
Generating adaptable user interfaces using rich internet application

SABO COSMIN
Department Of Mathematics and Computer Science

North University of Baia Mare
Baia-Mare, 430122 Str. Dr. Victor Babeş Nr 62A

ROMÂNIA
cosmin_sabo@scream.ro http://cosmin.ubm.ro

NICOLAE TOMAI

Faculty of Economics and Business Administration
Babes-Bolyai University of Cluj Napoca

Cluj Napoca, 400591 Str. Teodor Mihali, Nr. 58-60
ROMÂNIA

nicolae.tomai@econ.ubbcluj.ro http://www.econ.ubbcluj.ro/~nicolae.tomai/

Abstract: - Personalization of interfaces by each user using user-friendly forms is a
key concept to ensure interface accessibility. In this direction, we are using Extensible
Markup Language (XML) as data source to generate interfaces. All users can adapt
interface by modifying each component style, properties and events and modifications
are saved as XML content. This user interfaces can be run as desktop application or in
browser. This result in the generation of personalized multimodal user interfaces can
be useful for many kinds of applications.

Key-Words: - Graphical User Interface; Adaptable User Interfaces, Rich Internet
Application

1 Introduction
Personalization of interfaces by each user using
user-friendly forms is a key concept to ensure
interface accessibility. In this direction, we are using
Extensible Markup Language (XML) as data source
to generate interfaces. All users can adapt interface
by modifying each component style, properties and
events and modifications are saved as XML content.
This user interfaces can be run as desktop
application or in browser. This result in the
generation of personalized multimodal user
interfaces can be useful for many kinds of
applications.
This concept is not design for a particular user or a
particular application. The system is design to be
used by class of users and set of tasks. Individual
users can redesign interface and make the user needs
more independent of the designer, and does not
force the designer to decide about user specific
needs.
Main goal of this system is to fit the interface to a
specific user and to a specific task not only to the

design phase specifications. Flexibility can be
obtained using adaptable or adaptive interfaces.
An interface is called adaptive if it changes its own
characteristics depending on the way the user
interacts with the interface. Adaptive interfaces are a
promising attempt to overcome contemporary
problems due to the increasing complexity of
human-computer interaction. They are designed to
tailor a system's interactive behavior with
consideration of both individual needs of human
users and altering conditions within an application
environment. The broader approach of intelligent
user interfaces includes adaptive characteristics as a
major source of its intelligent behavior.
A different way of helping a person to use a system
more effectively is to adapt the user interface so that
it fits better with our way of working with the
system. Interface elements that have been adapted in
this way include menus, icons, and the system's
processing of signals from input devices such as
keyboards [1]. An interface is called adaptable if it
provides tools that make possible to change interface

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 144 ISBN: 978-960-474-099-4

http://cosmin.ubm.ro/

characteristics. This tool gives the control over the
adaptation to the user.
Adaptive interfaces can exhibit some unpleasant
side effects such as surprising the user by moving or
removing menu entries. Previous studies have also
shown a desire for the user to be able to control and
override the automatic system whenever needed [5].
My approach it is to provide exhaustive adaptation
possibilities for all interface features of the interface.
The need for adaptive and personalized Rich
Internet application puts a new dimension to
adaptable interfaces. Instead of computing the
adaptation steps at the server, Rich Internet
Applications can use client-side approach and react
immediately on user input. The focus of this paper is
the conceptual introduction of client adaptable
interfaces using rich internet application that a using
XML files to generate the application interface and
events. This client interface directly executes all
necessary adaptation and save the modifications on
the server. To customize client interface we don’t
need to reload pages like in the classic internet
application or to user server side computing.

2 Problem Formulation
Main goal is to create a user interface adapter that
can be accessed through any browser that has
support for RIA applications or desktop applications
must assure setting portability.
Each authenticated user should be able to have a
different interface for other users, both in design and
as functionality. Regardless of where the access the
user interfaces, you can benefit from the changes
made previously.
Based on this, result the following goals:
System independence: we do not impose a particular
operating system for user.
Browser independence: the application should run
on a wide variety of popular browsers.
User independence: by providing custom themes
and skins.

