
A CROSS-PLATFORM SOFTWARE LIBRARY FOR DIAGRAMS
CREATION AND MANIPULATION

 MICHAL BLIŽŇÁK1, TOMÁŠ DULÍK2, VLADIMÍR VAŠEK3

Department of Applied Informatics1, 2, Department of Automation and Control Engineering3

Faculty of Applied Informatics, Tomas Bata University
Nad Stráněmi 4511, 760 05, Zlín

CZECH REPUBLIC
bliznak@fai.utb.cz1, dulik@fai.utb.cz2, vasek@fai.utb.cz3

Abstract: The aim of this paper is to introduce new cross-platform software library called wxShapeFramework
(shortly wxSF) written in C++ language which is suitable for creation of software applications manipulating
diagrams, images and other graphic objects. The library is based on open-source cross-platform GUI tool kit
called wxWidgets and persistent XML-based data container called wxXmlSerializer. As shown in this paper the
wxSF allows user to easily create cross-platform applications able to interactively handle various scenes
consisting of pre-defined or user-defined graphic objects (both vector- and bitmap-based), store them to XML
files, export them to bitmap images, print them etc. Moreover, thanks to applied software licence the library can
be used for both open-source and commercial projects on all main target platforms including MS Windows,
MacOS and Linux.

Keywords: Diagram, vector, bitmap, wxWidgets, wxXmlSerializer, wxShapeFramework, wxSF, C++

1 Introduction
Modern software applications often need the ability to
graphically represent various data or logical
structures, information flows, processes and similar
abstract information types in the form of diagrams.
Whatever the application does, the graphical
representation of any problem is always more clear
and understandable then a textual one.

The main goal of this paper is to introduce a new
open-source cross-platform software library called
wxShapeFramework (shortly wxSF) [1] written in
C++ language. The library is based on well-known
cross-platform GUI library wxWidgets [2] and is
suitable for easy creation of software applications
manipulating various diagrams and other graphic
objects. It is a replacement for fairly out-of-date
wxWidgets add-on library called OGL (Object
Graphics Library) [3] which is not developed any
more. The wxSF can be used as a base part of
applications like various CASE tools, technological
processes modeling tools, etc.

2 What the wxShapeFramework is
The library consists of a set of classes encapsulating
so called shape canvas (a visual GUI control used for
management of graphic objects and supporting
serialization/deserialization to XML files, clipboard
and drag&drop operations, undo/redo, export to BMP
files, printing, etc.) and diagram graphic objects
called shapes (including basic rectangular and elliptic
shapes, line and curve shapes, polygonal shapes, static

and in-place editable text, bitmap images, etc.).

The wxSF allows to define relationship between
various shape types (for example which shape can be
a child of another one, which shape types can be
connected together by which connector type, how
various connections look like, etc.) and provides
ability to interactively design diagrams composed of
those shape objects.

3 A Technological Background And
The Library's Structure
The library uses the wxWidgets API, so it is platform
independent as far as the appropriate wxWidgets port
is available for a required target platform. wxSF also
uses the persistent data container provided by the
wxXmlSerializer (shortly wxXS) software library [5].
wxXS allows users to easily serialize and deserialize
hierarchically arranged class instances and their data
members to an XML structure. The XML content can
be stored to a disk file or to another output stream
supported by wxWidgets. This functionality is used
for saving and loading diagrams as well as a base for
the clipboard and undo/redo operations provided by
the wxSF.

wxSF consists of more than 40 classes which can be
divided by their purpose into three main groups:

● classes implementing a diagram manager,

● classes implementing the shape canvas,

● diagram components classes.

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 362 ISBN: 978-960-474-099-4

The class diagram of main library classes is shown in
figure 1.

Figure 1: Main library classes and their cooperation

The diagram manager encapsulated by
wxSFDiagramManager class is a main persistent
data container (inherited from wxXmlSerializer
class provided by the wxXS library). It is responsible
for management of included diagram components and
for saving/loading them to/from various I/O streams.
It also provides a set of member functions suitable for
basic policy definition (user can define which shapes
can be included into a specific diagram manager
instance).

The diagram manager is not a visual object; it only
stores and manages diagram components. The
diagram is visualized by so called shape canvas
encapsulated by wxSFShapeCanvas class. Shape
canvas can be assigned to one instance of data
manager and acts as its graphic user interface. This
approach leads to possibility to process diagrams by
an application without need of their displaying
(which is useful for loading or creating of diagrams at
the background). The shape canvas also provides
clipboard and undo/redo functionality as well as a
possibility to design the diagram interactively.
Moreover, for better performance and drawing
scalability it uses special double-buffered painting
canvas (bitmap-based memory device context)
encapsulated by wxSFScaledDC class. This
drawing class can use both standard GDI functions
and enhanced graphics engine encapsulated by
wxGraphicsContext class as well.

