
Microcomputers in Process Control

VLADIMÍR VAŠEK, PETR DOSTÁLEK, JAN DOLINAY, DAGMAR JANÁČOVÁ,
KAREL KOLOMAZNÍK

Department of Automatic Control
Faculty of Applied Informatics, Tomas Bata University in Zlin

Mostní 5139, 760 01 Zlín
CZECH REPUBLIC

vasek@fai.utb.cz, http://web.fai.utb.cz

Abstract: - This work deals with overview of the microcontrollers which are usable for the controllers based on the
modern control algorithms. In this paper are described necessities of the self tuning controllers. In our applications, we
are focused to the microcontrollers Motorola and National Semiconductor that are commonly used for process control.
Microcontrollers were divided into two categories: 8-bit and 16-bit. In the part of the work dedicated to 8-bit
microcontrollers, the properties of M68HC08 (Motorola) and COP8 (National Semiconductor) are described. The part,
which deals with 16-bit microcontrollers, contains description of M68HC16 (Motorola) and CR16 (National
Semiconductor). Finally has been evaluated CPU performance of selected microcontrollers in clock cycles needed for
factorial computation.

Key-Words: - Microcontroller, CPU performance, 68HC08, 68HC12, COP8, CR16, adaptive - self tuning control.

1 Introduction
There is wide choice of computer systems which can
be utilized for process control and automation of the
technological processes ranging from powerful
industrial PCs to cheaper microcomputers and
programmable logic controllers. The new generation
of 8-bit and 16-bit microcomputers is so powerful, that
it is possible to use them for most industrial
applications in monitoring and control systems. They
can be advantageously used in distributed systems to
solve partial control loops. In this contribution a
program library focused on the monitoring and control
systems will be described. The library was written for
Motorola (Freescale) 68HC11 which is representative
of older microcontroller generation. That is why
means for using the program modules on newer
microcomputers were developed. This work presents
our experience with implementing standard and
modern control methods on microcontrollers used in
chromium recycling technology and possibilities of
progress with new microcontrollers.

2 Program Library
There is necessary to solve harmony between
requirements of the modern control algorithms and
possibilities of the hardware and software properties
microcontrollers.

2.1 Overview of the library
Although higher programming languages (such as C)
are generally preferred today, it is sometimes useful or

necessary to program in assembler, especially with
microcontrollers. The disadvantage of assembler when
compared to higher programming languages is
troublesome portability of programs and also low
productivity of labor. One of the ways of making
assembler programming more efficient is to use a
library of pre-created modules or subroutines so that
the developer can just bring together existing modules
instead of writing a new program from scratch.
With the help of this library developer should be able
to take required modules and put them together to
form a new application with minimal changes and
little new code written. There have been several
demands determined for the design of the modules for
the library, such as easy application of each module,
universality and full cooperation with real-time
operating system.
The library consists of different modules which may
be divided into three main categories:

• Input –output modules
• Simple discrete controllers (three-state

controller, PSD controller)
• Adaptive control modules

We will describe these modules in the following
sections.

2.2 Input/Output modules
These modules can be considered as independent
routines, which realize reading or writing on the

Proceedings of the 6th WSEAS International Conference on ENGINEERING EDUCATION

ISSN: 1790-2769 226 ISBN: 978-960-474-100-7

microcomputer’s ports. Library contains modules for
handling digital input/output ports with possibility to
mask unused inputs, negate selected inputs/outputs and
others. A/D input module can process up to eight
channels of analogue input signals using A/D
converter integrated on the microcontroller.
The modules are provided as assembler source code
(.ASM) files, which contain not only the code of the
module but also definitions of required constants and
masks (e.g. port addresses or unused-bit masks).

2.3 Simple discrete controllers
From the aspect of the program logic these controllers
appear as independent subroutines called with jump-
to-subroutine (JSR) instruction. However, these
modules rely on some global variables such as array of
measured output signals from the system etc. Required
variables are included in the library and it is assumed
that they will be used when creating a new application.
Even when incorporating controllers into old
applications there should be no problems as virtually
every application contains desired data, only with
different names. In such a case it is sufficient to set the
identifiers required by the module to the addresses of
appropriate variables in given application.

