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Abstract: - This paper presents the predictability problem in a real-time expert control system. It is a special 
possibilistic expert system (FESPC), developed in order to focus on fuzzy knowledge. We are not dealing high 
with level reasoning methods, because we think that real-time problems can only be solved by rather low-level 
reasoning. When humans engage in problem solving, the qualitative aspects of knowledge are hierarchically 
organized to provide concept association and reasoning, based on fuzzy logic inference. Most of the overall 
run-time of fuzzy expert systems is used in the match phase. To achieve a fast reasoning the number of fuzzy 
set operations must be reduced. For this, we use a fuzzy compiled structure of knowledge, like Rete, because it 
is required for real-time responses. Solving the match-time predictability problem would allow us to 
built much more powerful reasoning techniques. 
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1 Introduction  
Expert systems were introduced as an intelligent tool 
for diagnosis and it is now widely used in 
classification and control tasks in a variety of human 
activity fields. Fuzzy logic is an attempt to capture 
valid reasoning patterns about uncertainty.  
In addition to modelling the gradual nature of 
properties, fuzzy sets can be used to represent 
incomplete states of knowledge. In general, a more 
complex model may provide the capability to obtain 
a better representation of a system and may facilitate 
design, but it may not lend itself to straightforward 
analysis. If a simpler model is used, one may ignore 
some of the dynamical behaviour of the plant 
(problem domain) and be able to get more analytical 
results, but such results may only be valid in an 
approximate way for the real system. There will be 
different analysis techniques that are appropriate for 
different models (conventional, discrete event 
models, distributed architectures etc.). 
The aim of this paper is to present the predictability 
problem in a real-time expert control system. It is a 
special possibilistic expert system, developed in 
order to focus on fuzzy knowledge. In this approach 
we are not dealing high with level reasoning 
methods, because we think that real-time problems 
can only be solved by rather low-level reasoning. 
Section 2 presents the reasoning algorithm of fuzzy 
compiled rules and in Section 3 the main properties 
of  FESPC (a Fuzzy Expert System based on the use 
of the Possibility theory for expert Control) are 
stated and the analogy between expert and classical 
control systems and a qualitative analysis of 

possibilistic expert control systems. Section 4 makes 
concluding remarks. 
 
 
2 The fast reasoning of fuzzy 
   compiled rules 
The fuzzy logic inference plays an important role in 
human intelligent activities. When humans engage in 
make decisions, the approximate, qualitative aspects 
of knowledge are hierarchically organized to provide 
concept association and reasoning. By using a 
compiled structure of a fuzzy rule-base, the 
reasoning process is efficiently and fast performed. 
All works related to decision-making under 
fuzziness stem from Bellman and Zadeh [1] 
framework. Its basic elements are: the fuzzy goal FG 
in X, the fuzzy constraints FC in X and the fuzzy 
decision FD in X; X is a (non-fuzzy) space of 
decision (alternatives). Before we describe how to 
improve control, we must describe what it means to 
improve; in other words, we must chose a 
characteristic function f that will describe to what 
extent a control or a decision is good. It may be 
time, it may be cost, it may be fuel consumption. 
     The general decision-making problem 
formulation: given a (crisp) function f : X → R and a 
fuzzy set FC ⊆ X, to find x ∈ X for which 

x FC
f (x) max

∈
→ . What is given can be easily 

formalized. By a maximization problem under fuzzy 
constraints FC we mean a pair (f, FC), where f is a 
(crisp) function from a set X into the set R of all real 
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numbers, and FC ⊆ X is a fuzzy subset of X. 
Generally speaking, there are two possibilities here: 
a) In decision making, what we want is some help 
for a decision maker. Therefore, we want the 
computer to produce several possibly optimal 
solutions, with the corresponding degree of 
possibility optimal. In fuzzy terms, we want a 
membership function μFD(X) that describes an 
optimal solution; b) In control, we want an 
automated device that controls without asking a 
human operator every time; in this case, we would 
prefer a number x. Notice that if f: X → R is a 
conventional objective (performance) function, then 

