43213 ==== yyyyM  (Appendix A, 0=k ). The value of the energy 
is 9.0−=Е . 3D ( ( ) ( ) ( )tytyty 432 ,, )–dependence of the trajectory of motion is shown in 
the Fig. (1): 
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Fig. 1. 3D parametric dependence ( ) ( ) ( )tytyty 432 ,,   
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Time dependences of functions ( )ty1 and ( )ty3 , are shown in Fig. (2a-2b).  
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                Fig. 2a. Time dependence of ( )ty1                     Fig. 2b. Time dependence of ( )ty3   

 
The parametric dependences ( )21 yy  and ( )43 yy  are presented in the Fig. (2c-2d).  
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            Fig. 2c. Parametric dependence ( )21 yy               Fig. 2d. Parametric dependence ( )43 yy  

 
In both pairs of figures: Fig. (2a-2b), and Fig. (2c-2d), typical features of periodic 

motion are observed. In order to investigate the influence on the characteristics of the 
periodic motion of the value of the energy, following values of energy have been 
studied: 45.0,55.0,65.0,75.0,85.0,95.0 −−−−−−=Е . The parametric dependences 
( )21 yy  is shown in the Fig. (3a). With increase of the energy the size of the trajectory 

increases, but periodicity conserves. 
In Fig. (3b) the dependence of the parametric connection ( )13 yy  on energy is 

shown. As we know, for the case of two linear coupled oscillators parametric de-
pendences like this can be used to estimate the relation between frequencies of both 
oscillators. Here the relation of frequencies preserves with the increase of the energy. 
In order to analyze the dependence of the period of the motion on the energy, the time 
dependences of ( )ty3 , are compared in Fig. (4a-b), for the following values of energy 

45.0,95.0 −−=Е . 
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                Fig. 4a. ( )ty3  for 95.0−=Е                                 Fig. 4b. ( )ty3  for 45.0−=Е   

 
It is clearly observed the increase of the period of the motion with the increase of 

the energy. Going closer to the separatrice, with her infinitely large period of motion, 
the period of periodic motion should increase. The increase in the amplitude of 
the ( )ty3 , with the increase of the energy can be also seen. Let us consider the motion 
in the vicinity of the fixed point 0;707.0;0;707.0: 43212 ==== yyyyM  (Appen-
dix A, 0=k ). The value of the energy is 48.0−=Е . 3D ( ( ) ( ) ( )tytyty 432 ,, )–dependen-
ce of the trajectory of motion is shown in the Fig. (5a): 
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       Fig. 5a. 3D dependence of ( ) ( ) ( )tytyty 432 ,,        Fig. 5b. Poincare section of trajectory with  
                                                                                                 the plane 02 =y ,  

Fig. 3a. Dependence of the size of                       Fig. 3b. Frequency analysis of the motion  
              trajectory on energy ( )21 yy   
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18.0,28.0,38.0,48.0 −−−−=Е  
The existence of the tori and their change with the energy:  

18.0,28.0,38.0,48.0 −−−−=Е , can be clearly observed by the Poincare section with 
the plane 02 =y  presented in Fig.(5b).  

 
Small perturbation 1.0=k  

The corresponding fixed point for 1.0=k  is 0;483.1;0;0 4321 ==== yyyy . The 
value of the energy is 21.1−=Е . In Fig. (6a), the comparison of Poincare sections of 
trajectory with the plane 02 =y , calculated for the energies 9.0,0.1,09.1,19.1 −−−−=E  
is presented. With increase of the energy the size of the tori gets larger. Quite inter-
esting seems to be behavior of the 3D parametric dependence ( ) ( ) ( )tytyty 432 ,, , 

0.1−=E , as shown in Fig. (6b).  
 

        
       Fig. 6a. Poincare sections of trajectory with           Fig. 6b. 3D dependence ( ) ( ) ( )tytyty 432 ,,  
       02 =y , for the cases 9.0,0.1,09.1,19.1 −−−−=E                 for the case 0.1−=E  

 
Appearance of stochastic motion 
We continue our investigation of the dynamical behavior of the basic reduced sys-

tem for 1.0=k  starting with initial condition given by 
;0;0 21 == yy  ;483.13 =y  04 =y , but now increasing the values of energy 

0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0 −−−−−−−−=E . Till energy 1.0−=E  observed dy-
namics is comparable with described in the previous paragraph. In the case 0=E , 
however stochastic motion has been observed. In the next two figures Fig. (7a-b) are 
shown the calculated Poincaré sections of trajectory with the plane 02 =y  for ener-
gies 1.0−=E  and 0=E , respectively. 

Clearly stochastic behavior is observed in Fig.(7b). Note that in the case of 
1.0=k , dynamical system given by Eq.(5) is Hamiltonian, but not integrable one. 

Appearance of stochastic behavior is then possible [21].  
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Fig.(7a-b) Poincaré sections of trajectory with the plane 02 =y ,  

for 1.0−=E  and 0=E , respectively 
 
CONCLUSION 
 

The conjecture has been done here is that the best ansatz to simplify the original 
system of nonlinear partial differential equations Eq.(1), that describes optical switch-
ing is the group invariant solution in the form Eq.(2a), and the corresponding reduced 
system is Eq.(2b).  

The dynamical behavior of two-degrees of freedom Hamiltonian dynamical sys-
tem Eq. (5), derived in [4] was analyzed as function of dimensionless parameter k that 
describes the material and pulse properties. The stationary (fixed) points of system 
Eq. (8), have been calculated as a function of dimensionless parameter k . The stabil-
ity of obtained stationary points has been studied by means of approach suggested in 
[17,19]. In the case of small value of dimensionless parameter, when the dynamics 
can be considered as near-integrable, stochastic motion has been observed. 
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APPENDIX A:  Stationary points of the system, eigenvalues of the corresponding linearized 
problem, and stability of the corresponding stationary points 
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k=0.1 
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k=0.8 
1 2 3 4 1 2 3 4

1

3

5

7

9

int
0.632 0 0 0 1.549 0.894 0.894 1.549

0 0 1.897 0 2.683 2.683 3.225 3.225
0.632 0 0 0 1.549 0.894 0.894 1.549

0 0 1.897 0 2.683 2.683 3.225 3.225
0 0 0 0 1.897 0.632 0.632 1.897

Po y y y y Stability
M i i
M i i i i
M i i
M i i i i
M

λ λ λ λ
− −
− −

− − −
− − −

− −

s

s

 

k=0.9 
1 2 3 4 1 2 3 4

1

3

5

7

9

int
0.447 0 0 0 1.789 0.632 0.632 1.789

0 0 1.949 0 2.757 2.757 3.347 3.347
0.447 0 0 0 1.789 0.632 0.632 1.789

0 0 1.949 0 2.757 2.757 3.347 3.347
0 0 0 0 1.949 0.447 0.447 1.949

Po y y y y Stability
M i i
M i i i i
M i i
M i i i i
M

λ λ λ λ
− −
− −

− − −
− − −

− −

s

s

 

k=1 

            

1 2 3 4 1 2 3 4

3

7

9

int
0 0 2 0 2 2 2 2 2 2
0 0 2 0 2 2 2 2 2 2
0 0 0 0 2 0 0 2

Po y y y y Stability
M i i i i s
M i i i i s
M

λ λ λ λ
− −

− − −
−

Ц Ц Ц3 Ц3
Ц Ц Ц3 Ц3

 

 
APPENDIX B:  Evolution of extremuma of potential of system given by Eq.(6) as a function 

of the parameter k 
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APPENDIX C: Values of minima and maxima 
 

К Number Values of minima and maxima of V 
0 9 -1(4), -0.5(4), 0(1) 
0.1 9 -1.21(2), -0.81(2), -0.49(4), 0(1) 
0.4 9 -1.96(2), -0.36(2), -0.34(4), 0(1) 
0.5 5 -2.25(2), -0.25(2), 0(1) 
0.6 5 -2.56(2), -0.16(2), 0(1) 
0.7 5 -2.89(2), -0.09(2), 0(1) 
0.8 5 -3.24(2), -0.04(2), 0(1) 
0.9 5 -3.61(2), -0.01(2), 0(1) 
1.0 3 -4.0(2), 0(1) 

 
 



 

IONIZATION MODIFICATION OF THE MATERIAL  
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Abstract: Brief introduction to some important regimes of propagation of optical pulses and 
beams is presented. The spatio-temporal dynamics of high-intensity femtosecond laser pulses below 
the ionization “threshold” and generation of optical tsunami pulses within (3+1)-dimensional 
nonlinear Schrödinger equation is considered. An advanced physical model of propagation of the 
high-intensity femtosecond laser pulses in presence of ionization is presented. The influence of ioni-
zation on the material parameters is studied. Ionization induced inversion of the group velocity dis-
persion at particular pulse propagation conditions is found. Stabilization of the pulse propagation 
in space and time is found. A possible pulse stabilization mechanism is discussed. 

Keywords: optical pulses and beams, spatial and temporal solitons, nonlinear Schrödinger 
equation, nonlinear envelope equation, pulse propagation, pulse compression, spatio-temporal soli-
tons.  
 
1. INTRODUCTION TO SOME BASIC PROPAGATION REGIMES  
    OF OPTICAL PULSES AND BEAMS 

 
The propagation of the light is a complex phenomenon that leads to rearrange-

ment of the light parameters – amplitude, phase, etc. This usually results in spreading 
of the light in space and time, changing of the spatial and the temporal distribution of 
the light intensity, evolution of the phase fronts, etc. This takes place for both, the 
light pulses and the light beams. At some particular conditions, however, stable local-
ized self-reinforced states of the light confined either in space or in time due to a pre-
cise balance between the linear and nonlinear processes can be generated. Such light 
structures are called solitons. Depending on whether the light is confined in space or 
in time, the solitons become spatial or temporal, respectively. Both types of solitons 
are well investigated, both theoretically and experimentally [1, 2], and only the 
mechanism of their generation will be briefly reminded here.  

The solitons are generated as a result of a nonlinear light-matter interaction. In the 
case of the spatial solitons, the nonlinear effect, i.e., self-focusing, balances the 
diffraction due to the self-induced change of the refractive index. Changing the 
refractive index, the electromagnetic field creates an optically written waveguide 
similar to a graded-index fiber. If the field is also a propagating mode of that wave-
guide, it will remain confined and it will propagate without changing its shape [1]. 
Depending on the number of the transversal dimensions the light is confined, such 
kind of soliton can be reffered to 1D or 2D soliton. In the case of the temporal soli-
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tons, the nonlinear effect balances the dispersion due to the self-phase modulation. In 
that case, providing the light is confined in the transversal direction due to some real 
waveguide structure, e.g., optical fiber, it may propagate long distance at almost no 
change of its parameters [2]. Such kind of soliton can be refered to (1+1)D soliton.  

An extension of the classical soliton concept in conservative systems toward dis-
sipative systems results in a new type of solitary waves, called dissipative solitons 
[3]. In that case, the soliton is generated due to a double balance between the diffrac-
tion/dispersion and the nonlinearity, from one side, and loss and gain in the medium, 
from the other.  

In the cases considered above, the generated stable light structures represent par-
tial solitons because the light is confined in one or two dimensions only, whereas in 
the other dimensions it is supported by some additional structure, e.g., waveguide or 
optical fiber, or represents an infinite light beam, for which the problem of stability is 
not actual. In this report, our attention will be focused on the spatio-temporal prob-
lems of the light propagation and the generation of stable (3+1)D light structures – 
spatio-temporal solitons, or “light bullet”. The generation of complete (3+1)D soli-
tons in bulk nonlinear medium is a challenging task that is not yet completely under-
stood and solved.  

Generation of space-time confined pulse in a given space point of soliton-like in-
tensity distribution, called optical tsunami, has been recently predicted by numerical 
simulations of the (3+1) D nonlinear Schrödinger equation [4, 5]. The optical tsu-
nami can be created in a well predictable space point, whose position can be con-
trolled within given degree by means of pulse and medium parameters. Based on 
such features of the tsunami pulse, a controllable guidance concept as an alternative 
to the soliton concept has been proposed [5].  

