
Multidimensional Data Structures and Techniques for Efficient Decision 
Making 

 
MADALINA ECATERINA ANDREICA 

The Bucharest Academy of Economic Studies 
6, Romana Square, District 1, Bucharest 

ROMANIA 
madalina.andreica@gmail.com 

 
MUGUREL IONUT ANDREICA 

Computer Science and Engineering Department 
Politehnica University of Bucharest 

Splaiul Independentei 313, sector 6, Bucharest 
ROMANIA 

mugurel.andreica@cs.pub.ro    https://mail.cs.pub.ro/~mugurel.andreica 
 

NICOLAE CATANICIU 
National Scientific Research Institute for Labor and Social Protection 

6-8 Povernei Str., District 1, Bucharest 
ROMANIA 

ncataniciu@incsmps.ro 
 

Abstract: - In this paper we present several novel efficient techniques and multidimensional data structures which can 
improve the decision making process in many domains. We consider online range aggregation, range selection and 
range weighted median queries; for most of them, the presented data structures and techniques can provide answers in 
polylogarithmic time. The presented results have applications in many business and economic scenarios, some of 
which are described in detail in the paper. 
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1   Introduction 
The process of decision making is both a permanent 
necessity and a challenge in many economic and 
industrial fields, like risk management, banking, 
selection of financing means, such as leasing or credit, 
bonity analysis of clients, e-commerce, operational 
research, and many others. The importance of the 
decision making process has been confirmed by the large 
number of publications which develop and propose 
efficient decision making techniques. These techniques 
can be classified into several broad categories, such as 
those handling certain and complete information, those 
using uncertain data and objectives, and those based on 
risk assessment. Some of the best known decision 
making optimization methods are multi-attribute and 
multi-objective decision making [1], fuzzy decision rules 
[2] and dynamic programming [3]. 
     In order for the decision making process to obtain 
significant results, we need two factors: a good 
optimization technique and accurate input values. 
Although a lot of effort has been directed towards 

developing highly efficient decision making 
optimization methods and models, the process of 
obtaining accurate input information as quickly as 
possible seems to have been mostly overlooked. This 
paper presents several techniques and data structures for 
obtaining aggregate information efficiently from a large 
database, which can later be used as input data in a 
decision process. 
     The main scenario in which we consider the 
implementation of the presented techniques is the 
following: A large database, modeled as a 
multidimensional data cube, is available on a central 
server, which can be accessed by multiple clients (e.g. 
economic agents). Every client can ask at any time for 
the computation of some aggregate information (e.g. 
min, max, sum, average, median) over several (large) 
portions of the database. Different clients may be 
interested in different parts of the database. Using 
standard techniques in such cases would lead to 
unacceptably high response times, especially in the case 
of many clients accessing the database simultaneously. 
On the other hand, the techniques we propose in this 
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paper lead to response times which are several orders of 
magnitude better than the common methods. The 
considered scenario occurs, for instance, in the case of 
large companies or banks which have all of their data 
stored in a data center which is accessed by their 
geographically spread headquarters and subsidiaries. 
     The rest of this paper is structured as follows. Section 
2 presents several use cases for the implementation of 
the techniques and data structures which are introduced 
in Section 3. In Section 4 we discuss related work and 
we conclude. 
 
 
2   Use Cases 
In this section we present several situations where our 
techniques can be used successfully. Let’s consider the 
case of a large retail company which handles thousands 
of transactions per day (both in department stores and 
over the Internet). The information associated to each 
transaction (e.g. date and time, purchase price, quantity, 
personal information about the customer, customer’s 
answers to relevant surveys) is carefully stored in a 
central database. Periodically, the company’s managers 
have to decide upon the price, quantity and (types of) 
products which should keep being sold or which should 
be taken off the market or improved, or if any new 
products should be launched. In this decision making 
process, they need quick access to aggregate information 
like: the total amount of sales of certain types of 
products to customers of a certain age and income range; 
the degree of satisfaction of each consumer target group 
which acquired products with certain characteristics; the 
percentage of the sales of each product from the total 
amount of sales; the most likely characteristics (age and 
income) of the highest paying consumers from a given 
age and income range. 
     Let’s consider now a financial consulting company 
(e.g. specialized on risk assessment and management) 
which owns a private database with information 
regarding the outcomes of several strategic decisions 
made by multiple companies over a large period of time. 
A company is characterized by multiple parameters, such 
as total income, profit, investments, financial sources, 
market share, supply characteristics on the market, and 
so on. A strategic decision is also characterized by 
several specific parameters. When advising a client, the 
consulting company may compute an aggregate of the 
outcomes of the strategic decisions made by the 
competing companies with similar characteristics to the 
customer’s company (i.e. using intervals containing the 
parameter values of the customer’s company). 
     Another example consists of a bank which needs to 
perform a bonity analysis of its clients soliciting 
different credits. This is a crucial decision making 
process, especially in the context of the present global 

financial crisis. This is why the banks should use as 
much available data as possible and obtain the results in 
the most efficient manner. 
     On the other hand, there are several situations when 
the access to available data should be significantly 
improved. For instance, let’s consider the case of a 
leasing company that wants to access some aggregate 
information regarding the financial status of several 
competing leasing companies on the market during a 
specified period of time. At the moment, the company 
can only obtain the financial balance sheets from the 
Ministry of Finance, from which it can compute the 
aggregate information by itself. It would be more 
efficient if the Ministry provided an e-government 
service for retrieving the required aggregate information 
automatically. All the presented use cases can benefit 
from using the techniques and data structures presented 
in this paper, as most of the desired information can be 
easily expressed as range aggregate queries. 
 