FG
x

(x) f (x) / supf (x)μ =  

is a plausible choice provided that ; 
x

0 supf (x)≠ < ∞

so, the fuzzy decision-making framework considered 
may therefore be viewed as a generalization of the 
conventional one. We wish to satisfy FC and attain 
FG which leads to fuzzy decision μFD(X)= μFC(X) ∧ 
μFG(X) which yields the "goodness" of an x∈X as a 
solution to the decision-making problem considered 
from 1 for definitely perfect to 0 for definitely 
unacceptable, through all intermediate values. The 
"∧" (minimum) operation is commonly used. It is by 
no means the only choice, and may be replaced any 
t-norm or am suitable operation. For an optimal 
(non-fuzzy) solution to this problem, an x* ∈ X such 
that 
 

FD FD FC FG
x X x X

(x*) sup (x) sup( (x) (x))
∈ ∈

μ = μ = μ ∧ μ  

 
is a natural (but not the only possible) choice. In the 
general setting assumed here we have a deterministic 
system under control, whose dynamics is described 
by a state transition equation 
  

xt+1 = f(xt, ut), t=0.1,…, 
 
where xt, xt+1 ∈X = {x} = {s1,…,sn} are the states at 
time (control stage) t and t+1, respectively, and 
ut∈U = {u} = {u1,…,um} is the control (input) at t; X 
and U are assumed finite.  
 
     At each t, ut is subjected to the fuzzy constraints 

t(ut) and a fuzzy goal t+1(xt+1) is imposed on 
xt+1. The performance of the multistage decision -
making (control) process is evaluated by the fuzzy 
decision which is assumed to be a decomposable 
fuzzy set. It may readily be seen that this general 
formulation max be viewed as a starting point for 
numerous extensions (our aim is the conditional 

optimization problem in terms of compiled fuzzy if-
then rules). 

FCμ FGμ

 
    An important application of the fuzzy logic 
inference refers to the problem of possibilistic and 
temporal reasoning in real-time fuzzy expert systems 
[2, 4, 6].  
 
     Let s0∈U denote the unknown current state of a 
process under consideration. U may be viewed as 
the Cartesian product of domains U(i), attached to 
attributes P(i) that are chosen to characterize s0. We 
suppose that s0 is a n-tuple (s(1),0,...,s(n),0) of attribute 
values s(i),0∈U(i), i=1,...,n. The definition and 
application of fuzzy expert systems consists of four 
phases, which can be distinguished conceptually as 
follows: i) In the first phase the knowledge 
acquisition which leads to appointing the attributes 
P(1),...,P(n), n∈N and their domains U(1),...,U(n). 
Fixing the universe U = Π(U(i))i∈Nn, Nn ⊂ N provides 
the representation structure for the expert knowledge 
and forms the set of all states that are a priori 
possible; ii) In the second phase rules are formulated 
that express general dependencies between the 
domains of the involved attributes P(1),...,P(n). The 
single rule Rj, j=1,...,m, m∈N, do not concern all 
attributes normally, but only a small number P(i), 
i∈Mj, which are identified by an index set Mj ⊆ Nn 
of low cardinality.  
 
     The matching window is either a point, or a 
rectangle, depending on whether the matched fuzzy 
proposition holds at a time point or in a time 
interval. First, we should determine the time 
domains of variables in the database, or in other 
words, determine the size of the matching window 
and its position, by giving priority to the temporal 
matching. In the case that the event described by a 
fuzzy fact has appeared or is appearing, we can 
continue to perform the numeric matching. The 
application of the fuzzy formulation is advantageous 
in cases when small violations of specific constraints 
may be tolerable for the decision-maker with the 
goal to achieve a more reasonable objective.  
 
    Therefore, there exist some unique problems in 
the fuzzy reasoning procedure: the successful 
pattern-matching of a fuzzy rule not only requires 
that all the fuzzy propositions in the rule’s premise 
should match the data in the database in a fuzzy 
sense, but also requires that the temporal relations 
among these fuzzy propositions should match the 
temporal relations implicitly formed by the 
corresponding dynamic situations in the database in 
a fuzzy sense.  
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     A model associated with a possibilistic expert 
system and which is also based on a temporal 
reasoning should meet the following requirements, 
as outlined in the following algorithm: 
 
Context    
- A fuzzy compiled rule base 
- Fuzzy database with fuzzy temporal relations 
  1. Find a time range associated with the time 
variable X(i), i= 1,...,n from the database according 
to the fuzzy descriptor DT, where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ ∫∫