 Self-compression and stable propagation, along given length, of high-intensity 
femtosecond laser pulses have been discovered experimentally in a number of atomic 
and molecular gases and in solid bulk material [6 - 8]. A complete confinement of the 
light matter in space and in time has been achieved in this way. Self-compression has 
been also observed in air [9] and ionized noble gasses [10-12]. Although the stability 
of the pulse is not as perfect as in the case of temporal or special solitons separately, 
the stabilization of the pulse parameters due to such a self-consistent organization of 
the light matter is apparent [6-8]. The physical mechanism of the pulse compression 
below the ionization “threshold was found [4]. The mechanism of the pulse stabiliza-
tion in the (3+1)D case, however, remains not yet completely understood. In the fol-
lowing, the (3+1)D propagation dynamics of the high-intensity femtosecond laser 
pulses below and above the ionization “threshold” will be described 
 
2.  SPATIO-TEMPORAL DYNAMICS OF HIGH-INTENSITY  

FEMTOSECOND LASER PULSES BELOW IONIZATION  
“THRESHOLD” - GENERATION OF OPTICAL TSUNAMI 
 
The ionization strongly and non-instantaneously modifies the material parameters 

and, in this way, the pulse propagation. It is highly nonlinear process, therefore, it is 
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very sensitive to the changes of the pulse intensity and its control is very difficult in 
practice. By a suitable choice of the input pulse energy and/or gas pressure, the peak 
intensity can be kept below the level at which the ionization causes substantial modi-
fication of the material parameters. We consider a physical model of pulse propaga-
tion in a centrosymmetric bulk nonlinear medium, which includes the basic set of 
lowest order optical processes, diffraction, group velocity dispersion (GVD) and Kerr 
nonlinearity. The pulse propagation will be described by the (3+1)D non-linear 
Schrödinger equation (NLSE) for the complex field amplitude ),,(~ τzrE   
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The field is presented in terms of the envelope-carrier concept [13]  
 
                                     ..)(exp)(~)( 00 ccititEtE +ϕ+ω−=                                (2) 
 
The lack of irreversible losses in the specified model means the condition for con-

servation of the pulse energy )(zW  holds, i.e.,  
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where the integration is taken over the transversal cross-section s and the local time τ. 
This represents a normalization condition of the complex field amplitude and allows 

to control the pulse intensity, 
2~EI = , and the absolute value of the field. 

Noble gasses of high ionization potential, argon, neon and helium, have been con-
sidered as propagation media. This allows compression of high-intensity/energy 
pulses while remaining bellow the ionization “threshold”. The initial pulse is a line-
arly polarized chirp-free Gaussian, ( )2

0
22

0
2

0 22exp),0,(~ ττ−−=τ= rrEzrE , of 100 
fs pulse duration (full width at half maximum (FWHM)). 

The evolution of the transversal width, peak intensity and the pulse duration of the 
propagating pulse in neon and helium are shown in Fig. 1(a), (b) and (c), respec-
tively. The absence of ionization ensures a smooth and well controllable pulse propa-
gation dynamics. The latter consists in a single self-compression event at SCzz = , 
Fig. 1(c), in which the pulse duration shortens more than twice and the peak intensity 
increases more than an order of magnitude, Fig. 1(b). The rapid drop of the pulse in-
tensity after the maximal intensity gain at IGzz =  results from pulse splitting, [4, 5]. 
The peak intensity shows a very specific development during the pulse propagation. 
Initially, it changes gradually with the propagation distance but as the pulse is ap-
proaching IGzz =  the pulse intensity starts growing in an “exploding” manner, lead-
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ing to a dramatic increase of the peak intensity. This behavior resembles the devel-
opment of the water tsunami wave and the respective optical pulse has been called 
optical tsunami [5]. The position of maximal peak intensity, the magnitude of the 
peak intensity, and the minimal pulse duration can be controlled within given limits 
by means of the pulse energy, Fig. 2, 3 and 4, respectively. Same kind of control can 
be achieved changing the pressure/number density of the medium.  

 

 
 

Fig. 1. Evolution of pulse width (a), peak intensity (b) and the pulse duration  
(c) during the propagation in pressurized neon and helium 

 
The intensity profile of the tsunami pulse in time is very close to that of the sech2 

pulse shape of the fundamental temporal soliton of the (1+1)D NLSE in the case of 
negative GVD medium [2]. The theoretical and experimental studies show that tem-
poral solitons do not exist within the specified basic set of optical processes and posi-
tive GVD, considered here. For many applications, however, a stable pulse along the 
whole propagation distance is not necessary but only a pulse of well specified pa-
rameters in given space point. That is why, the soliton concept (where it is not appli-
cable) can be replaced by a new concept called controllable guidance concept [5]. 
The controllable guidance concept seems to be applicable in broad range of physical 
conditions, where the pulse propagation dynamics can be unambiguously predicted.  

A general explanation of the self-compression of the pulse has been found [4] 
based on the energy conservation condition, Eq. (3). According to it, the energy inte-
gral can be considered as a four-dimensional “volume” (two transversal directions 
over the cross-section s of the pulse, a longitudinal direction - the local time τ, and a 
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“vertical” direction - the intensity |Ẽ|2), which must be conserved along the propaga-
tion coordinate z. The rearrangement of the pulse is triggered by the self-focusing. 

 

                                
 

Fig.2. Position of the maximal peak intensity versus pulse energy 
 

 
 

Fig. 3. Magnitude of the maximal peak intensity versus pulse energy 
 

 
  

 Fig. 4. Minimum pulse duration versus pulse energy 
 

The self-focusing confines the pulse radially from all transversal directions toward 
the longitudinal axis, Fig.1(a). Due to the low dispersion of the rare gases, the pulse 
would not expand substantially in time while propagating given distance. At the same 
time, the confinement of the pulse in all transversal directions results in a strong in-
crease of the pulse intensity, Fig.1(b). The latter leads to an effective (but real) short-
ening of the pulse (based on the standard FWHM characterization of pulse duration) 
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until it succeeds to broaden due to the dispersion, Fig.1(c). Such a concept of femto-
second pulse compression, formulated for the first time in [4], has been called self-
compression in low dispersion regime. The pulse compression in low dispersion re-
gime is inherently accompanied by a strong increase of the peak intensity at almost 
no loss of energy. It is substantially related with the low value of GVD and the effi-
ciency of this mechanism increases when the GVD decreases.  
 
3. SPATIO-TEMPORAL DYNAMICS OF HIGH-INTENSITY  
    FEMTOSECOND LASER PULSES ABOVE IONIZATION “THRESHOLD” 
 

3.1. Spatiotemporal dynamics of high-intnesity femtosecond laser pulses in 
bulk nonlinear media in presence of ionization - experimental studies.  
The self-compression of high-intensity femtosecond laser pulses has been discov-

ered experimentally in a number of atomic and molecular gasses [6-8]. The evolution 
of the temporal profile of 150 fs pulse of 1-mJ energy in the case of pressurized argon 
is shown in Fig.5(a) and the transversal pulse profile is given in Fig.5(b), [7, 8].  
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Fig. 5. Temporal (a) and spatial (b) evolution of the high-intensity femtosecond  
laser pulse in pressurized argon 
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The main features of the pulse compression found from the experiments [6-8] can 
be summarized as:  

♦  Self-focusing in space    complete space-time trapping 
♦  Self-compression in time   of the light matter 
♦  Improvement of the spatio-temporal pulse shape 
♦  Increasing of the peak intensity 
♦  Stable propagation of the pulse along many characteristic lengths (LNL) of the 
  most intense pulse rearrangement factor, in this case – the nonlinearity. 
The pulse behavior under consideration cannot be understood within the (3+1)D 

cubic NLSE because no stable propagation of the pulse in positive GVD medium can 
be predicted [4, 5, 14, 15]. Above-cubic nonlinearity and ionization have been pro-
posed as possible pulse stabilization factors [7]. 

3.1. Spatiotemporal dynamics of high-intnesity femtosecond laser pulses in 
bulk nonlinear media in presence of ionization - numerical studies 
To describe the specified experimental behavior of the high-intensity femtosecond 

laser pulses, an advanced physical model [16] including the ionization will be used. 
The propagation equation in this model is (3+1)D nonlinear envelope equation (NEE) 
(in standard notations [16]), Eq.(4) 
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Each physical process involved in the model is accounted by a respective term in 

the NEE. The first and the second terms in the first row of the NEE describe the dif-
fraction and dispersion, respectively. The third and the forth terms in the second row 
describe the cubic and the quintic nonlinearities that result from the modification of 
the refractive index of the neutral particles. The cubic term includes both, the instan-
taneous and the non-instantaneous response of the medium. The fifth, sixth and the 
seventh terms in the third row of the NEE account for the contribution of the ioniza-
tion and describe the ionization modification of the refractive index, collisional ioni-
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The propagation of the high-intensity femtosecond pulses is inherently accompa-
nied by ionization. The plasma creation and recombination processes are described 
by the electron number density kinetic equation (5), [16]  
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The main problem in the description of the electron number density ρ  is the cor-

rect determination of the ionization rate )(IW . Among the general ionization theo-
ries, Perelomov-Popov-Terent’ev (PPT) theory [17] gives the best description of the 
ionization rate at both, the multiphoton and the tunnel ionization regimes. The PPT 
ionization rate (in standard notations) is given by 
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In some cases, however, a direct fit of the experimental data of the ionization of 
given atom/molecule in terms of multiphoton ionization rate [16] may lead to better 
result, Eq. (6').  

  K
KMPI IW σ=  (6') 

 
Both approaches have been used to account for the ionization rate in our studies.  

We have further developed the advanced physical model [16] including the influ-
ence of ionization on the GVD, 22 ω∂∂=′′ kk , recently predicted in [18]. The total 
GVD can be presented as a sum of two terms, the GVD of the neutrals 0k ′′  and the 
GVD of the free electrons ik ′′  

  ikkk ′′+′′=′′ 0 . (7)  
 
The GVD of the free electrons (standard notations) is [18] 
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The high-intensity femtosecond pulse propagation is described solving self-consis-
tently Eqs. (4)-(8). We consider laser pulses of 2mJ pulse energy and 150 fs time du-
ration propagating in pressurized argon of 5atm pressure.  
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The evolution of the temporal profile of the laser pulses with the propagation at 
the specified conditions is shown in Fig. 6. The pulse propagation dynamics closely 
resembles the experimental behavior, shown in Fig. 5. The numerical simulations re-
produce the initial pulse compression from cmz 0=  to cmz 9.5= , the stable propa-
gation of the compressed pulse from cmz 9.5=  to cmz 2.8= , and, finally, the split-
ting of the pulse at cmz 8.16= . The degree of the stabilization of the pulse in space 
and in time can be better illustrated by inspection of the transversal width and the 
time duration of the pulse. The variation of the transversal width of the pulse, the 
beam radius, with the propagation distance is shown in Fig. 7. As can be seen, the 
pulse rapidly collapses down to about mμ90  beam diameter due to the self-focusing 
and then continues propagating keeping the beam size almost stable. The combined 
effect of self-focusing in the transversal direction and the slow dispersion expansion 
in the longitudinal direction (due to the low GVD of the medium) results in a rapid 
increase of the peak intensity. This is accompanied by a pulse compression, Fig. 8, 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. Propagation dynamics of 150 fs pulses in pressurized argon 
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Fig. 7. Evolution of beam radius with the propagation distance 

 
  
  

 
 
 
 
 

 

Fig. 8. Evolution of pulse duration with the propagation distance 

in agreement with the pulse compression mechanism specified in Sec.2. The present 
simulations confirm the strong ionization modification of the GVD, predicted in [18], 
leading even to inversion of the GVD along given propagation distance. This is the 
first verification of the ionization induced inversion of the GVD in a dynamical 
propagation regime. 

While the stabilization of the beam width is rather good, the stabilization of the 
pulse duration is not yet quite satisfactory. Nevertheless, including the ionization re-
sults in an apparent stabilization of the pulse propagation in comparison to that one 
below the ionization "threshold", Sec. 2. The stabilization of the pulse propagation 
observed here results from few balance mechanisms: (i) balance of the self-focusing 
by the ionization modification of the refractive index, (ii) balance of the intensity 
growth by the ionization losses and (iii) balance of the dispersion broadening by the 
ionization contribution to the group velocity dispersion. We believe that the present 
results will serve as a base of further improvement of the physical conditions for pul-
se compression and pulse stabilization.  
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3. CONCLUSIONS 
 

The spatio-temporal dynamics of high-intensity femtosecond laser pulses above 
the ionization “threshold” has been studied using an advanced physical model. A fur-
ther development of the physical model has been achieved taking into account the 
ionization modification of the group velocity dispersion. The spatio-temporal behav-
ior of the laser pulse has been studied. A complete spatio-temporal compression of 
the pulse and relatively stable pulse propagation has been found from the simulations. 
A qualitatively agreement between the numerically predicted results and the experi-
mentally observed pulse behavior is found. The present results will allow further im-
provement of the physical conditions of pulse compression and pulse stabilization 
and better understanding of the pulse propagation dynamics. 

