Using Satellite Methods, GNSS ROMPOS In Developing The Control And Survey Network Of LIPOVA Forestry Buildings, U.P.V. BELOTINT, ARAD County

GABRIEL BĂDESCU
Faculty of Mineral Resources and Environment, Department of Mines, North University Baia Mare, str. V. Babes, nr. 62A, Romania, gabrielbadescu@yahoo.com, www.ubm.ro OVIDIU STEFAN
Faculty of Mineral Resources and Environment, Department of Mines, North University Baia Mare, str. V. Babes, nr. 62A, Romania, o.stefan@ymail.com, www.ubm.ro
GHEORGHE MUGUREL RADULESCU
Faculty of Mineral Resources and Environment, Department of Mines, North University Baia Mare, str. V. Babes, nr.62A, Romania, gmtradulescu@yahoo.com, www.ubm.ro

Abstract

The paper presents the determination of new points for the control and survey network based on the points from the existing National Geodesic Network, using satellite measurements and determinations, GNSS. The geodesic network us located on the administrative territory of Belotint, Arad county. The control and survey network of GNSS satellite measurements and determinations was used for measurements in the field of forest cadastre, applying the new ROMPOS technology, partially available at the moment of measurements, only on the GPS segment, but not on the GLONASS segment. Finally, some conclusions are drawn regarding the usage of this new technology in the forest cadastre.

Key-words: - Control network, survey network, GNSS satellite determination, ROMPOS, forest cadastre, geodesic network

1. The Topo-Geodesic Works That Are Verified And Their Location

The objective of this paper is to determine new points for the high-density and survey network, based on the points of the existing National Geodesic Network, through satellite measurements and determinations. In the same time, a survey network was determined, developed in the high-density geodesic grid previously determined. The geodesic network is located in the administrative territory of Belotint, Arad county.

2. The Existing Geodesic Network

The existing geodesic points from the work area used for the determinations by GNNS measurements belong to the State Geodesic Networks and comprise 5 triangulation points, as follows:

No.	Point label
1	IAGONITA (III)
2	NEGRILOT (III)
3	DAMBUL DOMANULUI(IV)
4	FRASINEL(IV)
5	BARZAVA CIMITIR (CEMETERY) (V)

3. The Technical Project For Works Implementation

The technical project, drafted on the $1: 10000$ scale map was finalized after the field recognition of the points of the existing state geodesic network. The 5 points of the geodesic network were spatially determined using satellite methods. 4 points were projected for the high-density grid, labeled as follows: B1, REF1, REF2, REF3, and for the survey network this was not necessary, because the RTK method was used for measurements.

When choosing the location of the points, the following aspects were taken into account:

- the new points should be located near traverses that are easily accessible all year;
- the points should be located near the objectives which are going to be topographically surveyed;
- the physical obstacles, power lines or transformer stations should be avoided near the receptors (elevation angle $>15^{\mathrm{G}}$)
- the conservation of points should be assured for a long time.

4. The Materialization Of The HighDensity Geodesic Grid Points

The materialization of new contour and highdensity points determined using GPS measurements was performed with FENO like boundary marks, according to regulations, accepted by the beneficiary.

5. The Equipment Used For Measurements

The measurements were performed using 4 LEICA SR20 L1 receptors, for the transcomputation polygon and 3 geodesic class L1 L2 GPS GLONAS, RTK LEICA 1230 receptors.

6. Performing Gps Measurements

The GPS measurements were carried on between 30.08.2008-20.10.2008 using the static method with GPS signal processing intervals of 5 seconds and the RTK cinematic methods in sessions of 3-20 periods of 5 seconds. The bases determined by the points where the GPS receptors were stationed have lengths between 20 m and 11 km.

The PDOP values fall withing the optimal limits $2-4$. During measurements, in certain bases the PDOP was larger because of intersection with the measurement period of other receptors, but for short time ($<5 \mathrm{~min}$), or because of the bad configuration of satellites, and therefore these bases were removed from processing. The number of observed satellites varied between 4 and 11 .

7. The Computation And Compensation Of Gps Measurements

GPS measurement data processing, the computation and compensation of the highdensity geodesic grid were performed using LEICA Geo Office 6.0 L1 L2 GPS GLONASS software.