TT t
t

t
tT )(,)( 21 μμ , the sentence Pi associated 

with variable X(i) is assumed to be within on interval 
DT formally described by 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫∫
TT

i m
t

t
t
tPDT ,)(,)(, 21 μμ  

 

     This way, we can find the size and the position of 
the matching window, priority been given to the 
temporal matching 
  2. Perform the temporal pattern matching in 
compliance with the existing temporal attributes. If 
(the temporal pattern-matching is successful) then 
compute its degree of confidence and proceeds to 
step 3 otherwise rejected situation 
  3. Perform the numeric pattern matching by using 
the pair Π and N. If (the numeric pattern-matching is 
successful) then continue the fuzzy reasoning 
algorithm based on compiled fuzzy rule base 
otherwise rejected fact. The numeric pattern-
matching calls for the synthesis of X(i) based on 
associated values x(i)(t), t∈DT into a single value 
  4. Complete the global pattern matching with both 
new facts derived from the process and already with 
the inferred facts. More specifically finish the fuzzy 
reasoning process starting from a given fuzzy state 
up to its (finite) limit passing through a sequence of 
internal states of the possibilistic expert system 
  5. Defuzzify outputs to obtain the results for all 
output variables 
 
     The possibilistic expert system has to be 
designed so that it can eliminate the undesirable 
system behaviours. There is a need to specify the 
initial state of the closed-loop system to reduce the 
combinations that may complicate the model. In 
analysis, the focus is on testing the closed-loop 
properties [5]: reach ability (firing a sequence of 
rules to derive a specific conclusion), cyclic 

behaviour of the fuzzy inference loop, stability (the 
ability to concentrate on the control problem). 
 
 
3 The predictability in FESPC system 
We start with a simple model of an expert system 
(the database is BF={F1,...,Fm} and the rule base is 
R={R1,...,Rn}). The rule Ri has the form C1,...,Ck 

→A1,...,Ap. The conditions of rule Ri are under the 
set of causes COND(Ri)={C1,...,Ck}.  
     Let VAR(Cj) (j=1,...,k) be the set of variables that 
occur in condition Cj and VAR(COND(Ri)) the 
variables present in COND(Ri). The pattern-
matching algorithm entails two steps: the 
conditions/fact pattern matching and the variables 
linking.  
 
     A condition C filters a fact F if it can be 
determined a substitution σ so that F=σ⋅C. The 
substitution σ can be represented through a list of 
pairs under the form σ={t1/v1,..,ts/vs}, where the pair 
ti/vi means that the variable vi in condition C will be 
replaced by the term ti. Applying the substitution σ 
to condition C we obtain its instantiation C', 
resulting the relation C'=σ⋅C. When a fact filters a 
condition, it is an instantiation of the condition. The 
condition C may filter several facts in database, 
which may be reunited in the instantiation, set of the 
condition C, noted I(C). This set satisfy the 
following relations: I(C)⊂BF, (∀)Fi, Fi∈I(C), where 
Fi is an instantiation of the condition C, and there is 
a corresponding substitution σi, so that Fi = σi⋅C. It 
follows that I(C) can be represented by the list 
I(C)={(σ1,F1),(σ2,F2), ...,(σq,Fq)} and Fi=σi⋅C.  
 
     Repeat the elementary pattern-matching for all 
the rules until obtain the instantiation sets of all the 
conditions. The algorithm based on the repeated 
condition/fact pattern matching is inefficient 
because of the numerous redundancies. The purpose 
of the second step is to find the antecedent 
instantiations for all the rules. This step occurs on 
the level of the global conditional part evaluation of 
the rules and a delicate operation is the linking of 
the variables (it permits the substitutions 
compatibility verification) shown as follows: for a 
rule Ri with COND(Ri), it is required to find a set 
{(σ1,F1),..., (σk,Fk)} so that (σi,Fi)∈I(Cj) and Fj= 
σj⋅Cj, j=1,...,k. If the terms associated to the common 
variables are identical, then the substitutions σ1,...,σn 
are consistents. The consistent substitutions 
composition are noted σ=σ1⋅σ2⋅...⋅σk which contains 
all the distinctive variables of the substitutions. The 
substitutions consistence verification consists on a 
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symbolic comparison. If there is in database fuzzy 
facts, the consistence verification of the substitutions 
is much more difficult, like in classical one. 
 