Acknowledgment: The contribution of M. D. Todorov, M. E. Todorova and T. P. 
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Abstract: The study presents a two dimensional self-consistent model of an inductive discharge 
in hydrogen. The equations describing the plasma behavior are solved together with Maxwell's 
equations for the radiofrequency electromagnetic field sustaining the discharge. The stress in the 
presentation of the results is on the spatial distribution of the electromagnetic field components. 
The mechanism of power deposition to the plasma is analyzed. The results show that the metal walls 
of the plasma vessel and the different dimensions in longitudinal and axial direction lead to estab-
lishment of a discharge regime with dc current in the plasma – a regime much different from the 
well known ambipolar diffusion regime  

Keywords: electromagnetic waves in plasma, inductive heating 
 
1. INTRODUCTION  
 

The active research in the field of plasma and gas discharges in the recent years is 
motivated by their numerous applications. Among some of the most important plasma 
technologies [1] are thin film deposition, surface processing, ion implantation, plasma-
based lighting systems, plasma chemistry, flat-panel displays, environmental and 
health applications. Another basic direction of the research is the thermonuclear fusion 
offering the potential of an almost limitless source of energy for future generations. 

Depending on the specific technological requirements different types of plasma 
sources are developed. Efficient plasma sources widely used nowadays – both in the 
technological reactors and in the fusion plasmas – are the inductive discharges [1, 2]. 
Mainly two modifications are employed – inductive discharges with cylindrical coil 
and with a planar coil. In both cases the plasma is heated by the electric field induced 
by the oscillating magnetic field created by the current in the coil. 

Optimization of the sources requires good understanding of the processes in the 
plasma and of the mechanisms of power deposition leading to fast development of the 
plasma source modeling [3-7]. 

The paper presents a 2D model of the driver – the region of power deposition – of 
hydrogen discharge in diffusion controlled regime. 

 
2. BASIS OF THE MODEL 
 

The particles in the model are electrons −e , three types of positive hydrogen ions 
( +H , +

2H  and +
3H ), atoms H  and molecules 2H . For all the charged particles and for 

the atoms the continuity equation is solved: 
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Here jn  are the concentrations of the corresponding type of particles, 

jjjj vnnD +∇−=Γ  are their fluxes, taking into account the diffusion and the drift in 
the dc field and tn j δδ /  are the changes in the concentration due to inelastic colli-
sions. The elementary processes involved in the model are  

1. Ionization of molecules and atoms 
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2. Dissociation of molecules and ions 
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3. Heavy particle collisions 
HHHH 322 +→+ ++  

4. Recombination 
HHHHe 3 ++→+ +  

 
In the electron-energy balance equation: 
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 is the energy flux connected to the thermal conductivity and the energy carried by 
the electron flux, Q  is the density of the externally applied power, (coll)P  are the en-

ergy losses in elastic and inelastic collisions and the term dce Ee
rr

⋅Γ  presents the energy 
losses or gain due to directed electron motion in the dc field. In the calculation of Q  
the results for the induced electric field from the electrodynamical part of the model 
are used. 

The gas discharge part of the model is completed by the Poisson equation  
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and the gas-pressure equation 
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 gHH )(
2

Tnnp κ+= . (4) 
 
Here Φ  is the dc potential ( Φ−∇=dcE

r
), κ  is the Boltzmann constant and gT  is 

the neutral gas temperature. 
The boundary conditions are for symmetry on the axis, particle fluxes on the walls 

and zero potential on the walls. The last condition corresponds to grounded metal 
walls and is in conformity with the Faraday shields, often used in plasma sources. 

In the electrodynamical part of the model the Maxwell’s equations results in an 
equation for the vector potential A

r
: 
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In the expression for the conductivity σ  the electron concentration from the gas 

discharge part of the model is used. 0ε  and 0μ  are the electric and the magnetic con-
stants and fπω 2=  is the angular frequency. The components of the electric and 
magnetic field are calculated from the vector potential: 

 
 AiE

vr
ω=  (6) 

 AB
rr

×∇=  (7) 
 
In our case (cylindrical geometry with axial symmetry) only the azimuthal com-

ponents of the vector potential ϕA  and electric field ϕE  and axial zB  and radial rB  
components of the magnetic field are nonzero. 

The current in the coil is simulated by a surface current with appropriate axial dis-
tribution used as boundary condition in equation (5). 

The equations of the model are solved in iterations. First, the gas discharge part is 
solved with constant external heating. The result for the electron concentration is sub-
stituted in the expression for the plasma conductivity and the induced electric field is 
obtained. At the next step the density of the externally applied power Q  is calculated 
with this electric field. The iterations are repeated until convergence is reached. 

 
3. RESULTS 
 

In this section are presented results for gas discharge in hydrogen at pressure 30 
mTorr, externally applied power 500 W and driving frequency 27 MHz.  

3.1. Spatial distribution of the plasma parameters 
Figure 1 shows the spatial distribution of the some of the plasma parameters and 

figure 2 – of the electromagnetic characteristics. The external coil, not shown on the 
figures, is between z = 7.5 cm and z = 17.5 cm. 
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Figure 1(a) shows the electron concentration. As it is typically for diffusion con-
trolled regime the maximum of the concentration is on the axis under the coil.  

Because of the high thermal conductivity the electron temperature is almost con-
stant in radial direction (Figure 1(b)). The maximum of the temperature is under the 
coil near the wall. There the electric field has a maximum (Figure 2(a)) while the 
electron concentration is low. Therefore, the energy gained by an electron from the 
field is high. This energy is transferred to the axis by the thermal conductivity and to 
the regions outside the coil by the thermal conductivity and the electron flux (arrows 
on Figure 1(b)). 

The dc potential (Figure 1(c)) has a maximum on the axis like the electron con-
centration, decreasing in axial and radial direction. Because of the different axial and 
radial dimensions and the constant potential on the walls ( 0=Φ  in the model) the ra-
dial dc electric field is stronger than the axial one. The electric field is accelerating 
for the positive ions and retarding for the electrons. Therefore, for the electrons it is 
easier to leave the discharge in axial direction while the ions move dominantly in r-
direction. As a result, there is a dc current in the discharge (Fig 1(d)). 
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(d) 
Fig. 1. Spatial distribution of the plasma parameters: electron concentration (a); electron  
temperature and energy flux (b); dc potential and dc electric field (c) and dc current (d). 

3.2. RF field components and induced current 
The spatial distribution of the components of the induced electromagnetic field is 

determined by the profile of the electron concentration and of the current in the coil. 
The rf electric field has a maximum under the coil on the wall of the discharge 

tube (Figure 2(a)). Local maxima corresponding to each turn of the coil could be seen 
on the figure. Because of the skin effect the electric and magnetic field decrease fast 
in the plasma. The induced current is shifted to the axis (Figure 2(b)). The explana-
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tion of this shift is given on Figure 2(c) with the normalized radial profile at the cen-
ter of the discharge for the plasma conductivity, HF electric field and the induced cur-
rent. The plasma conductivity following the electron concentration decreases almost 
to zero on the wall. In opposite, the HF electric field decreases to zero at 0=r . Their 
product, the induced current ϕϕ σ= Ej  is zero both on the axis and on the wall and 
has maximum at approximately cm5.1=r . 

3.3. Propagation of the electromagnetic energy 
The energy from the coil propagates towards the axis as a damped transverse elec-

tromagnetic wave. The amplitude and the direction of the Poynting vector S are 
shown in Figure 3(a). The amplitude of S decreases towards the axis because of the 
power absorption in the plasma. The time averaged magnitude of S is given by 

φ×= cosHES
rrr

 with φ being the phase difference between the electric and magnetic 
field. It changes in radial direction (Figure 3(b)) starting from values bigger than o90  
in the outer part of discharge to exactly o90  on the axis. Phase difference bigger than 

o90  means 0cos <ϕ , i.e. the electromagnetic energy flux is directed towards smaller 
r-values to the discharge axis. 
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Fig. 2. Spatial distribution of the induced rf electric field intensity (color) and magnetic field  

intensity (arrows) in (a); induced rf current in (b) and normalized radial profiles at z = 12.5 cm of 
plasma conductivity (green), rf electric field intensity (red) and induced rf current (blue) in (c). 
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Fig. 3. Magnitude and direction of the energy flux (Poynting vector) (a) and radial profiles  
at z = 12.5 of the phase difference between magnetic and electric field components (b). 

 
Figure 4 illustrates the propagation of the electromagnetic energy in the discharge 

tube. 
 

    
Fig. 4. Normalized spatial distribution of the energy flux at o0=tω , o40=tω , o80=tω   

and o120=tω . 
 
4. CONCLUSIONS 
 

In this paper a 2D model of the driver region of an inductive gas discharge in hy-
drogen is presented. The properties of the electromagnetic field sustaining the dis-
charge and of the plasma parameters are self-consistently determined. The results show 
maximum values of the rf field and of the charged particle concentrations under the ex-
ternal coil. The different dimensions in radial and axial direction and the equipotential 
(metal) walls of the discharge tube causes appearance of dc current in rf discharge.  
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Abstract. The paper deals with some aspects and approaches of translinear circuit theory con-
cerning the realization of state-space equations on the base of the static and dynamic translinear 
principles. The results in this topic lead to a variety circuit realizations of frequency selective 
translinear circuits – log-domain, square-root-domain, sinh-domain etc. 

Keywords: electrical circuits, translinear circuits, log-domain filters 
  

1. INTRODUCTION 
 
The last three decades mark a significant research interest to the theory and design 

of translinear circuits. This fact can be explained mainly due the suitability of these 
circuits for low voltage, low power, large dynamic range, high frequency applications 
[5]. Commonly the translinear circuits realize linear relationships between their input 
and output ports, independently of nonlinear relationships between some internal cir-
cuit variables. For this purpose one uses the exponential or square-root characteristics 
of BJT transistors and MOS transistors in sub-threshold region [1, 2]. The basic prac-
tical application of translinear circuits is for filter realizations – log-domain, sinh-
domain, tanh-domain and square-root domain filters [5]. 

A very often used method for the synthesis of active filters is based on the state-
space presentation of their characteristics but the same approach can be applied to the 
realization of translinear filters too [2 -6]. The circuit implementation of the common 
form of well known state-space equation usually uses some simple dynamic translin-
ear subcircuits consisting of BJ transistors and capacitors [3, 4, 6]. 
 
2. DYNAMIC TRANSLINEAR PRINCIPLE (DTLP) 

 
Briefly the definition of DTLP is [6]: The derivative of a BJ transistor collector 

current can be expressed by a relation of products of currents. We will prove this 
statement firstly on the base of the Fig. 1. For the capacitor current it holds 
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tdu
C

dt
tdv

Cti BEC
C
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for  constCBE Etutu += )()( .  (2) 
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Having in mind the exponential relationship between the collector current ic(t) and 

the voltage uBE(t) [4] 
 TBE Utu

sc eIti /)(.)( = ,   (3) 
 
where Is is the saturation current and UT is the thermal voltage of the transistor one 
obtains 

 ( )scTBE ItiUtu ln)(ln)( −= .   (4) 
 
By substituting the last expression in (1) it follows the first-order nonlinear differ-

ential equation [11-13]  

 )(
)()(

ti
CU

ti
dt

tdi
c

T

Cc = .  (5) 

 
This expression is a part of the well known scalar form of a state-space equation 
 

 )()()( tbftax
dt

tdx
+= ,  (6) 

 
where x(t) is the state variable, a and b are constants and f(t) is an independent vari-
able.  

An other example of translinear sub-circuit which satisfies an equation similar to 
(5) is given in Fig. 2 [4, 6]. Here we have again 
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From (6) and (7) for the first derivative of Ic(t) one obtains 
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This expression is a nonlinear differential Bernoulli’s equation [10 - 12]. However 
by the substitution ic(t)=1/τ(t) it can be transformed into a linear relationship 
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dt
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   (10) 

 
Here a problem arises: How to express the variable τ(t) by some circuit currents, 

because it is not a current but an inverse current ? The decision is to include the col-
lector current ic(t)= 1/τ(t) in a loop, which satisfies the static translinear princi-
ple(STLP) [2, 10]. Let this loop consists of m clockwise oriented and m counter-
clockwise oriented identical transistor base-emiter junctions. Then the following rela-
tionship between the transistor collector currents holds [10] 
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If for example the current ic(t) is the clockwise current ic,j (t) of j-th junction from 

(11) one obtains 
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3. STATE VARIABLES CHOICE 

 
The approaches to the realization of translinear filters published in the literature 

use capacitor voltages vC,i(t) as memories of the circuit or currents as state variables 
[6]. However the voltages vC,i(t) are nonlinearly related to the state variables xi(t): 

  
 ( ))()( , tvftx iCii = ,  (13) 
 
On the other hand the currents ix,i(t) are linearly related to the state variables xi(t). 

Then for the capacitance currents iC,i(t) it holds 
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In (13) and (14) the functions fi and gi are usually exp, tanh, sinh or square-root. 
The generalized form of (14) reflects the dependence of every capacitance current 

from the vectors of state variables ix,i(t) and from their first derivatives 
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In a similar manner the equation (13) gives 
  
 ( ))(V)( , tftx iCii = ,  (16) 

 
where VC,i(t) is the capacitance voltage vector. 