The last mentioned class group encapsulates the
diagram graphic components (shapes). Every shape
class is inherited from the base shape class called
wxSFShapeBase (inherited from
xsSerializable class provided by the wxXS
library). This class encapsulates a basic functionality
like moving, drawing invocation, hit detection, and
policies definition and includes set of virtual

functions allowing a programmer to defined specific
shape's properties and behaviour (like resizing or
drawing). Finally, there is also a set of predefined
shape classes encapsulating common diagram
components like

● rectangles (wxSFRectShape, ...),

● squares (wxSFSquareShape),

● ellipses (wxSFEllipseShape),

● circles (wxSFCircleShape),

● text objects (wxSFTextShape, ...),

● polygons (wxSFPolygonShape, ...),

● grid containers (wxSFGrigShape, ...),

● GUI container (wxSFControlShape),

● bitmaps (wxSFBitmapShape),

● and lines (wxSFLineShape, ...)

Every predefined shape can be used as it is or as a
base for another more specific shape.

Class hierarchy diagram for the most important
classes is shown in the figure 2.

Figure 2: Diagram objects (shapes) hierarchy

4 Usage of wxShapeFramework
Now let’s take a look at an example how wxSF can be
used for creation of simple graphics applications. The
first example will demonstrate basic usage of diagram
manager and shape canvas classes, the second
example will focus to user-defined shape objects
creation and manipulation. Note that in these
examples only code fragments related to the wxSF are
discussed and it is supposed that the reader is familiar
with programming using wxWidgets.

4.1 “Hello World” in Graphics

This simple example shows how to create an
application displaying a “diagram” managed by one
instance of diagram manager class. The diagram is
visualized via the shape canvas class. Generally, there

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 363 ISBN: 978-960-474-099-4

are two ways how the data manager and shape canvas
classes can be used; they can be used “as they are” or
as bases for new classes. There is no need for
inheriting new diagram manager class in our simple
scenario so the class wxSFDiagramManager
is used as it is and as a static class instance (dynamic
diagram manager instances have sense for
applications processing more than one diagram at the
same time). On the other hand the shape canvas can
be used in both ways (as it is or as a base class for
further inheritance) in all application scenarios.
It depends on the application requirements and
programmer's preferences only. In this paper only the
simpler method (usage of original shape canvas class)
is discussed.

The diagram manager instance and shape canvas
should be declared and created during the application
frame window initialization. The initialization code
can be as follows:

Example 1:

// add wxWidgets header file
#include "wx/wx.h"
// add wxShapeFramework include file
#include "wx/wxsf/wxShapeFramework.h"

// declaration of main application window
class wxSFSample1Frame: public wxFrame
{
 public:
 wxSFSample1Frame(wxFrame *frame);
 ~wxSFSample1Frame();

 private:
 // create wxSF diagram manager
 wxSFDiagramManager m_Manager;
 // create pointer to wxSF shape
 // canvas
 wxSFShapeCanvas* m_pCanvas;

 // declare event handler for
 // wxSFShapeCanvas
 void OnRightClickCanvas
 (wxMouseEvent& event);
};

// constructor of main application frame
wxSFSample1Frame::wxSFSample1Frame(wxFrame
*frame) : wxFrame(frame, -1, title)
{
 // set accepted shapes (accept only
 // wxSFRectShape)
 m_Manager.AcceptShape(wxT("wxSFRectShape
"));

 // create shape canvas and associate it
 // with shape manager
 m_pCanvas = new wxSFShapeCanvas
 (&m_Manager, this);
 // set shape canvas properties if
 // required:
 m_pCanvas->AddStyle
 (wxSFShapeCanvas::sfsGRID_SHOW);

 m_pCanvas->AddStyle
 (wxSFShapeCanvas::sfsGRID_USE);

 // connect event handlers to the shape
 // canvas
 m_pCanvas->Connect(wxEVT_RIGHT_DOWN,
wxMouseEventHandler(wxSFSample1Frame::OnRigh
tClickCanvas), NULL, this);
}

Let’s discuss the code above in more details. The first
code part declares application frame class with
constructor, destructor, diagram manager static object,
pointer to shape canvas and with one event handler
further used by the shape canvas. The frame class
constructor code does these initialization steps:

1. setting shape class objects accepted by the
diagram manager (now only
wxSFRectShape class instances are
accepted),

2. creating the shape canvas as a child window
of main application frame,

3. definition of shape canvas properties (a
design grid is shown and used),

4. registering previously declared event handler
in the shape canvas.