Three-state controller
The output of this controller can be in one of three
working states such as heating, cooling and off.
Additionally, it is possible to define dead zone and a
zone where penalty is applied. The module requires
364 B of memory and run time is approximately 7800
cycles in worst case.

PSD controller
The PSD controller module exists in two variants –
beside the standard version there is also module which
implements Takahashi’s modification of PSD
algorithm. Total size of the module is 226 B and
execution takes 3200 cycles.

General discrete linear controller
This controller computes the value of actuating signal
u(k) according to the following formula:

 () () () ()
() () ()5...21

5...1

521

510

−−−−−−−
−++−+=

kurkurkur
keqkeqkeqku (1)

The module requires about 379 Bytes of memory and
run time is approximately 8600 cycles.

2.4 Adaptive control modules
Majority of real processes have stochastic character
and their parameters can be considered constant only
with some degree of incorrectness. Controllers with
fixed parameters cannot respond to changes in the
controlled-plant properties and the quality of control
degrades. For the above reason adaptive control
systems are used to improve the quality of control for
hard-to-control systems.
There are several types of adaptive systems such as
heuristic adaptive controllers, model reference
adaptive systems or self tuning controllers. For our
program library the method of self tuning controllers
was used. These controllers are based on continuous
estimation of controlled plant characteristics and their
gradual refinement. Based on this knowledge an
optimal controller is then proposed. This procedure
makes it possible to react to changes in the controlled
plant parameters, improve the regulation process when
disturbances are present.
Basic part of a self tuning controller is the block that
computes parameters of the control law (parameters of
the controller). Generally it is possible to use the same
methods for self-tuning controller as for synthesis of
conventional controller. The only limiting factor can
be the computing power demanded for the algorithm.
For our library of program modules two well tried and
in conventional controllers widely used methods were
chosen – required model method and the pole
placement.

Required model method
This method was developed for tuning of conventional
controllers [1]. It allows tuning discrete or analog
controller so that defined overshoot is achieved for
stepwise reference or disturbance on the output of the
plant. Compared to well-known Ziegler-Nichols
method this method is more accurate and universal
while the same simplicity is preserved. The transfer
function GR of a controller, which will ensure desired
transfer function Gw of the feedback system

 Gw =
W
Y

 (2)

Is given as follows

)G1(G
GG

ws

w
R −
= (3)

This equation is based on a very general method of
required model method, which is also known as
compensating method. We suppose system with

Proceedings of the 6th WSEAS International Conference on ENGINEERING EDUCATION

ISSN: 1790-2769 227 ISBN: 978-960-474-100-7

discrete controller, where the transfer function is as
follows:

 Gw(z) = d
d

od

od z
Tzkz

Tk −
−+−1

 (4)

 d =
T
Td (5)

where Kod is the gain of open-loop system with
discrete controller, T – sample period, d – discrete
transfer delay. Using the procedure given in [1] we
will obtain the transfer function of the controller:

 GR(z) = d

S

z
zGz

aT −

−)()1(
 (6)

Pole placement method
Controller based on the placement of the poles of a
feedback system is designed so that it stabilizes closed
feedback loop whereas the characteristic polynomial
has pre-defined poles.
Besides the stability it is quite easy to achieve required
course of the output signal (for example maximal
overshoot, damping etc.). For FB system the synthesis
consists in solving the Diophantine equation

 AFP + BQ = D (2.7)

Where F is the denominator of the transfer function of
reference signal, Q

FP
 is the transfer function of the

controller and A
B

 is the transfer function of the plant to

be identified. D is system characteristic polynomial:

 D(z-1) = ∑
=

−+
dn

i

i
i zd

1

1 , nd ≤ 4 , nd ≤ 4 (2.8)