 
 

4.  SOME ASPECTS OF DYNAMIC TRANSLINEAR CIRCUIT  
REALIZATION 
 
As an example we analyze the circuits in Fig. 3 and Fig. 4 where ix(t) and iout(t) 

are state variables [6]. For the first of them according STLP we have 
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whereas for the second one the relationships hold 
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Let us constitute the state-space equations of a second-order LC- resistive loaded 

filter given in Fig. 5. Here we have 
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and after some rearranging the state-space equations follow 
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where i(t) and uout(t) are the new state variables. 

Because the aim is a current-mode model of the circuit in Fig. 5 to be synthesized 
one replaces formally all voltages in (21) by corresponding currents and consequently  
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where a12, a21 and a22 are constants and i(t) and iout(t) are the new state variables. 

The number of state-variables in (21) must correspond to the number of the ca-
pacitors in the searched structure – i.e. two. Next we assume that the synthesis will be 
based on the circuits in Fig. 1 and Fig. 2. For C=C1 from the third equation in (17) 
and for C=C2 from the third equation in (18) we express the derivatives di(t)/dt and 
diout(t)/dt and by substituting them in (21) one obtains  
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Here 
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denote additional constant currents. 
 

 
 
By adding the term I12i(t) in both sides of the first equation in (22) and the term 

I22iout(t) in both sides of the second equation we reach to 
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Evidently the last two equations contain products of currents and this fact sug-

gests the use of STLP in the synthesis procedure. The variables that take part in (24) 
must be positive collector currents of transistors in suitable translinear loops, whereas 
the currents I12, i21 and I22 have to be delivered from corresponding current sources. 
As for every synthesis task here one exists a wide variety of decisions [5, 6]. For ex-
ample the equation for iC1(t) (C=C1) in (17) corresponds to Fig. 3 and one chooses ic, 

T1(t)=i(t); ic, T2(t)=iout(t). Then the second equation in (24) can be realized by a 
translinear loop (TLL) that contains four transistors (of cause we suppose a properly 
biasing of them to ensure positive values of all time-depending currents) – Fig. 6. The 
whole circuit must contain mirrors for current transfer between its parts yet. The cir-
cuit realization that follows from the first equation in (24) can be implemented in a 
similar manner. 

 Bernoulli cell discussed above is another useful basic subcircuit for the synthe-
sis especially of translinear filters [3, 4] – Fig. 7. Here we have 
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and after substituting this expression in (10) one follows 
  

 ( )( ) 0)()()().(ln =−+τ tititit
dt
dCU cinT   (26) 

 
This expression reflects KCL for the emiter and consequently the first term in it is 

the capacitor current iC(t).  
   

 
 

A specific problem is the interconnection of Bernoulli cells. For this purpose one 
uses level shifters as it is shown in Fig. 8 where the shifters is implemented by the 
current sources I01 and I02.  

Having into account (26) for the first cell in Fig. 8 we have 
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Further for the second cell from (10) and (26) we can write, respectively 
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it follows 
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Finally, having in mind (28) ÷ (31) one obtains 
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The last result can be generalized and for the case of an arbitrary number m con-

nected Bernoulli cells [4] as follows: 
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If we substitute the recurrent relationship 
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in (33) the KCL applied to (27), (32) and (33) leads to a system of first-order linear 
differential equations in a state-space form. 
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The defining of the variables wk(t) can be done by means of the circuit, given in 

Fig. 9 which is composed by adding transistor pairs to the circuit in Fig. 8. Here one 
discovers the translinear loops formed by an even number transistor base-emiter junc 
tions, namely: Tin, T1, Tq1, Tout,1; Tin, T1, T01, T2, Tq2, Tout,2; Tin, T1, T01, T2, T02, T3, Tq3, 
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Tout,3 and so on. Then, according to STLP for m connected Bernoulli cells it follows 
the generalized expression 
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– i.e. every output current iout,k(t) is proportional to the corresponding state variable 
wk(t). This circumstance is a precondition for the successful use of Bernoulli cells in 
translinear filter synthesis [3, 4]. 

 
 

 
 
 
5. CONCLUSIONS 

  
Several methods for the realization of state-space equations by means of translin-

ear circuits are considered in the paper. Two basic dynamic subcircuits with capaci-
tors as memory elements are often used for the synthesis of log-domain filters with 
previously determined current-mode transfer functions. All the described methods are 
based on two principles – static translinear principle (STLP) and dynamic translin-
ear principle (DTLP). One accessory but important problem in the described in the 
literature synthesis approaches is the use of great number of additional current 
sources in order to fix the transistors working points and it is insufficiently explained 
in the research publications.  
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Abstract: The Nucleotide Genomic Signal (NuGS) methodology reveals surprising regularities, 
both locally and at a global scale, which would be difficult or impossible to identify by using only 
statistical analysis and pattern matching methods. The approach has been applied for studying 
large scale features of chromosomes, for detecting mutations in coding and non-coding nucleotide 
sequences, for analyzing inserts in prokaryote and eukaryote genomes. The lecture briefly presents 
the NuGS methodology and shows how this approach can be used in the comparative study of 
hominidae family mitochondrial DNA (mtDNA). The nucleotide imbalance (Nc), the nucleotide pair 
imbalance (Pu) and the nucleotide path (NuP) of mtNuGSs of both extant (Homo sapiens, Pongo 
pygmaeus, Pongo pygmaeus abeli, Pan troglodytes, Pan paniscus, Gorilla gorilla) and fosile 
(Homo sapiens neanderthalensis) hominidae are analyzed. A reference-offset representation of sets 
of related signals is used. 

Keywords: Nucleotide sequences, Nucleotide complex representation, Nucleotide Genomic 
Signals, Reference-Offset representation 
 
1. INTRODUCTION: THE NUCLEOTIDE GENOMIC SIGNAL  
     METHODOLOGY 

 
The Nucleotide Genomic Signal (NuGS) methodology [1,2] is based on the con-

version of nucleotide sequences into digital signals allows to apply signal processing 
methods for the analysis of genomic data. The method makes straightforward the 
comparison of nucleotide sequences, allows the fast identification of mutations and 
inserts, and reveals surprising patterns and regularities in the distribution of nucleo-
tides, pairs of nucleotides and small groups of nucleotides along the sequences. Such 
features of nucleotide sequences are difficult to find by using only symbolic genomic 
sequences and standard statistical and pattern matching methods.  

We have investigated a large number of mappings of symbolic genomic data to 
digital genomic signals and we have compared how the structure of the genomic code 
was highlighted by the various representations and how the features of DNA se-
quences were revealed by the resulting digital signals. Such a representation has to be 
both truthful and unbiased. The mapping is truthful if all biologically relevant charac-
teristics of the represented objects are expressed in corresponding mathematical 
properties of the samples in the resulting digital signal. The mapping is unbiased if 
the representation does not contain artefacts, i.e., features belonging to the mapping 
itself, without correspondent in the properties of the initial sequence. 
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The mapping we have found to be the best in revealing the essential features of 
nucleotide sequences is a one-to-one unbiased complex representation of nucleotide 
equivalence classes, which attaches the following complex numbers to adenine, cyto-
sine, guanine and thymine nucleotides: 
 

jtjgjcja −=+−=−−=+= 1,1,1,1 . (1) 
 

This mapping, to which corresponds the graphics in Fig.1, can readily be extended 
to all the other IUPAC [3] nucleotide classes comprising nucleotide pairs, triplets or 
quadruplets, respectively. 

 

 
 

Fig. 1. Complex representation of single nucleotide classes. 
 
Using this representation, each nucleotide (Nu)k in the sequence (k = 1,…,nB), nB – 

the length of the sequence (number of bases), (Nu)k ∈ {a, c, g, t}, is mapped into its 
complex representation C {(Nu)k} given in (1). Correspondingly, the symbolic se-
quence [(Nu)k | k = 1,…,nB ] is mapped into the complex signal [C {(Nu)k}| k = 1,…,nB ]. 

The statistics of nucleotides can be described simply by two signatures: 
– the nucleotide imbalance 
 

                Nc = 3(nG-nC)+(nA-nT) = (4/π) ϑc , (2)
 
where nA, nC, nG and nT are the numbers of adenine, cytosine, guanine and thymine 
nucleotides in the sequence from the first to the current entry, and ϑc is the cumulated 
phase, which is equal to the sum of the phases of all entries of the NuGS, from the 
beginning of the sequence, up to the current position; 

– the nucleotide pair imbalance 

Pu = n+ - n- = (2/π) ϑu ,  (3)
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where n+ is the number of positive pairs (A→G, G→C, C→T, T→A), and n- the 
number of negative pairs (A→T, T→C, C→G, G→A), and ϑu is the unwrapped 
phase of the entries of the NuGS. 

Another useful representation of a NuGS is its complex nucleotide path NuP. The 
nth value of the NuP is the sum of the complex representations of the first n nucleo-
tides in the sequence: 

( ){ } },1{,)(
1

B

n

k
kn nnNuNuP ∈= ∑

=

C , (4)

 
The real and the imaginary part of the NuP give the weak–strong and purine–

pyrimidine imbalances, respectively: 
 

)()(}{Re gctasw nnnnnnNuP +−+=−= , (5)

 
)()(}{Im tcgayr nnnnnnNuP +−+=−= , (6)

 
where nw and ns are the numbers of weak and strong links, nr and ny – the numbers of 
purines and pyrimidines, na, nc, ng and nt – the numbers of adenine, cyanine, guanine 
and thymine nucleotides in the sequence from the start to the current position. 

The NuGS approach has been introduced initially to detect the large scale features 
of DNA sequences that are maintained over distances of 106–108 base pairs, including 
both coding and non-coding segments [4]. The methodology proved also adequate for 
the local analysis of the sequences, such as necessary for the study of pathogen vari-
ability [5,6,7,8,9] and the identification of drug resistance [6,8,9]. This is important 
for fast diagnosis and prompt socio-medical decision in contamination with patho-
gens such as Human immunodeficiency virus (HIV) [5], Avian (H5N1) and Swine 
(H1N1) influenza virus [6, 7], or Mycobacterium tuberculosis (MT) [8,9]. The 
method has also been used in mtDNA analysis [10, 11]. The regularities in the nu-
cleotide distribution evoke Chargaff's laws [12], but they are more general and refer 
also to nucleotide pair distribution [1, 2]. 

Some of the main features of the NuGSs are [1, 4]:  
 (1) A remarkable good linearity of the nucleotide pair imbalance Pu. for most of 

prokaryotes and eukaryotes. The root mean square error per nucleotide of the linear 
fitting to Pu is typically very small (e.g., 0.0045 for MT), which corresponds to a 
smooth strait line at large scale. 

(2) An approximately piece-wise linear nucleotide imbalance Nc for prokaryotes, 
and close to zero for eukaryote (using the scale of Pu for Nc). 

(3) The extremes of Nc correspond to the origin and the terminus of genome repli-
cation.  

Re-orienting all exons in a sequence along the same positive direction, reveals 
some unexpected ‘hidden’ ancestral features [1, 2]: 
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(1) A (perfect and predictable) invariance of the nucleotide pair imbalance Pu, re-
sulting from the conservation of the direct (n+) and inverse (n-) numbers of pairs 
when reversing a segment of a DNA double helix, while simultaneously switching its 
strands, in a process modeling recombination. 

(2) An approximately linear shape of Nc after re-orientation, suggests a regular 
ancestral genomic structure. The current nucleotide longitudinal structure, typical for 
each species, has evolved from this ancestral structure under selective pressure, to 
prevent inter-species genetic exchange of material.  

The long range regularities show that, from the structural point of view, a genome 
resembles less to a "plain text", which simply expresses a semantics in accordance to 
certain grammar rules, but more to a "poem", which also obeys additional rules of 
symmetry, giving it "rhythm" and "rhyme". The structural constrains of genomic se-
quences are reflected in the regularities observed in the corresponding genomic signals.  

The paper applies the NuGS methodology in the comparative analysis of mito-
chondrial DNA (mtDNA).  

 
2. MITOCHONDRIAL DNA 

 
The vast majority of the genome of eukaryotic organisms is packaged in the DNA 

of their nuclear chromosomes. The remaining 10-5 of the total genome is stored in the 
circular DNA of mitochondria (mtDNA) [10,13]. In hominidae, a mitochondrion con-
tains between 2 and 10 mtDNAs, each with a length of approximately 16,500 base 
pairs (16,569 bp, in homo sapiens) and encoding 37 genes. Most of the about 1,500 
proteins present in the mitochondria of today extant organisms are encoded by the 
nuclear DNA. Nevertheless, it is considered that their genes are of bacterial origin 
and have been transferred to the eukaryotic nucleus during evolution. In mammals, 
the mt genes encode the 37 proteins shown in Table 1. It must be taken into account 
that the mitochondrial genetic code table is different from the common genetic code 
table of prokaryotes and eukaryotes [13].  