Implementation of registered event handler could be
like this:

Continuing of Example 1:

void wxSFSample1Frame::OnRightClickCanvas
 (wxMouseEvent& event)
{
 // add new rectangular shape to the
 // diagram:
 wxSFShapeBase* pShape =
m_Manager.AddShape(CLASSINFO(wxSFRectShape),
event.GetPosition());

 // set some shape's properties if
 // required:
 if(pShape)
 {
 // set accepted child shapes for the
 // new shape ...
 pShape->AcceptChild
 (wxT("wxSFRectShape"));
 }
 // ... and then perform standard
 // operations provided by the shape
 // canvas:
 event.Skip();
}

Event handler invoked at the right mouse button click
creates new instance of rectangular shape
encapsulated by the wxSFRectShape class and
adds it to the canvas at a position read from the mouse
event class object. Also some basic shape policy is set

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 364 ISBN: 978-960-474-099-4

here which tells the shape canvas that only
wxSFRectShape class object are accepted as a
child objects of newly created shape. The last
command statement (event.Skip()) calls default
event handler implemented in wxSFShapeCanvas
class.

And this is all what the user needs to do for
implementation of diagrams in his application. The
application built from previous code could look like
this:

Figure 3: wxShapeFramework demonstration

4.2 Persistence of the diagram

wxShapeFramework library is based on the persistent
hierarchical data container provided by
wxXmlSerializer library and fully uses its built-in
potential so operations like saving or loading of
diagrams content can be implemented in very easy
way. The diagram manager class inherits set of
member functions suitable for serialization and
deserialization of its content which can be used as
follows.

A current content of diagram manager can be saved to
a disk file (or any output stream provided by
wxWidgets library) by single code line looking like
this one:

m_Manager.SerializeToXML(wxT("data.xml"));

Loading of stored diagram is as easy as the saving and
can be performed by this code line:

m_Manager.DeserializeFromXML(wxT("data.xml")
);

4.3 User-defined Shapes? Why Not!

The example above uses only predefined shape object
but the wxSF allows user to define completely unique
shapes based on the most suitable ancestor. In the
second example a star shape inherited from
wxSFPolygonShape class with embedded editable
text shape (wxSFEditTextShape class instance)

is created and used in enhanced version of the first
example.

The star shape class declaration can be as follows:

Example 2:

// include main wxSF header file
#include "wx/wxsf/wxShapeFramework.h"

class cStarShape : public wxSFPolygonShape
{
public:
 // enable RTTI and cloneability
 XS_DECLARE_CLONABLE_CLASS(cStarShape);

 // default constructor used by RTTI
 cStarShape();
 // copy constructor Clone() function
 cStarShape(static cStarShape& obj);
 // destructor
 virtual ~cStarShape(){;}

protected:
 // protected data members
 wxSFEditTextShape* m_pText;
};

The implementation code is here:

#include "StarShape.h"

// implement RTTI information and Clone()
// functions
XS_IMPLEMENT_CLONABLE_CLASS(cStarShape,
wxSFPolygonShape);

// define star shape as an array of
// wxRealPoint values
const wxRealPoint star[10]={
 wxRealPoint(0,-50), wxRealPoint(15,-10),
 wxRealPoint(50, -10), wxRealPoint(22, 10),
 wxRealPoint(40, 50), wxRealPoint(0, 20),
 wxRealPoint(-40, 50), wxRealPoint(-22, 10),
 wxRealPoint(-50, -10), wxRealPoint(-15,-
10)};

// default constructor
cStarShape::cStarShape()
{
 // disable serialization of polygon
 // vertices, because they are always
 // set in this constructor
 EnablePropertySerialization(wxT(
 "vertices"), false);
 // set polygon vertices
 SetVertices(10, star);

 // polygon-based shapes can be connected
 // either to the vertices or to
 // the nearest border point (default
 // value is TRUE).
 SetConnectToVertex(false);

 // set accepted connections for the new
 // shape
 AcceptConnection(wxT("All"));
 AcceptSrcNeighbour(wxT("cStarShape"));
 AcceptTrgNeighbour(wxT("cStarShape"));

 // create associated child shape(s)