     The fuzzy condition/fact pattern matching. The 
fuzzy pattern-matching aims to determine the 
instantiations set of the causes. It is stronger than 
classic one because of its capacity of processing the 
fuzzy knowledge. It is a matter of evaluating the 
degree of this pattern matching between a fuzzy 
cause and a fuzzy fact (the fact filters more or less 
the cause). In order to put a fact in touch with a 
cause we can build up a recursive algorithm, 
comparing the two associated trees step by step. It 
follows beyond doubt that the knowledge pattern 
matching is the basic operation. Generally speaking, 
it is a matter of pattern-matching between a model P 
and a data D to which we attach μP respectively πD 

(μP(u) represents the degree of the compatibility 
between the value u and the meaning of P, while 
πD(u) represents the possibility degree that the value 
u represents the value of the attribute which 
describes an object modelled through the data D). 
The degree of compatibility has the membership 
function μP|D defined through the extension 
principle. Though it translates relevant information 
related to the degree of the pattern matching 
between P and D, it is difficult to use μP/D. We prefer 
two scalar measures in order to evaluate the 
compatibility: Π(P,D) and N(P,D).  
 
     The fuzzy constants compatibility. Let us consider 
the most simple case ((*f, *m→*c),*c'), where *m is 
the cause of the rule *m→*c, *f is the fact, each of 
them being expressed by fuzzy sets. In order to 
deduce the conclusion *c', it is to be known if the 
fact is compatible with the rule condition. We can 
try to calculate generalized modus ponens (GMP) 
for the inference conclusion *c', else the calculating 
process stops. The theory of possibilities provides 
two measures, which are very useful to evaluate the 
compatibility of the fuzzy sets [ ]:  
 

Π(*m,*f) = supu min(μ*m(u), μ*f(u)) 
N(*m,*f) = 1-Π(¬*m, *f) = infumax(1-μ*m(u), 
μ*f(u)) 

 
     Generally, it is much complicated to calculate N 
than Π. A simple calculating method is based on the 
separation of the complementary of *m. Analysing 
the form of ¬*m we find that this can be divided into 
two fuzzy sets Ls and Ld.  
 
     The fuzzy set Ls=(-∞,gm-ϕm,-∞,ϕm) is always on 
the left of *m while Ld=(dn+δm,∞,δm,∞) is always on 

the right of *m, and Ls∩ Ld=∅. It follows that  
¬*m = max (Ls,Ld). We obtain: 
 

N(*m,*f) = 1-Π(¬*m,*f) = 1 - Π(max(Ls,Ld),*f)  
=1-max(Π(Ls,*f),Π(Ld,*f)) 
 
     Having Π and N, defined and calculated this 
way, we distinguish several classes of decreasing 
compatibility. Even if the measure Π and N 
correctly estimates the degree of compatibility 
between the fuzzy constants, these measures can not 
be used directly to infer the conclusions in the case 
of an inference engine based on GMP. If the 
measures Π and N satisfy some thresholds, then the 
pattern matching is successful. To calculate GMP 
we need the parameters θ and K, in the following 
form [ ]:  

θ = (*m,*f) = max(μ*f(gm-γm),μ*f(dm-ϕm))  
K = (*m,*f) = min(μ*m(gf),μ*m(df)) 

 
     At the end of the fuzzy condition/fact pattern-
matching stage for the cause C and the fact F, if the 
degrees of the pattern matching satisfy the chosen 
thresholds and if there is a consistent substitution σ, 
then pattern matching is successful. The substitution 
σ is a particular case when the variables in the 
causes can be associated to some fuzzy constants 
present in the facts. The instance σ⋅C obtained 
through the application of the fuzzy substitution σ to 
the condition C is not totally equal with F, i.e. the 
expression F=σ⋅C is not always true then σ is fuzzy. 
We can take into account the problem of finding the 
proper thresholds of the measures Π and N in order 
to determine the facts that do not filter the causes at 
all. The choice is not made at random, as between 
the two parameters of GMP it must be a tight link. 
Because of all these remarks and in order to 
correctly solve the problem, there are the links 
between Π, N, θ, K. As already shown GMP verifies 
the following important proposition: 
 