The mt DNA also comprises a 1122-bp major control segment, the D-loop, which 
is located between the genes for tRNA-Pro and tRNA-Phe. The D-loop contains the 
hyper-variable regions HVR1 and HVR2, as well as the main structures responsible 
for initiation and regulation of mtDNA transcription and replication. 

TABLE 1. GENES IN MAMMAL MTDNA 

Product Genes 
NADH  dehydrogenase (complex I) MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-

ND4L, MT-ND5, MT-ND6 
Coenzyme Q, cytochrome c reductase / 
cytochrome b (complex III) 

MT-CYB 

Cytochrome c oxidase, (complex IV) MT-CO1, MT-CO2, MT-CO3 

el
ec

tro
n 

tra
ns

-

ATP synthase MT-ATP6, MT-ATP8 
2 mt rRNA MT-RNR1 (12S), MT-RNR2 (16S). 
22 mt tRNA MT-Ala, …, MT-Val (22 genes for 20 for AA) 
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Nuclear DNA is inherited from both parents, so that its genes are rearranged in 
the process of recombination. Consequently, it is difficult to use the nuclear DNA for 
tracing the inheritance lineage. In contrast, mtDNA is normally only maternally in-
herited, as mitochondria in mammalian sperm are usually destroyed by the egg cell 
after fertilization. Similarly, the Y chromosome is only paternally inherited, as fe-
males do not have it. Therefore, these two types of DNA are largely used for tracking 
maternal, respectively paternal, lineage in a population, being important in evolution-
ary studies, medicine and forensic analyses. 
 
3. NUCLEOTIDE GENOMIC SIGNALS OF MITOCHONDRIAL DNA 

 
This section presents comparatively nucleotide genomic signals of the mitochon-

drial DNA for representatives of the hominidae family. 
Fig. 2 shows the nucleotide path (NuP) for the hominidae mitochondrial DNA of 

six related species Homo sapiens (accession number NC 001807 in GenBank [12], 
length 16571 bp), Gorilla gorilla (NC 001645, 16364 bp), Pan paniscus (NC 001644, 
16563 bp), Pan troglodytes (NC 001643, 16554 bp), Pongo pygmaeus (NC 002083, 
16389 bp). The NuP of Homo sapiens neanderthalensis is very close of the one for 
Homo sapiens, so that it has not been shown separately in Fig. 2.  

 
Fig.2. Nucleotide path of the Hominidae mitochondrial DNA: for Homo sapiens (16571 bp), Gorilla 

gorilla (16364 bp), Pan paniscus (16563 bp), Pan troglodytes (16554 bp), Pongo pygmaeus (16389 bp). 
 
The starting point of the plots have been shifted with 1000 units from each other 

in the horizontal direction to help the direct comparison of the nucleotide paths. The 
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mtDNA is quite inhomogeneous, as it contains segments with different structures and 
functions: 22 genes that encode the mt tRNAs for the 20 amino acids, 2 genes for the 
ribosomal RNAs and 13 genes encoding proteins involved in the electron transfer 
chain (see Table 1). The shape of the NuP plot reflects this non-homogeneity.  

A consistent phylogenetic tree can be built by using separately the various genes 
and non-coding segments and combining the partial results, as and the histories of the 
various segments are distinct and there is a marked tendency to compensate the muta-
tions to satisfy the overall regularities of the NuGS. 

A comparison between the same mitochondrial gene in related species is shown in 
figures 3, 4, and 5.  

 
 

 
 

Fig. 3. Nucleotide imbalance signals for the mt gene encoding tRNA-His (the transport RNA of the 
histidine amino acid) in the hominidae family (H. sapiens, H. sapiens neanderthalensis, Pongo 

pygmaeus, Pan troglodytes, Pan paniscus, and Gorilla gorilla are considered). 
 
Fig. 3 presents the nucleotide imbalance for the transport RNA of the histidine 

amino acid (tRNA-His) for six members of the hominidae family (H. sapiens, H. 
sapiens neanderthalensis, Pongo pygmaeus, Pan troglodytes, Pan paniscus, and Go-
rilla gorilla). The locations of the gene along the sequences and the accession num-
bers in the GenBank [13] are given in the figure. The conservative character of the 
gene shows in its little variability inside the hominidae family. Among other well 
conserved features, the size of the tRNA-His gene is 72 bp for all the considered spe-
cies. It is remarkable that, for the six distinct members of the hominidae family, the 
number of apparently distinct curves in Fig. 3 remains mainly in the restricted range 
of one to three. 

The resolution of the comparison between the closely related signals correspon-
ding to homologous genes can be increased by using the reference-offset representa-
tion. The choice of the central tendency (the trend), which gives the reference, must 
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be optimize in order to properly extract the common variation of the signals in the 
considered set, so that the individual offset of each signal really expresses only the 
features specific to that signal, with minimum cross-talk.  

We have used this reference-offset method to analyze the individual variations in 
a set of genomic signals from related strains of pathogens, or in a pathogen popula-
tion, especially when identifying mutations resulting in pathogen resistance to drugs. 
In the cases of stable pathogens, e.g., Mycobacterium tuberculosis, the NuGS corre-
sponding to the wild type (without mutations) can be used as reference. The offsets 
express how far form the wild type has evolved each studied strand. 
 

 
 

Fig. 4. Offsets of the nucleotide imbalance signals in Fig. with respect to the Homo sapiens  
reference 

 
In the case of pathogens with a very high variability, e.g., for the Human Immu-

nodeficiency Virus (HIV), the choice of the wild type NuGS as reference is no longer 
adequate, because the distance between the wild type and the various instances in the 
pathogen populations would be too large, and the reference would no longer express 
the common trend of the set of NuGSs. In such cases, the median of the set of signals 
could be used as reference, but better results were obtained when using the modal 
step reference or the maximum flat reference []. The offsets express in such cases the 
divergence inside the set of signals, i.e., the spread of the features of the considered 
population of pathogens. 

For the comparative study of the mtDNA in related species, such as in our case, it 
is better to take one of the signals as reference. The offsets express, in this case, how 
far are the other members of the family with respect to the one chosen as reference. 
Fig. 4 shows the reference-offset representation of the nucleotide imbalance signals 
in Fig. 3, when using the signal for H. sapiens as reference. On most of the tRNA-His 
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gene length, the offsets are either identical (superposed), or remain constant (parallel 
to the nucleotide axis), as the signals have the same trend. Abrupt variations occur 
only in the points in which the genes of the six members of the hominidae family dis-
play local mutations, usually single nucleotide polymorphisms (SNPs).  

 

 
 

Fig. 5. Digital derivatives of the offsets of in Fig. The distance with respect to the Homo sapiens 
tRNA-His can be readily estimated 

 
The evolutionary divergence of the species in the hominidae family and their dis-
tances with respect to the H. sapiens reference can easily be established by using the 
differential signals of the offsets shown in Fig. 5. The distances between species de-
rived from only one gene can be misleading. To build a non-contradictory and plausi-
ble phylogenetic tree, it is necessary to combine distances derived from all or a number 
of homologues genes, and from other non-coding conserved genome regions [1]. 

The mitochondrial RNA genes have a sequence structure that evokes the nuclear 
RNA secondary structure and probably has a similar function: the protection of the 
molecule structure, thus information content, in the cellular environment, with the 
corresponding increase of the mt tRNA half-time. This feature is revealed by the 
specific symmetry showed by the nucleotide path (NP) of mt tRNA genes.  

Fig. 6 presents the NuP of the mt tRNA-His gene for six members of the homini-
dae family. The NuP contains several loops that reveal a specific complementary pal-
indrome symmetry of the gene. This symmetry allows the single stranded mt tRNA-
His to fold on itself and establish hydrogen bonds between complementary nucleo-
tides (A-T, C-G). 

The folding of the NP on itself can be better followed in Fig. 7 which explicitly 
shows the weak–strong (W-S) and purine–pyrimidine (R-Y) imbalances along the 
nucleotide sequence for the Homo sapiens mt tRNA-His gene.  
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Fig. 6. Nucleotide path of the mt tRNA-His gene for six members of the hominidae family. The NP 
contains several loops that reveal the specific symmetry of complementary palindrome. 
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Fig. 7. 3D Nucleotide path of the mt tRNA-His gene for Homo sapiens. The return on itself of the 
NP reveals the complementary palindrome symmetry of the sequence. 

 
4. CONCLUSIONS 

 
The paper presents some results in the application of NuGS methodology to the 

comparative analysis of hominoid mitochondrial chromosomes. New approaches 
based on nucleotide imbalance (cumulated phase), nucleotide pair imbalance (un-
wrapped phase), 2D and 3D nucleotide path (weak-strong vs purine-pyrimidine im-
balance) have been developed to this purpose [3]. An efficient method of representing 
sets of signals by reference and offsets is used to get a better resolution in the case of 
related signals. The method has been initially developed for the study of pathogen 
variability in the context of drug resistance early detection, but showed good results 
in the analysis of mt DNA.  

Regularities in the distribution of nucleotides and pairs of nucleotides have been 
found, showing that mtDNA has a well ordered structure, closer to the regularity of 
prokaryote genomes, than to the relative patchy structure of eukaryote genomes. 
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Abstract: A new robust stability concept, the so-called strong stability radius rss, is introduced 
for linear circuits whose parameter uncertainties are modeled by an interval matrix A. Circuits 
whose parameters range within rss are guaranteed to have smoother transients in comparison to 
circuits that are only stable. It is proved that the problem of determining rss of the original n n×  
interval matrix A can be equated to that of finding the robust stability radius rs of an associated 
symmetric2 2n n×  interval matrix C. It is also shown that the stability radius rs of C can be com-
puted as the maximum eigenvalue of a corresponding interval generalized eigenvalue problem re-
lated to C. The latter problem can be solved with an amount of computational expenses that is a 
polynomial in the size n of the original matrix. 

Keywords: strong stability radius, generalized eigenvalue problem. 
 
1. INTRODUCTION 
 

As is well known, robust stability analysis of linear time-invariant circuits 
(systems) whose parameters are not exact but are known to lie within preset intervals 
can be equated to the problem of estimating the stability margin of a corresponding 
interval matrix A (e.g. [1]). A more recent trend in the quantitative stability analysis 
of such circuits is to assess the so-called stability radius sr  of A [2]. Circuits whose 
parameter ranges are such that 1sr >  are guaranteed to be robustly stable. However, 
transients in stable circuits may have considerable overshoots that are sometimes 
undisirable. 

In the present paper, a new robust stability measure, the so-called strong stability 
radius ssr  of an arbitrary n n×  interval matrix A is introduced. Circuits whose 
descriptive matrix A has 1ssr >  are guaranteed to exhibit smoother transients as 
compared to circuits that are just stable. 

The problem of determining ssr  is evidently NP-hard (its numerical complexity is 
exponential in the size n of the matrix) since the simpler problem of computing sr  is 
known to be NP-hard. According to [3], such problems can be solved only for matri-
ces of moderate size (n ≤ 15). Thus, development of methods for determining sr  or ssr  
whose numerical complexity is polynomial in n is of considerable practical 
significanse. Such a polynomial complexity method for determining sr  has already 
been suggested in a recent paper [4]. 
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This paper proposes an approach permitting to equate the original problem of 
determining the strong stability radius ssr  of A to the problem of finding the stability 
radius sr  of an associated symmetric interval matrix C of size 2 2n n× . Next, sr  of C 
is computed as the maximum eigenvalue of a corresponding interval generalized ei-
genvalue problem related to C. The latter problem can be solved using the polyno-
mial complexity methods from [4] or [5]. 
 
2. PROBLEM STATEMENT 
 

As will be seen below, the concept of strong stability is related to the concept of 
singular values of a real (non-interval) matrix A 

 

 ( ) ( )T
i iA A Aσ λ=  (1) 

 
where iλ  is the ith eigenvalue of the matrix involved. Using (1), we define the maxi-
mum singular value of A 

 ( ) max( ( )i iA Aσ σ=  (2)  
 
and the maximum singular value of the interval matrix A 

 
 ( ) max( ( ),i i A Aσ σ= ∈A A . (3) 
 
The interval matrix A will be called strongly stable if  
 
 ( ) 1σ <A . (4) 
 
Thus, we can introduce (by analogy with the standard stability margin) the con-

cept of strong stability margin  

 ( ) 1 ( )ssM σ= −A A . (5) 
 
To introduce the concept of strong stability radius ( )ssr A , we need the centered 

form of the interval matrix. 