Processing Summary
 10.09_belotint2_postprocesare

(2) Project Information (8)

Project name:
Date created:
Time zone:
Coordinate system name:
Application software:
Start date and time:
End date and time:
Manually occupied points:
Processing kernel:
Processed:
(8) Processing Parameters
10.09_belotint2_postprocesare

11/07/2008 17:49:56
2h 00 '
belotint
LEICA Geo Office 6.0
10/09/2008 11:44:15
10/09/2008 16:59:46
1
PSI-Pro 2.0
11/07/2008 19:56:50

Parameters	Selected
Cut-off angle:	15°
Ephemeris type:	Broadcast
Solution type:	Automatic
GNSS type:	GPS
Frequency:	Automatic
Fix ambiguities up to:	80 km

Min. duration for float solution (static):			5' $00{ }^{\prime \prime}$
Sampling rate:			Use all
Tropospheric model:			Hopfield
Ionospheric model:			Automatic
Use stochastic modelling:			Yes
Min. distance:			8 km
Ionospheric activity: 8 Baseline Overview			Automatic
FAGE - ref2	Reference: FAGE	Rover: ref2	
Receiver type / S/N:	SR530 / 506850302	GX1230GG /	469264
Antenna type / S/N:	LEIAT504 LEIS / -	AX1202 GG	Tripod / -
Antenna height:	0.0000 m	1.3460 m	
Coordinates:			
Easting:	280960.6990 m	266875.1717	
Northing:	487749.9581 m	512204.4025	
Ortho. Hgt:	172.5644 m	271.5630 m	
Solution type:	Phase: all fix		
GNSS type:	GPS		
Frequency:	IonoFree (L3)		
Ambiguity:	Yes		
Time span:	10/09/2008 11:44:15-10/09/2008 16:59:46		
Duration:	5h 15' 31"		

Quality:	Sd. E: 0.0018 m Posn. Qlty: 0.0042 m	Sd. N: 0.0037 m Sd. Slope: 0.0022 m	Sd. Hgt: 0.0012 m		
Baseline vector:	dX: -10244.2505 m				dY: -20311.8625 m
:---					
Slope: 28220.3943 m	\quad dZ: 16699.5279 m				

DOPs (min-max): GDOP: 1.7-24.0
PDOP: 1.5-21.7
HDOP: 0.9-19.5 VDOP: 1.2-9.5

The precision imposed on processing this data is $5 \mathrm{~cm}+/-2 \mathrm{ppm}$. The points from the highdensity and survey network were determined based on at least three vectors. After processing the data using the LEICA Geo Office 6.0 software, the following standard deviation values of bases determination were obtained:

- $d x=4,3 \mathrm{~mm}, d y=2,7 \mathrm{~mm}$, for the high-density network, and $d x=1 \mathrm{~mm} d y=1 \mathrm{~mm}$ for the survey network.

The trans-computation of coordinates from the WGS '84 datum into the Stereographic'70
datum was performed using the LEICA Geo Office 6.0 (Datum/Map) software.

The computation of transformation coefficients was performed based on the common points chosen from the state geodesic network. This option was chosen because a good general precision of coordinates is obtained after transcomputation. This transformation yields a file with geocentric coordinates $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ on the Krasovski ellipsoid.

The parameters of the transformation are:

Transformation details

Height mode:
Orthometric

3D-Helmert transformation

Number of common points:

5

Sigma a priori:
1.0000

Sigma a posteriori:
Transformation model:
0.0432

Bursa-Wolf
No. Parameter
1 Shift dX
2 Shift dY

3 Shift dZ
$4 \quad$ Rotation about X
5 Rotation about Y

6 Rotation about Z
$7 \quad$ Scale

Value
-7.8016 m
-29.6288 m
156.0217 m
1.84569 "
-2.15343 "
-5.91821 "
$-5.2441 \mathrm{ppm}$
rms
31.3064 m
34.9499 m
31.4082 m
1.04721 "
1.14378 "
0.96991 "
3.9472 ppm

After the spatial transformation the reverse process of trans-computation begins. Thus, from geocentric coordinates $==>$ geographic coordinates $==>$ stereographic'70 coordinates,
both for the points from the state geodesic network and the points from the high-density and survey network.

Coordinates Overview

Project : final1

User Name	Trimble Employee	Date \& Time Zone	16:43:59 8/3/2009 stereo70
Coordinate System	Stereo70	Geoid Model	
Project Datum	S-42 (Hungary)		
Coordinate Units	Meter		
Distance Units	Meter		
Height Units	Meter		
Angle Units	Degrees		

	Number of Points 6 Point Information					
Point Name	Point Code	Point Info.	Fix	Adjusted	Local	Control
$\underline{B 01}$	B01		No	Yes	No	No
$\underline{B A R Z}$	BARZ		No	Yes	No	No
$\underline{D O M A N}$	DOMAN		No	Yes	No	No
$\underline{\text { FRAS }}$	FRAS		No	Yes	No	No
$\underline{\text { IAGO }}$	IAGO		Yes	Yes	No	Yes
$\underline{\text { NEG }}$	NEG		No	Yes	No	No