Parameters of the program modules
Besides the two synthesis modules the program library
also contains module for recursive identification which
allows calculating controlled plant parameters in real
time. The recursive identification module employs
recursive least squares algorithm with adaptive
forgetting, which considerably limits the possibility of
short-term instability of the system in the course of
adaptive control. The module allows identification of
first to third order Z-models.
The total size of the identification module including
data is about 2.5 kB and one step of the identification
takes about 110000 cycles (less than 100 ms on HC11

with 2 MHz clock rate).
Module for controller synthesis based on Required-
model method needs only about 200 Bytes of memory
and 11000 cycles.
The module for controller synthesis based on Pole
Placement uses 1222 Bytes of memory and approx.
98000 CPU cycles to compute the controller
parameters.

3. Possibility of library utilization on
M68HC08 and M68HC12 MCUs
Although microcontrollers 68HC08 and 68HC11 are
based on the same design as 8-bit microprocessor
M6800, they are not object code compatible. This
incompatibility is caused by differences in central
processing unit. Microcontroller 68HC08 has only one
8-bit accumulator A (68HC11 has two accumulators A
and B with possibility to merge them into one 16 bit
accumulator D) and two 8-bit registers H and X, which
it is possible to merge into one 16-bit index register
H:X (68HC11 has two 16-bit index registers IX and
IY). Program counter PC and stack pointer SP are
equivalent on both microcomputers, quite difference is
in location of flags in condition code register [4], [5].
Because program library and other software equipment
was created in assembly language, i.e. in language
specific for a given microcontroller, it is necessary to
rewrite all programs for new microcontroller or find
new way how to use existing software equipment. One
of the possible solutions is usage of software converter
that on the instruction level converts programs from
68HC11 to 68HC08 assembly language.

Fig. 1 Freescale 8-bit microcontrollers and their
software compatibility

On the other hand core of the microcontroller 68HC12
is the CPU12, a high-speed 16-bit version of the
68HC11 architecture, which is projected to keep the
compatibility with the 68HC11 at the level of the

68HC12 68HC12

6800 6800

68HC1168HC1168HC0568HC05

68HC0868HC08

68HC1668HC16Software compatibility
Software conversion

16-bit microcontrollers

8-bit microcontrollers

Proceedings of the 6th WSEAS International Conference on ENGINEERING EDUCATION

ISSN: 1790-2769 228 ISBN: 978-960-474-100-7

source code [3], [4]. 68HC12 fully supports all the
internal registers, instructions, addressing modes and
operating modes of the 68HC11. So it is possible to
utilize developed program library on 68HC12 after
minor program adaptation and recompilation.

3.1 Freescale 8-bit microcontrollers
Freescale currently produces 3 basic families of 8-bit
microcontrollers – HC05, HC08 and HC11. Although
these microcontrollers are based on the same design as
8-bit microprocessor 6800, they are not object code
compatible, because their central processing units pass
some optimizations. With Freescale 68HC11 are
software compatible only 16-bit microcontrollers
68HC12 and 68HC16, because they were designed as
a high-speed evolution of the 68HC11 architecture.
Microcontroller 68HC08 is fully upward object
compatible with 68HC05.

Fig. 2 Register set comparison

Table 3.1.1 compares instruction set complexity of
68HC08 and 68HC11 microcontrollers. Major
differences can be seen in arithmetic and logic
instructions which cause major problems with
software. Programmers’ model of the both
microcontrollers is depicted in the figure 3.1.1.

Instruction type 68HC11 68HC08
Arithmetic 30 12
Logic 38 13
Load and store 22 10
Branch operations 25 30
Initial state presetting 11 8
Stack manipulations 8 6
CPU control 5 3

Tab. 1 Instruction set complexity comparison

Freescale 68HC08 microcontrollers
The M68HC08 is new Freescale’s 8-bit industry
standard flash-based microcontroller with Von-
Neumann architecture. Central processor unit is fully
upward compatible with the 68HC05 family. Their

high performance architecture is optimized for C
language compilers. On the chip are integrated all
basic peripherals such as:

• Timer interface module with input capture and
output compare functions

• Serial communication interface (SCI)
• Serial peripheral interface (SPI)
• CAN module
• 8-bit A/D converter with analog multiplexer
• On-chip FLASH memory with in-circuit

programming capability
• Byte-erasable EEPROM memory
• Watchdog system
• Clock monitor and low voltage inhibit

functions [2], [3].