 [ ] [ ], ,    = ,c cA R R A R R= + − = + −A B B . (6) 
 
Then ( )ssr A  is defined as follows 

 ( ) min{ 0 : ( ) 1, }c
ssr r A r B Bσ= ≥ + = ∈A B . (7) 
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3. MAIN RESULTS 
 
Let  

 
0 0

,
0 0

T TA
G

A
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A
G

A
. (8) 

 
Obviously, G is a symmetric 2 2n n×  real matrix belonging to the interval matrix 

G. Rather than using (1), following [6] we have 

 
0

( ) ( ( )) ( ( ))
0

T

i i i

A
A Pos G Pos

A
σ λ λ

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 (9) 

 
where Pos( ) means positive part of ( ). On account of (3), (8) and (9) 

 
 { }( ) ( ) = max ( ), 1,...2 ,i G i n Gσ λ λ= = ∈A G G . (10) 
 
Now using (6), we put G in central form 
 

 
0 ( )

0

c T
c

c

A
G

A
⎡ ⎤

= + = +⎢ ⎥
⎣ ⎦

G H H  (11) 

with 

 
0 0

,
0 0

T TB
H

B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

B
H

B
 (11a) 

(B is defined in (6)). 
 
In view of (7), (10) and (11), ( )ssr A  can be defined equivalently as 
 
 ( ) min{ 0 : ( ) 1, }c

ssr r G r H Hλ= ≥ + = ∈A H . (12) 
 
Now recall the stability radius of A [4] 
 
 ( ) min{ 0 :[ , ] }c c

sr r A r R A r R is instable= ≥ − +A  (13) 
 
which can be written equivalently as 

 
 ( ) min{ 0 : det ( ) 0, }c

sr r A r B B= ≥ + = ∈A B . (14) 
 
Introducing a shift of 1− , ( ) 1cG rHλ + =  can be replaced with ( ) 0cG I rHλ − + =  

(I is the identity matrix). Hence, (12) can be written in the form (14) as 
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 ( ) 1 min{ 0 : det ( ) 0, }c
ssr r G I r H H= + ≥ − + = ∈A H . (15) 

 
So it is seen that 
 ( ) ( )s

ss sr r G I r= − +A H . (15a) 
 
Now introduce the new matrices 
 

 ,c s cC G I C C= − = + H . (16)  
 
On account of (12) to (16), it is seen that 
 
 ( ) ( )ss sr r=A C . (17) 
 
Thus, we have proved the following result. 
  
Theorem 1. The strong stability radius ( )ssr A  of the original non-symmetric n n×  

interval matrix A can be determined as in (17) by way of the stability radius ( )sr C of 
the associated symmetric 2 2n n×  interval matrix C defined in (8), (11) and (16). 

This theorem permits us to determine ( )ssr A  using the approach of [4]. Indeed, 
consider the following interval generalized eigenvalue problem  

 
 0 0, , cH x H x H H Cμ= ∈ = −H . (18) 
 
Since H and 0H  are symmetric, all eigenvalues iμ  of (18) are real. Let *μ  denote 

the maximum eigenvalue of (18), i.e. 
 
 { }* 0max : ,H x H x Hμ μ μ= = ∈H . (19) 
 
Then, on account of Lemma 1 in [4] we have the following result. 
 
Theorem 2. The strong stability radius ( )ssr A  of A can be determined using the 

maximum eigenvalue *μ  of the associated symmetric 2 2n n×  interval generalized 
eigenvalue problem (18) as follows 

 *( ) 1/ssr μ=A . (20) 
 
4. CONCLUSION 
 

 It has been shown that the strong stability radius ( )ssr A  of an n n×  interval ma-
trix A can be determining by formula (20). The maximum eigenvalue *μ  of the aug-
mented 2 2n n×  generalized eigenvalue problem (18) can be found using the general 
methods from [4] or [5] (where the interval matrix involved is not necessarily sym-
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metric). Since both methods (when applicable) have polynomial complexity, the pre-
sent approach for determining ( )ssr A  has the same numerical complexity. 

It is hoped that the ideas of the present paper can be extended to circuits or sys-
tems described by more involved mathematical models (e.g., [7] - [9]). 
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Abstract: The paper presents an analysis as well a synthesis of oscillator systems described by 
single well Duffing equations under polynomial perturbations of fourth degree. It has been proved, 
that such a system can have unique hyperbolic limit cycle. The analytical condition for the arising 
of a limit cycle and an equation giving the parameters of this limit cycle are obtained. Moreover, a 
method for the synthesis of oscillator systems of the considered type, having preliminarily assigned 
properties, is proposed. The synthesis consists in an appropriate choice of the perturbation coeffi-
cients in such a way, that the oscillator equation is to have in advance assigned limit cycle. Both the 
analysis and synthesis are performed with the aid of the Melnikov function. 
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1. INTRODUCTION 
 

The paper presents an analysis as well a synthesis of oscillator systems described 
by perturbed single well Duffing equations and admitting self-sustained oscillations. 
The results obtained are based on the qualitative investigation of dynamical systems, 
whereupon the self-sustained oscillations are regarded as limit cycles on the phase 
plane. 

The Melnikov theory allows establishing the existence, number, position shape 
and stability of the limit cycles. Using this theory, a single well Duffing equation un-
der polynomial perturbations of 4th degree, is analyzed. It has been proved that such 
an equation can have a unique hyperbolic (simple) limit cycle. The conditions for the 
arising of a limit cycle (or periodic oscillations) and establishing whether this limit 
cycle is stable, or unstable, have been derived. Moreover, a method for the synthesis 
of equations of the regarded type, having preliminarily assigned properties, is sug-
gested. 

According to the Melnikov theory, the problem of finding the limit cycles is re-
placed by an equivalent problem of finding the zeros of a given function – the Mel-
nikov function for autonomous systems [2], [5]. In our case the unperturbed solution 
is presented by Jacobi elliptic functions and thus the expression of the Melnikov 
function is a function involving complete elliptic integrals. The main point in the 
analysis of the Melnikov function is to prove that a given ratio of the functions in-
volving complete elliptic integrals is a monotonic function. 

Below we give short information concerning the Melnikov theory, which is nec-
essary for the further exposition. It is important to underline, that we analyze only the 
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case of first order perturbations, respectively first order bifurcations of limit cycles 
from a “centre” and a first order Melnikov function. 

Consider the perturbed Hamiltonian system 

 
),,(

),,(
εε

εε
yxqxHy

yxpyHx
+∂∂−=

+∂∂=
&

&
,  (1)  

where the Hamiltonian ),( yxHH =  is an analytic function in 2R , the perturbation 
functions ),,( εyxp  and ),,( εyxq  are analytic in RR ×2 , ε  is a small parameter, 

1<<ε , tdd)( ≡⋅  and t  is the time. 
Denote the solution of system (1) by ( ))(),(),( ttyx εε ψϕ=  and then the solution 

of the unperturbed system (at 0=ε ) is ( ))(),(),( 00 ttyx ψϕ= . 
Further on, we will assume that the unperturbed system has at least one equilib-

rium point, which is a “centre”, surrounded by a continuous one-parameter family of 
closed trajectories, parameterized by the constant levels set of the Hamiltonian func-
tion. Then a given closed trajectory, corresponding to the parameter h , has the fol-
lowing equation on the phase plane 

 hyxHh =),(:)(0Γ  , R⊂∈Ωh ,  (2)  

where Ω  is an open set of values h , for which the trajectories are not degenerated in 
a point or a separatrix loop. 

Denote the period of the unperturbed solution ( ))(),(),( 00 ttyx ψϕ=  correspond-
ing to the closed trajectory )(0 hΓ  by )(0 hT . 

Under these notions, the following function 

 [ ]dtpqhM
hT

∫ −=
)(

0
000000

0

)0,,()0,,()( ψψϕϕψϕ && .  (3)  

is called the first order Melnikov function. It plays an important role in the study of 
limit cycles. Every zero of the function )(hM  corresponds to the limit cycle and the 
stability of this limit cycle is determined by the derivative of the function )(hM  at 
this zero. More details can be found in [5] [6], [7]. 

In all computations further on, the complete elliptic integrals of the first and sec-
ond kind, K  and E , are regarded as functions of 2k  ( k  is a modulus), i.e. 

)( 2kKK =  and )( 2kEE = . Regarding the Jacobi elliptic function sd  and the com-
plete elliptic integrals K  and E , some properties and identities that have been used 
in the presentation are given in the Appendix for the purpose of easy reference. The 
equations in the Appendix are marked by an A. 



20.09.09 – 23.09.09, Sozopol, Bulgaria 152

2. OSCILLATOR CIRCUITS AND OSCILLATOR EQUATIONS 
 

Examples of AC equivalent circuits of oscillator systems governed by perturbed 
Duffing equations are shown in Fig. 1. The parallel circuit, shown in Fig. 1a, consists 
of a resistor with conductance G , an inductive element with inductance L , a nonlin-
ear resistor NR  of the type N , having voltage-current characteristic )(1 ufi =  and a 
nonlinear capacitive element having charge-voltage characteristic 3qqu βα += , 
where q  is the electric charge associated with the element, and α , β  are constants, 

0>α , 0>β . The series circuit, shown in Fig. 1b, consists of a resistor with resis-
tance R , a capacitive element with capacitance C , a nonlinear resistor NR  of the 
type S  having current-voltage characteristic )(1 ifu =  and a nonlinear inductive ele-
ment having flux-current characteristic 3βψαψ +=i , where ψ  is the magnetic flux 
associated with the element, and here also α , β  are constants, 0>α , 0>β . 

 

  
a)                                                            b) 

Fig. 1. Oscillator circuits governed by perturbed Duffing equations 
 

It can be proved that the processes in the oscillator circuits shown in Fig. 1 are de-
scribed by the following perturbed single well Duffing equation 

 0
d
d

d
)(d

d
d 3

2

2

=++− bxax
t
x

x
xF

t
x ε , 0>a , 0>b  .  (4)  

3. MELNIKOV FUNCTION FOR PERTURBED SINGLE WELL  
    DUFFING EQUATION 

 
In our work we assume that the function )(xF  is represented by the polynomial 

 4
4

3
3

2
21)( xaxaxaxaxF +++= .  (5)  

In this case equation (4) can be rewritten as the following perturbed Hamiltonian sys-
tem 

 3

4
4

3
3

2
21 )(

bxaxy
xaxaxaxayx

−−=
++++=

&

& ε
 , 0>a , 0>b .  (6)  
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Further we will investigate the system (6) from a point of view of the existence of 
limit cycles. 

Denote the solution of the system (6) by ( ))(),(),( ttyx εε ψϕ= . The unperturbed 
system (at 0=ε ) has a Hamiltonian  

 422

422
1),( xbxayyxH ++=   (7)  

and a single equilibrium point )0,0(  which is a “centre” surrounded by a continuous 
one-parameter family of closed trajectories given by  

 hxbxayyxHh =++= 422
0 422

1),(:)(Γ  , ),0( ∞∈h  .  (8)  

The solution of the unperturbed system ( ))(),(),( 00 ttyx ψϕ=  in the time domain 
is expressed by the following Jacobi elliptic functions 
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The period of the unperturbed solution is 

 
a

kkhTT
2

2
00

21)(4)( −
== K  .  (10)  

The modulus k  and the constant h  are related in the following way: 
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 210 2 << k  , ∞<< h0  .  (11b)  

It is easy to prove that 0dd 2 >kh , and 0dd 2 >hk , i.e. the function )( 2khh =  and 
)(22 hkk =  are monotone increasing. 

According to Equation (3), the Melnikov function for the system (6) is 

=⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∫ ∑∫ ∑

==

dtbaadtahM
T

n

n
n

T

n

n
n

00

0

3
00

4

1
0

0
0

4

1
0 )(()( ϕϕϕψϕ &  



20.09.09 – 23.09.09, Sozopol, Bulgaria 154
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where 12 aac = , 23 aac = , 134 baaac += , 245 baaac += , 36 bac = , 47 bac = . Intro-

ducing a new variable ( )tkaz 221−=  and taking into account Equation (10) and 
the properties of the function sd  given in the Appendix (Equations (A1)–(A3)), we 
see that the integrals containing ),(sd 12 kzn+ , 3,2,1=n  vanish and the Melnikov 
function becomes 

 dzkz
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As it is seen from the last result, the Melnikov function and the arising of limit cycles 
do not depend on the terms with coefficients having odd indices - 3c , 5c , 7c . This 
means that the terms with even degrees in the polynomial perturbation in the system 
(6) exert no influence on the arising of limit cycles and further we will assume that 

042 == aa . This fact is important with the circuit realization of the oscillator equa-
tion. In the final reckoning the system (6), which we investigate, is reduced with re-
spect to the limit cycles, to the following system 

 3

3
31 )(

bxaxy
xaxayx

+−=
++=

&

& ε
 .  (13)  

Under these conditions, after quite long but straightforward computations, using 
Equations (A4)–(A6) and introducing the notation 2km = , Equation (12) gives the 
final expression for the Melnikov function, i.e. 