Proposition.  i) K = 0 ⇔ θ = 1; K > 0 ⇔ θ < 1; ii) 
The conclusion *c' inferred through GMP is 
uncertain: (μ*c'=1) ⇔ θ = 1; iii) N (*m, *f) > 0 ⇔ 
θ <1. 
     The linking of the fuzzy variables. The fuzzy 
condition/fact pattern matching constitutes the first 
stage in the running of the inference engine, which 
takes into account the imprecision. After this stage, 
it results a lot of instantiations of the causes. Each 
instantiation of reason will be associated to a fuzzy 
substitution and to the four parameters Π, N, θ, K. 
The second stage is represented by the linking of the 

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 462 ISBN: 978-960-474-099-4



variables and it aims at determining the consistent 
instantiations at the full conditions level of the rules. 
The fuzzy unification.  The fuzzy unification aims at 
verifying the consistence of the fuzzy substitutions 
where the variables can be associated to fuzzy sets. 
Let's consider a rule (*D *H ?x) (B ?x)→(act(C *E 
?x)). In the antecedent of the rule there are two 
causes C1= (*D *H ?x) and C2=(B ?x). We suppose 
the facts to be specified: F1 = (*d1 *h1 *w) and F2 = 
(B *r). For some chosen fuzzy sets, the fuzzy 
constant *d1 filters *D and *h1 filters *H. The only 
result for the pattern-matching between C2 and the 
fact F2 is the fuzzy substitution σ=(* /?x) and the 
pattern-matching parameters. If all the parameters 
satisfy the designed thresholds, then the facts totally 
unify with the causes. After the fuzzy condition/fact 
pattern-matching, we obtained two fuzzy 
substitutions: σ={*w/?x} and σ = {*r/?x} where *w 
and *r are fuzzy sets.  
 
The fuzzy unification contains on the one hand the 
evaluation of the consistence degree of the fuzzy 
substitutions on a certain norm and on the other 
hand, the fuzzy substitutions composition. Let us 
consider a rule R with k conditions, under the form 
COND(R)=(C1,...,Ck). After the fuzzy condition/fact 
pattern-matching, if each condition Ci, filters a fact 
Fi, then there is a fuzzy substitution σi so that Fi = 
σi⋅Ci and the four parameters Πi, Ni, θi, Ki. Let us 
consider a variable ?v within the rule; we suppose to 
appear n times in the conditional part of the rule. ?vi 
is used for the representation of ith of the variable ?v. 
In this case, all the occurrences of the variable ?v 
within the global condition of the rule can be 
represented through the following list: {?v1, 
?v2,...,?vn}. Each ?vi will be certainly associated 
with a term ti, which can be an atomic or a fuzzy 
constant, denoted: {t1/?v1, t2/?v2,..., tn/?vn}. 
 
     All the various variables present in a rule are 
independent. Each variable can occur in a rule 
several times. Each occurrence of the variable is 
independent of the other occurrences. Nearly all 
expert systems preserve this hypothesis. The fuzzy 
unification consists of: i) The consistence 
verification of the element in list {t1/?v1, 
t2/?v2,...tn/?vn}→{tp/?vp} as against a certain norm; 
ii) The composition of the fuzzy substitutions. In 
order to eliminate any confusion, ?vp is used to 
represent the variable ?v after the fuzzy unification. 
Finally, the fuzzy unification can be represented 
through the following expression: {t1/?v1, 
t2/?v2,...tn/?vn} {tp/?vp} where tp is going to be 
calculated [4]. Let us consider a simple case. If ti is a 

fuzzy set, i.e. ti = *t(i), (i=1,2), then the symbolic or 
numerical comparison is no longer sufficient to 
evaluate the consistence between *t(1) and *t(2). 
When ?v1 and ?v2 are independent, the Cartesian 
product *t(1) x *t(2) is defined by *t(1)x*t(2) = 
{((x1, x2), μ*t(1)x*t(2)(x1,x2)/x1∈X1, x2∈X2, X1, X2⊂R}, 
μ*t(1)x*t(2)(x1,x2) = min (μ*t(1)(x1)*t(2)(x2)). 
 