2.1 Themes and skins features
Motivation to develop such a user interface is the
user need to customize themes and skins.
In computing, skins may be associated with themes
as custom graphical appearances (GUIs) that can be
applied to certain software and websites to suit the
tastes of different users. Software which is capable
of having a skin applied is referred to as being
skinnable, and the process of writing or applying
such a skin is known as skinning. Applying a skin
changes a piece of interface look and feel some

skins merely make the interface more aesthetically
pleasing, but others can rearrange elements of the
interface, potentially making the program easier to
use. Although often used simply as a synonym for
skin, the term theme normally refers to less-complex
customizations.
Another motivation is that almost all the users prefer
to have the control of the application instead of
requesting all the modifications needed to
administrator or somebody else.

2.2 Changing user interface
Adaptation of user interfaces has been a problem
considered for a long time [8]. Another goal is to
provide an adaptable user interface at any moment
offering next features:
1. Support for a number of different interfaces for
each panel;
2. Allow users to switch between interfaces modes
at any time, even in the middle of a command;
3. Switch between interfaces smoothly and
naturally;
4. Make it easy for the user to learn how to use the
different interfaces.

3 Adaptable user interface Solution
Based on the problem formulation we designed the
next structure:

Fig. 1 – System design

XML files that define client adaptable interface are
considered panels and all the panels are loaded in
the main panel. Actually it’s a graph structure where
each node of the graph it is a panel as is showed in
the next figure (Fig. 2).

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 145 ISBN: 978-960-474-099-4

Fig. 2 – Panels interconnectivity

Each panel from this graph defines all the elements
needed to generate the interface. Depending on
complexity of element described it can be defined as
an attribute or as a node. For example (Example 1)
name of panel it is defined in attribute, but mouse
event on click is defined as a separate node.
<xml>
 <components>
 <PopUpWindow backgroundColor='#397D02'
borderAlpha='0.81' height='114' id='NewPass'
idPanel='9054' isPopUp='true' layout='absolute'
panelType='ChangeAccountPass' title='Change User
Pass' ver='1.0.2' width='207' x='191' y='502'>
 <Macheta dataProviderSource='xmlNode:Macheta'
id='Macheta'></Macheta>
 <Form height='100%' width='100%' y='2'>
 <FormItem label='Old Pass' required='true'>
 <TextInput displayAsPassword='true' id='OldPass'
width='130' x='73'></TextInput>
 </FormItem>

……………………..
 <Button eventsSource='xmlNode:Send' height='22'
id='Send' label='Send' tabChildren='false' width='54'
x='95'></Button>
 </Form>
 </PopUpWindow>
 </components>
 <events>
 <Send><click> <switch menu='parent'>
<function>Application.socket.sendMessage(Macheta.getP
ass)</function>
 </switch> </click> </Send>
 </events>
 <dataProvider>
 <Macheta>

...............
 </Macheta>
 </dataProvider>
</xml>

Example 1 –Panel definition

From this example we

3.1 Customization
Using XML files to generate the user interface we
provide the following type of adaptability:
1. Global customization: Users can make global

changes to a series of objects or to a single one.
2. Particular customization: Users should be able

to make changes to one object without affecting
other objects that have the same type.

When a global customization is required all objects
that have the same type in all the XML files are
modified and when a particular customization is
require only one object it is affected.
There is a lot of reason for heaving a personalizable
interface. Each user, even for users that have similar
skills in using computers want to use a custom
interface rather than a static predetermined one.
Personal or group needs can be done without the
work of information technology department.
All the users prefer to have the control of the
application instead of requesting all the
modifications needed to administrator or somebody
else.
One of the most important problems in design
adaptable user interface is to provide a lot of options
to customize and in the same time to offer an easy
way to manage these options. Solution adopted by
us is to provide a friendly interface to each property,
style, event that can be customized. For example
colors are presented as a panel and the user only
have to choose one, numeric values are also
represented in a box where the value can be changed
directly but also with a scroll and selecting a point
on the scroll line the corresponded value will be
selected.
In example 1 we have defined button with the label
“Send”, applying global customization to buttons
mean that all tags named “Button” well be affected
by user modification, also, we can make a particular
customization to button “Send”.

3.2 Updating interface
Because XML files are used to store useful data
interface we only have to replace existing previous
XML file.
Studies made on 175 users that are using different
interfaces that can provide custom updating show us
that only less than 10 percents are using these
facilities, but 75 percents consider that it is very
important to have this feature.