 ( ) ),;(
)21(
218)()()( 313 aam

m
mammhMhM BM

−
−

===
λ

 ,  (14)  

where ba=λ  and 

 )(
5
2)(),;( 231131 mIamIaaam λ+=B  ,  (15)  

 [ ]EK )21()1()21(
3
1)(1 mmmmI −−−−=  ,  (16)  

 KE )1)(2()1(2)( 2
2 mmmmmI −−−+−= .  (17)  

Recall that here and in the equations below, the complete elliptic integrals K  and E  
are regarded as functions of m , where 2km =  and k  is a modulus, i.e. )(mKK =  
and )(mEE =  [9]. 
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According to the Melnikov theory, the zeros of )(hM  determine the limit cycles 
emerging from the periodic orbits of the unperturbed Hamiltonian systems. The sta-
bility of the limit cycle is determined by the sign of the quantity )( dhdMε . Since 

)(mhh =  and )(hmm =  are single-valued functions, the zeros of )(hM  and )(mM  
coincide. In other words, if 0m  is a zero of )(mM , i.e. 0)( 0 =mM , then )( 00 mhh =  
is a zero of )(hM , i.e. 0)( 0 =hM . Moreover, from the relations 
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m
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d
d
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d
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d
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==  , 0
d
d

>
h
m , 

it follows that the signs of the quantities hM dd  and mddM  also coincide. Having 
this in mind, we will look for the zeros of the function )(mM  and the sign of the 
quantity mddM . On the other hand, with )21,0(∈m  the zeros of )(mM  and 

),;( 31 aamB  coincide. Besides, if 0m  is a zero of ),;( 31 aamB , i.e. 0),;( 310 =aamB , 
then the quantities )( 0mM ′  and ),;( 310 aamB ′  will have the same signs. Without any 
loss of generality, we may assume 11 =a  and put 

 )(
5
2)(),1;(:)( 2313 mIamIammB λ+==B .  (18)  

Therefore we will look for the zeros of the function )(mB , or the roots of the equa-
tion 0)( =mB , and the signs of the derivative )(mB′  evaluated at these roots. 

For further analysis it is convenient to rewrite the function )(mB  in the following 
way 

 ⎥⎦
⎤

⎢⎣
⎡ += 32 5

2)()()( amYmImB λ  ,  (19)  

where 
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The analysis of the function )(mB  (respectively the analysis of the Melnikov func-
tion), requires the investigation of the function )(mY . 
 
5. ANALYSIS OF THE MELNIKOV FUNCTION AND LIMIT CYCLES 
 

The properties of the function )(mY  necessary for later use are summed up in the 
following lemma. 
Lemma: The following assertions hold: 
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(a) +∞==
+→

)(lim)0(
0

mYY
m

 , 0)21( =Y  and 

 0)( >mY  for )21,0(∈m .  (21)  

(b) The function )(mY  is strictly monotone decreasing on the interval )21,0( , i.e. 

 0)( <′ mY  for )21,0(∈m  .■  (22)  

The graph of the function )(mY  is shown in Figure 2. 
The following theorem gives the main results concerning the limit cycles analysis 

in perturbed single well Duffing oscillators. 
Theorem: The system (13) (with 11 =a ) can have a unique hyperbolic limit cycle. 
The condition for the arising of a limit cycle is the fulfillment of the following ine-
quality 
 03 <a  .  (23)  

The parameters of the limit cycle are determined by the equation 

 0
5
2)( 3 =+ amY λ  .  (24)  

In addition, the limit cycle is stable when 0>ε  and unstable when 0<ε .■ 
The proofs of the formulated above lemma and theorem are ommited because of 

limited presentation space. 
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Fig. 2. Graphical plot of the function )(mY  

 
We will give some comments concerning the application of the above theorem for 

limit cycles analysis. Let 0m  be the solution of the equation (24). The value of 0m  
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determines the parameters of the limit cycle arising in the system (13). More pre-
cisely stated, for a sufficiently small 0≠ε , there exists εh  in an )(εO  neighborhood 
of )( 00 mhh =  (see Equations (11a)), such that the perturbed Hamiltonian system (13) 
has a hyperbolic (simple) limit cycle )( εεΓ h . The limit cycle )( εε hΓ  is localized in 
an )(εO  neighborhood of the curve )( 00 hΓ  and tends to )( 00 hΓ  as 0→ε . The limit 
cycle )( εε hΓ  is stable when 0>ε , and unstable when 0<ε . 

The limit cycle )( εε hΓ  in practice coincides with the curve )( 00 hΓ  and its first 
order approximation in the time domain is expressed by the functions (9). 
 
6. SYNTHESIS OF PERTURBED SINGLE WELL DUFFING OSCILLATORS 
 

The presented result can be used to perform a synthesis of the considered 
oscillators. The relations between the Hamiltonian level h  and the elliptic modulus k  
and 2km =  given in Equation (11a) allow us to compute the value of 0m  correspond-
ing to preliminarily assigned Hamiltonian level 0h . Then Equation (24), for given 

0m , yields the coefficient 3a  in such a way, that the system (13) is to have a limit cy-
cle localized in an )(εO  neighborhood of this assigned Hamiltonian level. The 
synthesis procedure includes the following steps: 

1) Formulation of the synthesis problem: 
Find an oscillator system of the type (13) (with 11 =a ), having a limit cycle local-

ized in an )(εO  neighborhood of the curve  

 0
422

00 422
1:)( hxbxayhΓ =++ ,  (25)  

where the values of a , b , 0h  are given. We note that the preliminarily assigned val-
ues of a , b  ( ba=λ ) and 0h  form the desired characteristics of the oscillator. In 
other words, these values determine the shape, position and period of the limit cycle, 
which will arise in the system (13). 

2) Computation of the values of 0m  and modulus 0k  of the complete elliptic 
integrals: 
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2) Computation of the value of )( 0mY : 
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4) Computation of the perturbation coefficient 3a : 

 
λ)52(
)( 0

3
mYa −=  .  (28)  

The obtained in this way perturbation coefficient 3a  ensures that the system (13) 
is to have a simple limit cycle )( εε hΓ , which is localized in an )(εO  neighborhood 
of the curve (25). The limit cycle )( εε hΓ  is stable when 0>ε , and unstable when 

0<ε . 
Finally, as an application of the proposed method, we will briefly consider an ex-

ample of a synthesis of an oscillator system. The computation of the numerical data 
follows the synthesis procedure. 

Example: Find an oscillator system of the type (13) (with 11 =a ), having a sim-
ple limit cycle which is localized in an )(εO  neighborhood of the curve (25) with 

1=a , 2=b  and 30 =h . 

Solution: 
1) 1=a , 2=b , 30 =h , 5.0== baλ ; 
2) 4.00 =m , 632456.00 =k ; 
3) 777519.1)4.0( =K , 399392.1)4.0( =E , 124667.0)4.0( =Y ; 
4) 623.0623335.03 −≈−=a . 

In this way we find the following system 

 3

3

2
)623.0(

xxy
xxyx

−−=
−+=

&

& ε
.  (29)  

The system (29) has a hyperbolic limit cycle )( εε hΓ , which in an )(εO  approxi-
mation is presented by the curve 3)21()21()21(:)3( 422

0 =++ xxyΓ . The gener-
ated by system (29) self-sustained oscillations are expressed practically in the time 
domain in the following way 

 ⎟
⎠
⎞

⎜
⎝
⎛= 632.0,

2.0
1sd095.1)( ttx  .  (30)  

 
The phase portrait of system (29) for 25.0=ε  and initial data )5.0,0(  and )4,0(  

obtained by a numerical integration is shown in Fig. 3. The numerical computations 
confirm perfectly the analytical results. 
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Fig. 3. Phase portrait of system (29) 

 
7. CONCLUSIONS 
 

An analysis, as well a synthesis, of oscillator systems described by single well 
Duffing equations under polynomial perturbations of 4th degree is presented in this 
paper. It has been proved that the considered system can have a unique hyperbolic 
limit cycle. The obtained inequality (23) represents a condition for the arising of a 
limit cycle and the equation (24) determines the parameters of this limit cycle. More-
over, a method for a synthesis of oscillator systems of the considered type is pro-
posed. The synthesis consists in an appropriate computation of the perturbation coef-
ficients so that the prescribed properties to be fulfilled. Both the analysis and the syn-
thesis are performed with the aid of the Melnikov function. 
 
8. APPENDIX 
 

In this section we give some properties and identities concerning the Jacobi ellip-
tic function sd  and the complete elliptic integrals of the first and second kind, K  and 
E , which are used in the presentation. Recall that the complete elliptic integrals K  
and E  are regarded as functions of 2k , where k  is a modulus, i.e. )( 2kKK =  and 

)( 2kEE = . 
The function ),sd(sdsd kzz ==  is a periodic and odd function with a period K4 . 

Then the following identities are valid 

 0),4sd(),0sd( == kk K  , ),2sd(),sd( kzkz K+−=  ,  (A1)  

 ∫ =+
K4

0

12 0),(sd dzkzn  , L,2,1,0=n ,  (A2)  
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 ∫ ∫=
K K4

0 0

22 ),(sd4),(sd dzkzdzkz nn  , L,2,1=n ,  (A3)  

The following identities are valid 
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     [ ]KE
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1dsd 24624
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−

=∫ kkkkk
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The equation (A4) is given in [10]. The equations (A5) and (A6) are obtained by us-
ing a recurrence dependency  
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Резюме: В тази публикация се синтезират и анализират лентови активни филтри от 
втори ред с един източник на напрежение, управляван с напрежение, моделирани по схеми-
те на Сален-Кий. Това се извършва по зададена нормализирана предавателна функция по 
напрежение и при известни нормализиращо съпротивление и средна честота. Синтезът се 
реализира чрез програмата MATLAB, а анализът на проектираните филтри след избора на 
стандартни стойности на съпротивленията на резисторите и на капацитетите на кон-
дензаторите в синтезираните вериги, се извършва чрез програмата MicroCAP, предназна-
чена за симулация на аналогови и цифрови вериги. Резултатите ще бъдат използвани в про-
цеса на обучение по дисциплината „Комуникационни вериги”, изучавана от студентите от 
специалност „Комуникационна техника и технологии” от образователно-квалификационна-
та степен „бакалавър”. 

Ключови думи: Анализ, синтез, активни филтри, източник на напрежение, управляван с 
напрежение (ИНУН). 
 
 
1. ВЪВЕДЕНИЕ 
 

Разглежданите активни филтри от втори ред с източник на напрежение, уп-
равляван с напрежение (ИНУН), моделирани по схемите на Сален-Кий [3, 7], са 
изградени от един операционен усилвател, резистори и кондензатори. 

В Таблица 1 са дадени нормализираната предавателна функция по напреже-
ние на активни лентови филтри (ЛФ) от втори ред, както и тяхната предавател-
на функция, записана чрез коефициента на усилване в лентата на пропускане 

0k , кръговата средна честота 0ω  и полюсния качествен фактор Q  на тези филт-
ри [1, 2, 4, 5, 6]. 



20.09.09 – 23.09.09, Sozopol, Bulgaria 162

Таблица 1. Предавателни функции по напрежение на ЛФ от втори ред 

Активни филтри от втори ред 

Лентов филтър (ЛФ) ( )
01

2 bpbp
appT

++
=  ( )

2
0

02

0
0

ω+
ω

+

ω

=
p

Q
p

p
Q

k
pT  

 
 
2. СЪСТОЯНИЕ НА ПРОБЛЕМА – АНАЛИЗ И СИНТЕЗ НА ЛЕНТОВИ  
    АКТИВНИ ФИЛТРИ ОТ ВТОРИ РЕД С ИНУН, МОДЕЛИРАНИ ПО  
    СХЕМИТЕ НА САЛЕН-КИЙ 

 
На фиг. 1 и фиг. 2 са дадени две разновидности на лентови активни филтри 

от втори ред с ИНУН, моделиран по схемите на Сален-Кий, за които оператор-
ните проводимости на участъците съответно са:  

– за ЛФ – тип I – 11 GY = , 22 pCY = , 33 GY = , 444 pCGY += ; 
– за ЛФ – тип II – 11 GY = , 22 pCY = , 33 GY = , 44 GY = , 77 pCY = . 
 