 
3   Multidimensional Data Structures 
 
 
3.1 Multidimensional Range Minimum Queries 
The RMQ technique [4] is very versatile and can be 
extended to multi-dimensional arrays. Each query asks 
for the minimum (maximum) value in a range 
[r(1,1),r(1,2)] x … x [r(d,1),r(d,2)] of a d-dimensional 
array a. W.l.o.g., we assume that the array contains n 
cells in every dimension (and, thus, nd cells overall). We 
will consider the most general case, in which the 
dimensions can be split into e≤d groups (group(j)=the 
group of dimension j). Each group g (1≤g≤e) contains a 
base dimension bd(g). The length of the interval of any 
query for every dimension j is always equal to (f(j) x the 
length of the query interval in dimension bd(group(j))), 
with f(j)≥1 (f(j)=1 for j=bd(group(j))). Since all the 
dimensions except the base dimensions are “linked” to 
the base dimension in their group, we will compute the 
following values: m(c(1), …, c(d), k(1), …, k(e)) = the 
minimum value in a range where r(j,1)=c(j) and the 
length of the query interval in dimension bd(g) is 2k(g). 
We will consider the sequences (k(1), …, k(e)) in 
increasing lexicographic order. When at least one k(*) 
value is larger than 0, we can use eq. (1), where q(u)=1, 
if (k(group(u))>0), and 0, otherwise. 
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     A better way to compute m(c(1), …, c(d), k(1), …, 
k(e)) is to select just one value k(j)>0, set q(j)=1, replace 
q(bd(u))·(k(u)-1) by k(u) in eq. (1) (for u≠j), and instead 
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of considering all the tuples (s(1), …, s(d)) in eq. (1), we 
can consider only the tuples (s(1), …, s(d)) with s(p)=0  
or 1, only if group(p)=j (and 0, if group(p)≠j). When all 
the k(*) values are 0, we distinguish between two cases. 
If every group contains only one dimension or all the f(j) 
values of the non-base dimensions j are 1, then m(c(1), 
…, c(d))=a(c(1), …, c(d)). Otherwise, the problem is 
reduced to computing the minimum value in a range 
[r(1,1),r(1,2)] x … x [r(d,1),r(d,2)], where r(j,1)=r(j,2) 
if j is a base dimension in its group, or r(j,2)=r(j,1)+f(j)-
1, if j is not a base dimension. We can handle this case as 
O(nd) (d-e)-dimensional RMQ queries (one for every 
tuple of coordinates). The (d-e) dimensions are the 
remaining (d-e) non-base dimensions, grouped as 
follows. We remove the base dimension bd(g) from each 
group g and set as the new base dimension of g the non-
base dimension j’ in g with the minimum value f(j’) (if it 
exists). The new f(*) values of the non-base dimensions 
j’’ from a group g will be f(j’’)/f(j’) (if this is not an 
integer, we place j’’ in a separate group). In order to 
compute the minimum value in a given range 
[r(1,1),r(1,2)]x … x[r(d,1),r(d,2)], we compute the 
values k’(j)=floor(log2(r(j,2)-r(j,1)+1)) and set 
k(g)=k’(bd(g)) for every group g. The answer is: 
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     The preprocessing time complexity is at most 
O(2d·d·nd·logd(n)). A query is answered in O(2d) time. It 
is obvious that the min function can immediately be 
replaced by max, obtaining identical results for range 
maximum queries. 
 
 
3.2 Multidimensional Range Aggregate Queries 
In this section we consider several alternatives for 
multidimensional range aggregate queries over a 
(dynamic) data cube, in which the aggregate function is 
invertible. The data cube has a fixed number d of 
dimensions and has m(j) entries in every dimension j 
(1≤j≤d); the entries are numbered from 1 to m(j). A cell 
of the data cube has coordinates (c(1), …, c(d)) 
(1≤c(j)≤m(j) ; 1≤j≤d) and has a value Cube(c(1), …, 
c(d)). A query Q(a(1), b(1), …, a(d), b(d)) consists of 
computing an aggregate (e.g. sum, product, xor) over the 
values of the cells (c(1), …, c(d)) whose coordinates are 
in the range: a(j)≤c(j)≤b(j) (1≤j≤d). An update U(u, c(1), 
…, c(d)) modifies the value of the cell (c(1), …, c(d)) by 
the value u (e.g. it increases/multiplies it by or sets it to 
u). We are interested in supporting both types of 
operations efficiently. The straight-forward solution is to 
update every cell in O(1) time (just change the value of 
Cube(c(1), …, c(d))) and compute the aggregate in O(nd) 
time (n=max{m(1), …, m(d)}), by traversing every cell 
in the given range. For the approaches we present next, 