WGS84-Cartesian Geocentric Coordinates			
Point Name	X	Y	Z
B01	4112344.7869 m	1657408.4673m	4570155.5114 m
BARZ	4107512.9054 m	1658444.5527 m	4573911.4886 m
DOMAN	4113918.9177 m	1658961.4429m	4568117.1837m
FRAS	4115677.9465 m	1656726.5052 m	4567308.2208m
IAGO	4113653.8616 m	1649848.2703m	4571599.2673m
NEG	4112324.0882 m	1657407.1617m	4570175.7195 m
WGS84-Geographical Coordinates			
Point Name	Latitude	Longitude	Height
B01	N 46 ${ }^{\circ} 03^{\prime} 36.24506^{\prime \prime}$	E 21 ${ }^{\circ} 57{ }^{\prime} 03.72635{ }^{\prime \prime}$	378.4047 m
BARZ	N 46 ${ }^{\circ} 06^{\prime} 36.11436^{\prime \prime}$	E 21 ${ }^{\circ} 59^{\prime} 12.57881^{\prime \prime}$	244.9441m
DOMAN	N 460 02' $02.84974{ }^{\prime \prime}$	E $21^{\circ} 57{ }^{\prime} 43.34227^{\prime \prime}$	327.3163m
FRAS	N 46 ${ }^{\circ} 01^{\prime} 26.09755^{\prime \prime}$	E 21 ${ }^{\circ} 55^{\prime} 36.39189^{\prime \prime}$	298.0277 m
IAGO	N 46 ${ }^{\circ} 04^{\prime} 46.13348^{\prime \prime}$	E 21 ${ }^{\circ} 51^{\prime} 14.62253 "$	304.2483m
NEG	N 46 ${ }^{\circ} 03^{\prime} 37.15827^{\prime \prime}$	E 21 ${ }^{\circ} 57{ }^{\prime} 04.02997{ }^{\prime \prime}$	379.2957 m

Point Name	Northing	Easting	Height	Elevation
B01	511224.5325 m	264282.5889 m	337.8180 m	337.8180 m
BARZ	516669.2247 m	267260.6734 m	204.4426 m	204.4426m
DOMAN	508310.1648 m	265023.5407 m	286.7293 m	286.7293 m
FRAS	507280.9051 m	262251.5006 m	257.3817 m	257.3817 m
IAGO	513672.9120 m	256868.9890 m	263.5300 m	263.5300 m
NEG	511252.4609 m	264290.1906 m	338.7093 m	338.7093 m
National/Local Grid Control Coordinates				
Point Name			Easting	Elevation
IAGO	513672		.9890m	263.5300 m

8. The Precision Of Determinations After Measurements Computation And Compensation

Based on the comparison of stereographic 1970 coordinates of triangulation points and the coordinates of the same points obtained as result of GPS determinations, it is shown that the differences between the coordinates of the points determined by the method of triangulation and of the points determined by the GPS method are smaller both on X and Y .The differences obtained between the coordinates of the state geodesic network and the coordinates determined by GPS measurements in case of spatial transformation are as follows:

No	Point label	$\mathrm{dX}[\mathrm{m}]$	$\mathrm{dY}[\mathrm{m}]$
1	IAGONITA (III)	-0.001	-0.001
2	NEGRILOT (III)	0.010	-0.020
3	DAMBUL DOMANULUI(IV)	-0.033	0.033
4	FRASINEL(IV)	-0.017	-0.020
5	BARZAVA CIMITIR (CEMETERY)(V)	-0.070	0.042

9. Conclusions

From technical geodesic-topographic point of view, the precisions imposed by the A.N.C.P.I. approved valid technical norms have been ensured. The points from the high-density and survey network determined using satellite methods can be used within this work, as well as during other topographic measurements performed in the area.

References.

[1]. Bădescu G., Unele contribuții la utilizarea tehnologiei GPS în ridicările cadastrale - Teza de doctorat, 2005;
[2]. Neuner J., Sisteme de poziționare globală Editura Matrix Rom, 2000;
[3]. Georgi M, Keranka V, GNSS and Gravity Projects in Europe and Bulgarian Participation FIG Working Week 2003 Paris, France, April 1317, 2003;
[4]. Rus T., Aplicații ale utilizării observațiilor GPS în mod kinematic, Simpozionul Național: Cadastru Tehnologii moderne de determinare innegistrare şi evidență Bucureşti, 14-15 noiembrie 2002.
[5.] Neuner J., Săvulescu C., Moldoveanu C., Studiu privind posibilitatea de determinare a coordonatelor în proiecția stereografică 1970 utilizând tehnologia GPS, Simpozionul Național: Cadastru - Tehnologii moderne de determinare, inregistrare şi evidență, Bucureşti 14-15 noiembrie 2002;
[6]. Stefan O., Cadastre de specialitate, Editura Risoprint, Cluj Napoca, 2009
[7] Neuner Johan, Onose Dumitru, Coşarcă Constantin. - Precizia de poziționare în rețelele de stații permanente de densitate redusă, Simpozionul Național : Cadastru - Tehnologii moderne de determinare, înregistrare şi evidență.
[8] Remoldi B. W, Using the Global Positioning System (GPS) phase observable for relative geodesy: modeling processing and resultsUniversity of Texas-Austin-1984
[9] Rothacher M., Mervart L.Processing and Analysing GPS Measurement-Reports on Geodesy, University of Technology-Warszawa1995