Freescale 68HC11 microcontrollers
The MC68HC11 are an advanced 8-bit
microcontrollers with highly sophisticated, on chip
peripheral capabilities. The fully static design allows
operation at frequencies down to dc, further reducing
power consumption. Central processor unit is fully
upward compatible with the microprocessors M6800
and M6801. On the chip are integrated following
peripherals:

• Byte Erasable EEPROM Memory
• Expanded Bus Memory Interfaces
• Serial Peripheral Interface (SPI)
• Serial Communications Interface (SCI)
• 8-bit A/D converter with analog multiplexer
• Timer interface module with input capture and

output compare functions
• Watchdog system
• Clock monitor and low voltage inhibit

functions [4].

3.2 Software conversion process
Conversion is process of instruction set
transformation, at which individual instructions of
M68HC11 microcontroller are replaced by instructions
of M68HC08 microcontroller with condition, that new
block of instructions must fully functionally substitute
original instruction. The aim is to create software tool
that will perform transformation of source code of
M68HC11 in the format of compiler AS11 to source
code of M68HC08 in the format of compiler
CASM08Z, which is part of integrated development
environment WinIDE.
The aim of the software tool for program conversion is
to transform assembly language source files of

A B
D
I
X
IY
SP

PC
CCR

68HC08 68HC08 68HC11 68HC11

SP
PC

H X

CCR

A

Proceedings of the 6th WSEAS International Conference on ENGINEERING EDUCATION

ISSN: 1790-2769 229 ISBN: 978-960-474-100-7

M68HC11 in the format of compiler AS11 to the
source files, which can be assembled using the
compiler CASM08Z and subsequently executed on
M68HC08 microcontrollers with the same results.

Description of operation
Converter reads source file line by line. Every line is
analyzed and subsequently partitioned into label,
instruction, operand and commentary. If instruction
has an operand, converter must determine according to
the format of the operand the address mode. Now
converter knows all parameters of instruction and
starts to search it in an instruction dictionary. If
instruction is found, the converter begins to generate
its replacement pursuant to the data from the
instruction dictionary. Otherwise the converter stops
with listing that reports line number, where the error
was found. After generating entire alternate code that
corresponds to one instruction, converter starts to
process next program line. Whole cycle is repeated,
until the end of file is identified.
In the conversion stage individual instructions of
M68HC11 are converted to the macros or subroutines,
which completely substitute their function on
M68HC08. Optimization stage on the basis of the
converted code analysis performs virtual registers
usage a branch optimizations. Principle of the
converter operation is obvious from figure 3.2.1.

Fig. 3 Principle of operation

Program description
On the basis of instruction set analysis of both
microcontrollers software tool WinHC11 was created.
In the figure 3.2.2 is main window of the software
converter program, which appears after startup. During
initialization process default configuration is
automatically loaded and program is ready for
operation. Conversion process can be initiated, after
selection of source (supported are files in the form of
AS11 compiler) and target file, by pressing of
“Convert Now“ button. Actual processed line, status

and error messages during software conversion
process are displayed in the status window. Source and
converted file can be viewed by pressing buttons
“View Source” and “View converted file”.

Fig. 4 Software converter – main window

3.3 Experimental verification
Due to high complexity of M68HC11 instruction set
there is necessary to thoroughly test correct function of
instruction replacements and software converter as
well. Verification was performed in two main stages.
First stage was focused on correct function of
individual instruction replacements. Finally were
converted larger programs that produce results that can
be easily verified. For this purpose are ideal programs
working with math operations. After all tests passed
program modules for automatic control for Freescale
68HC11 microcontrollers was converted.
Number of machine cycles necessary for processing
appropriate services and correct results were evaluated
using the simulator ICS08Z from P&E Microcomputer
Systems. Relative speed in table 3.3.1 gives
comparison with original speed on M68HC11.