     The compatibility between *t(1) and *t(2) can 
only by clarified through a reasonable explanation 
of the criterion relative to which compatibility is 
judged. In the classic situation, the criterion is made 
up by the equality relation. It is quite natural to 
introduce appropriate criteria for fuzzy unification in 
both stages: to check the consistence and to make up 
the fuzzy substitutions. These criteria should be 
more general; the equality relation can be defined by 
a binary fuzzy relation R. Making up the fuzzy set 
*t(1) and the relation R, we obtain μR°*t(1)(x2), 
defined by:  
 

μR°*t(1)(x2) = supu min(μR(x1,x2),μ*t(1)(x1)) 
 
Since we know both relation R and Cartesian 
product (t(1) x *t(2), we can use measures Π and N 
to estimate the consistence of fuzzy sets *t(1) and 
*t(2) relative to R. Thus, we have: 
 

Π(R, *t(1) x *t(2)) = sup x1,x2min(μR(x1, x2), 
μ*t(1)(x1), μ*t(2)(x2)) 
N(R, *t(1) x *t(2)) = inf x1,x2max(μR(x1, x2), 
1- μ*t(1)(x1), 1 - μ*t(2)(x2)) 

 
     It is interesting to note that the fuzzy binary 
relation R, can be interpreted in various ways. The 
equality relation may be regarded as a particular 
case of relation R. A last important problem is the 
parameters propagation. An example is the surge 
tank with two fill valves A and B, and an empty 
valve C, located at the bottom of the tank. When 
valve A is opened, it automatically closes itself after 
pouring enough liquid so that the liquid level in tank 
increases by one level (small), and for valve B the 
liquid level in the tank increases by three levels 
(medium). We require that only one fill valve can be 
opened at once. The opening of valve C is random 
and unpredictable. Once this valve opens, the liquid 
level in the tank decreases by two level units.  
 
    The control objective for this problem is to 
control the liquid level in the tank so that it lies in 
the normal range for any given initial liquid level. 
We search one strategy that human expert can use to 
meet the control objectives, based on the seven rules 
of plant model [5]. We present in the figure 1 the 
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simulation results for the priority scheme used in the 
select phase. 
 

 

 

 
Fig. 1 Simulation results 

 

 
     The set of knowledge base states is Xb, where 
xb∈Xb, xb=[xb,1,...,xb,6]t∈Xb. The xb,1 component 
represents the current liquid level in the tank; xb,2 
=0,1,2 indicating that eNUL,eA,eB event is enabled 
respectively; xb,3=0 indicating that the liquid level 
has never reached 5 and xb,3=1 indicating that the 
level has reached 5; xb,4=0 indicating that rules 1 and 
2 are allowed to fire; x

b,5
=0 indicating that rules 3 

and 4 are allowed to fire and xb,5=1 indicating that 
rules 3 and 4 are not allowed to fire; xb,6=0 
indicating that rule 5 is allowed to fire and x

b,6
=1 

indicating that rule 5 is not allowed to fire. The set 
of expert system command inputs is EPES = E0 =X. It 
is obvious that cycles exist in the open-loop plant. 
To eliminate these undesirable properties and meet 
the closed-loop specifications, the expert system as 
above is employed.  
 
 
4 Conclusions  
The use of temporal aspects refers to the design of 
those tools to solve the equation time = complexity 
⊕ real time ⊕ temporal reasoning, which is 
employed in order to integrate time into a process 
control application. This equation is formally found 
on the inference engine algorithm, able to make full 
use of the specific knowledge to the process control. 
The symbolic aggregation metaoperator ⊕ can be 
instantiated into different classes of specific 
operators, depending on the goal pursued by the 
control model. We assume that the process operates 

like finite no deterministic state machine, while the 
expert system will operate like a finite deterministic 
state machine. The closed-loop control expert 
system can be modelled like a no deterministic state 
machine, whose outputs are the process outputs. A 
major obstacle to the widespread use of 
(possibilistic) expert systems in real-time domains is 
the non-predictability of rule execution time. A 
widely used algorithm for real-time production 
systems is the Rete algorithm. To achieve a fast 
reasoning the number of fuzzy set operations must 
be reduced. For this, we use a fuzzy compiled 
structure of knowledge in FESPC, like Rete, 
because it is required for real-time responses and a 
fuzzy inference engine. The FESPC engine 
represents a method of fast fuzzy logic inference. It 
must provide guaranteed response times, completing 
its reasoning within a deterministic amount of time. 
Systematic analysis methods must be used so that 
the possibilistic expert system behaviour can be 
studied quantitatively within the developed 
modelling framework.  
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