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 365 ISBN: 978-960-474-099-4

 m_pText = new wxSFEditTextShape();
 // set some properties
 if(m_pText)
 {
 // set text
 m_pText->SetText(wxT("Hello!"));

 // set alignment
 m_pText->SetVAlign(
 wxSFShapeBase::valignMIDDLE);
 m_pText->SetHAlign(
 wxSFShapeBase::halignCENTER);

 // set required shape style(s)
 m_pText->SetStyle(

 sfsALWAYS_INSIDE | sfsHOVERING);

 // components of composite shapes
 // created at runtime in parent
 // shape constructor cannot be
 // re-created by the serializer so
 // it is important to disable their
 // automatic serialization ...
 m_pText->EnableSerialization(false);
 // ... but their properties can be
 // serialized in the standard way:
 XS_SERIALIZE_DYNAMIC_OBJECT_NO_CREAT
E(m_pText, wxT("title"));

 // assign the text shape to the
 // parent polygon shape
 AddChild(m_pText);
 }
}

// copy constructor
cStarShape::cStarShape(static cStarShape&
obj) : wxSFPolygonShape(obj)
{
 // clone source child text object..
 m_pText = (wxSFEditTextShape*)
 obj.m_pText->Clone();
 if(m_pText)
 {
 // .. and append it to this shapes
 // as its child

 AddChild(m_pText);
 // this object is created by the
 // parent class constructor and
 // not by the serializer (only its
 // properties are deserialized
 XS_SERIALIZE_DYNAMIC_OBJECT_NO_CREAT
E(m_pText, wxT("title"));
 }
}

The implementation code may seems quite complex
but it also shows some interesting functionality like
creation of child shapes directly in the program code,
shape cloning or modification of shape layout and
behaviour.

This new shape object (instance of cStarShape
class) can be added to an existing diagram manager in
the way discussed in the first example. cStarShape
class as well as its embedded child (text shape class
wxSFEditTextShape) must be accepted by the
diagram manager (using

wxSFDiagramManager::AcceptShape())
and then a new star shape can be created and added to
a diagram by the wxSFDiagramManager::
AddShape() function.

There is also a possibility to connect several star
shapes by any type of connection line defined in the
wxSF as shown in the example. These connection
lines can be hard-coded or created interactively by
invocation of one of the following functions:

● wxSFDiagramManager::
CreateConnection()

● wxSFShapeCanvas::
StartInteractiveConnection()

Figure 4 shows the star shapes defined in the code
above which was added to the Example 1.

Figure 4: User-defined composed shapes

5 Conclusion
As can be seen from the examples, the
wxShapeFramework software library has sufficient
potential for effective development of various
software applications which use diagrams or other
form of visual communications. Note that only very
small fraction of all the functions provided by the
library has been discussed in this paper. For deeper
understanding of its principles and potential we would
recommend to go through the library reference
documentation and sample projects.

The library can be freely obtained from
SourceForge.net software repository[1] and is
distributed under wxWidgets license [4] so it can be
used for both open-source and commercial projects
without any restrictions. Up to the present day the
library has been downloaded more than 900 times and
only few bugs and patches were reported by the users
so it can be regarded (despite its relative youth) as
sufficiently mature software project. Of course, the
development of the wxSF is still in progress so new
features and improvements are continuously included

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 366 ISBN: 978-960-474-099-4

to fulfil all requirements of modern cross-platform
diagram software library.

6 Acknowledgements
This work was supported by the Ministry of
Education of the Czech Republic under grant No.
MSM 7088352102.

7 References
[1] wxShapeFramework library website, 2008: http://

sourceforge.net/projects/wxsf

[2] Smart, J., Hock, K. Cross-Platform GUI

Programming with wxWidgets, Prentice Hall,
2006

[3] wxOGL code repository at wxCode website,
2008:
http://wxcode.sourceforge.net/showcomp.php?
name=ogl

[4] wxWidgets license documents, 2008:
http://www.wxwidgets.org/about/newlicen.htm

[5] Bližňák, M., Dulík T., Vašek, V., A Persistent
Cross-Platform XML-Based Class Object
Container, in Proceedings of the 10th WSEAS
International Conference of AUTOMATION &
INFORMATION, Prague, 2009, pp. 316 - 321

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 367 ISBN: 978-960-474-099-4

http://sourceforge.net/projects/wxsf
http://sourceforge.net/projects/wxsf
http://www.wxwidgets.org/about/newlicen.htm
http://www.wxwidgets.org/
http://www.wxwidgets.org/