  
 

Фиг. 1. Лентов активен филтър (тип I)  
от втори ред с ИНУН, моделиран по схемата 

на Сален-Кий 

 
Фиг. 2. Лентов активен филтър (тип II)  

от втори ред с ИНУН, моделиран по схемата 
на Сален-Кий 

 
3. РЕЗУЛТАТИ 

 
Алгоритъмът за синтез и анализ лентов активен филтър от втори ред с 

ИНУН, моделиран по схемите на Сален-Кий, съдържа следните стъпки: 
1. Въвеждане на коефициентите a , 0b  и 1b  в предавателната функция по 

напрежение ( )pT  на синтезирания филтър. 
2. Изчисляване на нормираните стойности на елементите на синтезирания 

лентов филтър от I и II тип, чиито схеми са показани на фиг. 2 и фиг. 3. 
– за ЛФ – тип I: Условие за проектиране – еднакви капацитети в схемата: 

142 ==CC  (като нормирани стойности) и GGG == 31 . 
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– за ЛФ – тип II: Условие за проектиране – еднакви капацитети в схемата: 
172 == CC  (като нормирани стойности), GGG == 31 . 

Параметрите на останалите елементи се получават от решението на 
следните системи уравнения: 

 

– за ЛФ – тип I: 
( ) 1

0

0
4

4
2

2
,

bG
G

b
G

bG
G
a

=μ−+

==μ
, 

– за ЛФ – тип II: 

( )

( )
0

72

314

1
2

4

7

341

7

1 1,

b
CC

GGG

b
C
G

C
GGGa

C
G

=
+

=+
μ−++

=μ

. 

Решенията на съответните системи са: 
– за ЛФ – тип I: 

Случай I: 

4=μ  ⇒  
1

0
31 2b

bGGG === ; 14 bG = ; 56
5

6

5

6 3341 RR
R
R

R
R

=⇒=⇒=+=μ . 

Случай II: 
 

Квадратно уравнение по отношение на G  с дискриминанта D: Необходими 
условия за проектиране: 

1) ( )[ ] ( ) 088 0
2

10
2

1 ≥−+=−+−= babbabD  – за наличие на реален корен; 

2) 0>G ; 
( ) ( )

8
8 0

2
11III, babab

G
−+±+

= , избират се положителните корени 

(ако има такива); ако няма положителен корен – системата няма решение. 

GGG == 31 ; 
G

bG
2

0
4 = . 

– за ЛФ – тип II: 
Случай I: 

2=μ  ⇒  
1

0
31 b

bGGG === ; 
2
1

4
bG = ; 56

5

6

5

6 121 RR
R
R

R
R

=⇒=⇒=+=μ . 

Случай II: 
 

Квадратно уравнение по отношение на G  с дискриминанта D: 
Необходими условия за проектиране: 
1) ( )[ ] ( ) 0824 0

2
10

2
1 ≥−+=−+−= babb..abD  – за наличие на реален корен; 
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2) 0>G ; 
( ) ( )

4
8 0

2
11III, babab

G
−+±+

= , избират се положителните корени 

(ако има такива); ако няма положителен корен – системата няма решение. 

GGG == 31 ; 
G

bG
2

0
4 = . 

1. Въвеждане на стойността на нормиращото съпротивление NR . 
2. Въвеждане на средната честота 0f  за лентовия филтър и изчисляване на 

нормиращата кръгова честота 02 fN π=ω . 
3. Изчисляване на денормираните стойности на елементите на двуполюсни-

ците: 
– за резисторите – получените стойности за съпротивления kk GR 1= за 

61...k =  се умножават с нормиращото съпротивление NR ; 
– за кондензаторите – получените стойности за капацитети се разделят на 
произведението NN R.ω . 

4. Избор на стандартни стойности на елементите на филтъра. 
5. Извеждане на предавателните функции по напрежение ( )pT  на лентов 

филтър от I и II тип, съответно от фиг. 2 и фиг. 3. 
– за ЛФ – тип I: 

( )
( ) ( )

42

314

2

31

4

3412

4

1

1
CC

GGG
C

GG
C

GGGpp

p
C
G

pT
+

+⎥
⎦

⎤
⎢
⎣

⎡ +
+

μ−++
+

μ
= , 

където: 

( )

( )
0

42

314

1
2

31

4

341

4

1 1,

b
CC

GGG

b
C

GG
C

GGGa
C
G

=
+

=
+

+
μ−++

=μ
; 

– за ЛФ – тип II: 

( )
( ) ( )

72

314

2

4

7

3412

7

1

1
CC

GGG
C
G

C
GGG

pp

p
C
G

pT
+

+⎥
⎦

⎤
⎢
⎣

⎡
+

μ−++
+

μ
= , 

където 

( )

( )
0

72

314

1
2

4

7

341

7

1 1,

b
CC

GGG

b
C
G

C
GGGa

C
G

=
+

=+
μ−++

=μ

. 
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6. Изчисляване на коефициента на усилване 0k  в лентата на пропускане, 
на полюсния качествен фактор Q  и на средната честота 0f  за лентовия филтър 
от I и II тип, съответно от фиг. 2 и фиг. 3, след избора на стандартни стойности 
на елементите. 

– за ЛФ – тип I: 

rad/s
CCRRR

RR ,
42431

31
0

+
=ω ; Hz

CCRRR
RRf ,

2
1

42431

31
0

+
π

= , 

 

( )
2321434441

42431

31

111111
CRCRCRCRCR

CCRRR
RR

Q
++μ−++

+

= ; 

( )
2321434441

41
0 111111

CRCRCRCRCR

CRk
++μ−++

μ

= . 

– за ЛФ – тип II: 

rad/s
CCRRR

RR ,
42431

31
0

+
=ω , Hz

CCRRR
RRf ,

2
1

72431

31
0

+
π

= ; 
 

( )
24737471

72431

31

11111
CRCRCRCR

CCRRR
RR

Q
+μ−++

+

= ; 
( )

24737471

71
0 11111

CRCRCRCR

CRk
+μ−++

μ

= . 

 
9. Симулационно изследване на синтезирания филтър с използване на прог-

рамния продукт MicroCAP – изчертаване на амплитудно-честотната характе-
ристика, определяне на параметрите 0k , Q  и 0f  от снетата амплитудно-честот-
на характеристика. 

Разработени са скриптове на MATLAB [8] за изчисляване на нормализира-
ните и денормализираните стойности на компонентите за НЧФ и ВЧФ при зада-
дена нормирана предавателна функция по напрежение. 

Пример: Проектиране на лентови филтри с ИНУН (от I и II тип), моделира-
ни по схемата на Сален-Кий, със средна честота kHzf 10 =  и нормирана преда-

вателна функция по напрежение ( )
152,0

3
2 ++

=
pp

ppT . Денормализирането по 

честота и по съпротивление се извършва с нормиращо съпротивление 
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Ω= kRN 10 . Резултатите са показани в таблица 2. След това е извършен избор 
на стандартни стойности по скалата E-24, които се използват при симулацията с 
MicroCAP [9] за изчертаване на амплитудно-честотните характеристики (в dB) 
на проектираните филтри. В последната колона са посочени стойностите на ко-
ефициента на усилване 0k  в лентата на пропускане, на полюсния качествен 
фактор Q  и на средната честота 0f  за лентовия филтър, а също и коефициента 
на усилване на ИНУН μ ,след избора на стандартни стойности. 

Таблица 2. Резултати от проектирането на ЛФ с ИНУН с MATLAB 

Тип на 
филтъра 

Нормали-
зирани 

стойности 

Денормализирани 
стойности 

Стандартни
стойности 

(E-24) 
Забележка 

9264,11 =R  
12 =C  

9264,13 =R  
14 =C  

2721,14 =R  
9477,4=μ  

Ω= kR 9224,161  
nFC 15,91552 =  
Ω= kR 9224,163  

nFC 15,91554 =  
Ω= kR 2701,124  

Ω= kR 105  * 
Ω= kR 7664,396  

Ω= kR 161  
nFC 162 =  
Ω= kR 163  

nFC 164 =  
Ω= kR 124  
Ω= kR 105  
Ω= kR 396  

По-големият корен 
на квадратното 
уравнение; 

9000,4=μ , 
kHzf 52,0110 = , 

7684,3=Q , 
077,3110 =k . 

ЛФ I 
8508,41 =R  

12 =C  
8508,43 =R  

14 =C  
2341,04 =R  

5523,14=μ  

Ω= kR 5078,481  
nFC 15,91552 =  
Ω= kR 5078,483  

nFC 15,91554 =  
Ω= kR 2301,44  

Ω= kR 105  * 
Ω= kR 2345,1356  

Ω= kR 471  
nFC 162 =  
Ω= kR 473  

nFC 164 =  
Ω= kR ,344  
Ω= kR 105  
Ω= kR 1306  

По-малкият корен 
на квадратното 
уравнение; 

14=μ , 
Hzf 5369,9890 = , 

0262,5=Q , 
0500,150 =k . 

4628,01 =R  
12 =C  

4628,03 =R  
2544,24 =R  

17 =C  
4738,2=μ  

Ω= kR 461,281  
nFC 15,91552 =  

Ω= kR 461,283  

Ω= kR ,2539244  
Ω= kR 105  * 

Ω= kR ,7383146  
nFC 15,91557 =  

Ω= kR ,281  
nFC 162 =  
Ω= kR ,283  
Ω= kR 244  
Ω= kR 105  
Ω= kR 156  

nFC 167 =  

По-големият корен 
на квадратното 
уравнение; 

5000,2=μ , 
kHzf 028,010 = , 

5089,4=Q , 
3646,130 =k . 

ЛФ II 

5424,21 =R  
12 =C  

5424,23 =R  
4682,04 =R  

Ω= kR 539,2241  
nFC 15,91552 =  

Ω= kR 539,2243  

Ω= kR 4612,84  

Ω= kR 241  
nFC 162 =  
Ω= kR 243  
Ω= kR 2,84  

По-малкият корен 
на квадратното 
уравнение; 
 

2000,7=μ , 
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17 =C  
2762,7=μ  

Ω= kR 105  * 
,6177,626 Ω= kR  

nFC 15,91557 =  

Ω= kR 105  
Ω= kR 626  

nFC 167 =  

kHzf 028,010 = , 
7014,3=Q , 

0149,110 =k . 

Таблица 3. Резултати от изследването на ЛФ с ИНУН с MicroCAP  
ЛФ I 

При използване на по-малките корени 
на системата 

ЛФ II 
При използване на по-големите коре-

ни на системата 
Определяне на средната честота на лентовия филтър 

(Analysis→AC→db(v(OUT)), Peak) 

  
Hzf 344,9840 =  dBT 285,230 =  kHzf 200,10 =  dBT ,690220 =  

Определяне на широчината на лентата на пропускане и на качествения фактор 
на филтъра Go to Y → 30 −Т  (записва се конкретната стойност в появилото се 

прозорче, в случая: 20,528 или 19,690) → натиска се 2 x Left и 2 x Right 

  
Координати на левия маркер (Left): 

Hzf 228,89101 =  dBT 285,2001 =  
Координати на десния маркер (Right): 

kHzf 87,0102 =  dBT 285,2002 =  
Широчина на лентата на пропускане 
на филтъра: 

HzffDeltaB 858,1940102 =−==  
Качествен фактор на филтъра: 

510,5
194,885

228,8910 ===
B
fQ  

Координати на левия маркер (Left): 
Hzf 16,189701 =  dBT ,6901901 =  

Координати на десния маркер (Right): 
kHzf 911,102 =  dBT ,6901902 =  

Широчина на лентата на пропускане 
на филтъра: 

HzffDeltaB ,5312210102 =−==  
Качествен фактор на филтъра: 

817,3
221,531

.10200,1 3
0 ===

B
fQ  

Определяне на коефициента на усилване в лентата на пропускане на филтъра 

110,15101010 1764,120
2853,2

20
0

,0

====
dBT

k  306,13101010 3451,120
2,6902

20
0

,0

====
dBT

k  
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4. ИЗВОДИ 
 

1. В публикацията е описан алгоритъм, заложен в програмен модул, с из-
ползване на MATLAB, създаден за синтез и анализ на лентови активни филтри 
от втори ред с ИНУН, моделирани по схемите на Сален-Кий с един операцио-
нен усилвател. 

2. Изведени са изрази за предавателните функции по напрежение на синте-
зираните филтри посредством теорията на сигналните графи. Представени са и 
получените изрази за средната честота, за коефициента на усилване в лентата 
на пропускане и за полюсния качествен фактор на синтезираните филтри. 

3. Разработеният програмен модул ще послужи и за автоматизиране на про-
цеса на генериране на варианти на задания за курсови задачи по дисциплината 
„3110 Комуникационни вериги”, включена като задължителна в новия учебен 
план на специалността „Комуникационна техника и технологии” за образова-
телно-квалификационна степен „Бакалавър”. 
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