68HC08 at 8MHz bus clock
Service NT08 t08 [µs] Rel. speed [%]

Ident 4157000 519625 +38,4
PSD1 296000 37000 +40,5
PSD2 304200 38025 +40,7

Poleplac 245300 30662,5 +44,8
Robust 395400 49425 +39,2
Invdyn 20500 2562,5 +42,0
Polreg 482800 60350 +44,2

Obecreg 627000 78375 +38,4
Tab. 2 Instruction set complexity comparison

Description of symbols:

• NT11 – machine cycles count on M68HC11
• NT08 – machine cycles count on M68HC08

HC11

Source code

HC08

Source code

Conversion
stage

Optimization
stage

Instruction
dictionary

Optimization
data

Software converter

Proceedings of the 6th WSEAS International Conference on ENGINEERING EDUCATION

ISSN: 1790-2769 230 ISBN: 978-960-474-100-7

• t11 – processing time on M68HC11
• t08 – processing time on M68HC08

4. Verification of the Control modules
To verify functionality of the library several
experimental programs were created and tested on real
system in laboratory for recycling chromium from
tannery waste. The experimental programs included
program for recursive process identification and two
adaptive controllers: one based on pole placement and
one based on required model method. The result of
experiments with these programs proved that the
library modules are working properly. The following
figures show the results. Figure 4.1 depicts the
changes of the parameters of the controlled plant as
obtained by the recursive identification module with
model of 2nd order system.

-2

0

2

4

6

8

10

0 50 100 150 200 250

Step of identification

a1
a2
b1
b2
u

Fig. 5 Identified parameters of the controlled plant.

On x-axis is number of steps (sample periods).

In the figure 4.2 result of the adaptive controller
module based on required model method can be seen.
Figure 4.3 shows the result of the second adaptive
controller module, which uses pole placement
synthesis.

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500

t [s]

y
[°

C
],

u
[%

]

Fig. 6 Control with adaptive controller with required

method synthesis, T = 6 s, Tw = 27 s.

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000

t [s]

y
[°

C
],

u
[%

]

y
w
u

Fig. 7 Control with adaptive controller with pole

placement synthesis, T=6 s, poles d1 = -0,5; d2 = -0,2.

5. Conclusion
To help with developing applications of Freescale
68HC11 microcontroller a program library has been
created. Modules cover the area of automatic control
from basic input/outputs through discrete controllers to
adaptive control. To verify the functionality of the
library several applications were assembled and used
for controlling a real system and proved to be
functional. Also methodology has been developed to
convert program modules made for the HC11
microcomputers to a new hardware platform
represented by the modern families of HC08 and
HC12 microcomputers. A conversion programs has
been compiled and proved for formal adaptations of
the source texts.
Acknowledgement
This work was supported by research project MSM
7088352102. This support is very gratefully
acknowledged.

References:
[1] M. VITECKOVA, Controller tuning with required

model method. Technical University in Ostrava,
2000.

[2] Freescale Semiconductor. CPU08 Central
Processor Unit Reference Manual., 2001.
Available from WWW: <www.freescale.com>

[3] Freescale Semiconductor. HCS08 Family
Reference Manual, Rev.1., 2003. Available from
WWW: <www.freescale.com>

[4] Motorola. MC68HC11A8 HCMOS single-chip
Microcontroller, 1996. Available from WWW:
<www.freescale.com>

[5] Motorola. HC11 Reference Manual, Motorola
M68HC11RM/AD, 2000. Available from WWW:
<www.freescale.com>

Proceedings of the 6th WSEAS International Conference on ENGINEERING EDUCATION

ISSN: 1790-2769 231 ISBN: 978-960-474-100-7