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 146 ISBN: 978-960-474-099-4

After the study the conclusion was that these user
adaptable interfaces have to include updating
facilities and in default mode should do all the
operations needed automatic. Also, capabilities of
reverse some operations or reset to default facility it
is very important.
Based on this studies and conclusions XML files
that provide updating facilities has to include
parameters to define what are the objects, properties,
styles and events that have to be updated in any
situation and what should be based on user options.
As was showed in example 1, in panel definition we
have attribute “ver” where is defined the current
version of panel. Using this attribute we can
automatically check if there is a new version of the
panel and based on update specifications a part of
the attributes will be used as it is, or replace by
attributes from update panel. The same this
happening with objects that can disappear or new
objects can be introduced in panel.

3.3 Using more interfaces
The idea of having more than one interface, with
one that is personalized easily by the user, and
putting the user in control of switching between
interfaces was proposed by McGrenere and Moore
[6]. They make a study based on people that used
Microsoft Office and discovered that peoples need
more that one interface to an application.
As is described in [7] an interface can be broken
down into four levels:
Concepts and Tasks are taken from the underlying
legacy Web model.
The Abstract Interface provides a UI representation
common to all the RIA platforms without any kind
of spatial arrangement, look&feel or behavior, so all
the devices that can run RIAs have the same
Abstract Interface.
Then the Concrete Interface may be optimized for a
specific device. Concrete Interface is divided into
three Presentation levels: Spatial, Temporal and
Interaction Presentation.
Last one, the Final Interface provides the code
generation of the modeled application.
Let’ suppose that we have an application to manage
address book with al the features needed. Even this
interface it is very useful when we are using a
laptop, can be very difficult to us to use the same
interface in our phone browser. To solve this
problem, we determining the devise type that is
calling the interface and offer the specific XML files
for this device.
To offer a specific set of files for user interface
based on devise type we defining a property to each
XML file to define interface type that should use

this file. Also, based on a similar property, we can
use different interfaces even on the same devise
type.
The Final Interface automatically generate the user
interface depending on the chosen technology: Flex,
Ajax.

4 Conclusion
This paper introduces a modern concept design to
generate customer interfaces adaptable, providing
storage of all information necessary in XML files
that are taken by the client and the authentication
process generates client-side interface client.
To our knowledge this is the only framework based
on rich internet application capable of generating a
user adaptable interface in the moment of client
login by analyzing XML files.

References:
[1] Anthony Jameson, The human-computer

interaction handbook: Fundamentals, evolving
technologies and emerging applications (2nd
ed.), Lawrence Erlbaum Associates, 2008.

[2] M. Linaje, Juan C. Preciado and F. Sánchez-
Figueroa, Title of the Paper, Springer Berlin /
Heidelberg, Vol. 4607, 2007, pp. 226-241.

[3] Jin, J., Sang, N. and Liu, Y., XML-based user
interface customization and dynamical
modification of the embedded Linux system,
Journal of the University of Electronic Science
and Technology of China, Vol. 36, No. 3, 2007,
pp. 510-513.

[4] Jin, J., Sang, N. and Liu, Y., User interface
management with XML, Journal of Computer-
Aided Design and Computer Graphics, Vol. 16,
No. 4, 2004, pp. 566-571.

[5] D. Funke, J. Neal, and R. Paul, An approach to
intelligent automated window management,
IJMMS, Vol. 38(6), 1993, pp. 949–983.

[6] McGrenere, J. and Moore, G, Are we all in the
same “bloat”?, Graphics Interface 2000, pp.
187-196.

[7] Limbourg Q., Vanderdonckt J., Michotte B.,
Bouillon L., Lopez V., UsiXML: a Language
Supporting Multi-Path Development of User
Interfaces, 9th IFIP Working Conference on
Engineering for HCI, Vol. 3425, 2005, pp. 207-
228

[8] E. A. Edmonds, Adaptive Man-Computer
Interfaces, in Computing Skills and the User
Interface, Academic Press London, 1981

Proceedings of the 13th WSEAS International Conference on COMPUTERS

ISSN: 1790-5109 147 ISBN: 978-960-474-099-4