we will assume that the query has the form Q(b(1), …, 
b(d)) and asks for an aggregate of the values of all the 
cells in the range [1,b(1)]·…·[1,b(d)] (i.e. a prefix 
subcube of the data cube). The aggregate of any arbitrary 
range can be computed as a “sum” of the aggregates of 
O(2d)=O(1) prefix subcubes [6]. Thus, considering only 
prefix subcube queries is enough. In fact, we can 
compute a prefix “sum” cube, with which we can 
compute the “sum” (aggregate) of a prefix subcube in 
O(1) time. However, when an update occurs, we need to 
recompute the prefix “sum” cube (which takes O(nd) 
time). Another solution is based on constructing a multi-
dimensional binary indexed tree [7], which supports 
updates and prefix subcube queries in O(logd(n)) time 
each (with only O(nd) memory consumption). Yet 
another solution is based on using a multidimensional 
block partitioning [5], which supports updates in O(nd/2) 
time and queries in O(1) time. In this section we propose 
a novel data structure, which supports both updates and 
queries in O(nd/4) time. The main idea is to divide the 
dimensions into two disjoint sets: the first set consists of 
q dimensions and the second set consists of the 
remaining d-q dimensions. The O(n) entries in every 
dimension j are split into O(n/k) blocks (where k is a 
function of n) of (approximately) k consecutive entries 
each. The blocks are numbered starting with 1, as they 
appear in increasing order (in increasing order of the 
entries they contain). Moreover, for every entry p in the 
jth dimension we know the block number of the block 
which contains the entry, blk(j,p). For every combination 
(x(1), x(2), …, x(q)), where x(j) is either an entry in 
dimension j or a block in dimension j (thus, there are 
O((n+n/k)q) tuples overall), we maintain a 
multidimensional block partition BP(x(1), …, x(d)) of the 
remaining d-q dimensions. 
     When an update U(u, c(1), …, c(d)) occurs, we 
proceed as follows. We consider all the tuples (x(1), …, 
x(q)), where x(j) is either an entry x(j)=c(j), or a block 
x(j)=blk(j, c(j)) (1≤j≤q; we consider O(2q)=O(1) tuples 
overall). For each such tuple, we will update its 
multidimensional block partition BP(x(1), …, x(d)). We 
consider all the tuples (y(q+1), …, y(d)), where y(j) is 
either an entry y(j)≥c(j) with blk(j, y(j))=blk(j, c(j)), or a 
block y(j)>blk(j, c(j)) (q+1≤j≤d; we consider O((k+n/k)d-

q) such tuples). We update the cell (y(q+1), …, y(d)) of 
BP(x(1), …, x(q)) by u (e.g. add u to it, multiply it by u, 
xor it with u). Thus, an update takes O((k+n/k)d-q) time. 
     In order to find the answer to a query Q(b(1), …, 
b(d)), we consider all the tuples (x(1), …, x(q)), where 
x(j) is either an entry x(j)≤b(j) with blk(j, x(j))=blk(j, 
b(j)), or a block x(j)<blk(j, b(j)) (we consider 
O((k+n/k)q) such tuples). For each such tuple (x(1), …, 
x(q)), we will compute Qagg(x(1), …, x(q), b(q+1), …, 
b(d))=the aggregate of the values of the following entries 
(y(q+1), …, y(d)) of BP(x(1), …, x(q)): y(j) is either an 
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entry y(j)=b(j) or a block y(j)=blk(j, b(j)) (thus, we 
consider O(2d-q)=O(1) tuples (y(q+1), …, y(d))). The 
answer to the query is the aggregate of the values 
Qagg(x(1), …, x(q), b(q+1), …, b(d)), over all the 
considered tuples (x(1), …, x(q)). Thus, a query takes 
O((k+n/k)q) time. We can choose the parameters k and q 
as we see fit, possibly according to the expected ratio 
between queries and updates. Note that when k=n1/2 and 
q=d, we obtain O(1) update time and O(nd/2) query time; 
if q=0 we move to the other end of the spectrum, where 
an update takes O(nd/2) time and a query takes O(1) time. 
If both queries and updates are equally probable, we can 
choose q=d/2 (and k=n1/2), which, for even d, leads to 
O(nd/4) query and update times. 
 
 
3.3 Multidimensional Medians 
We consider n points on the real line, each having an x-
coordinate x(i) and a weight w(i) (1≤i≤n). We want to 
place (at most) K intervals of fixed length L, such that 
the total sum of distances from the given points to the 
intervals is minimum. The distance from a point x(i) to 
an interval [a,b] is defined as: 0, if (a≤x(i)≤b); min{|x(i)-
a|, |x(i)-b|}, otherwise. The problem of determining 
point K-medians (with fixed length L=0) has been 
studied before [8, 9] and optimal O(n·K) algorithms have 
been given. We will extend those algorithms to the L>0 
case. In order to facilitate the solution to this problem, 
we will add a new point at coordinate x(i)+L (with 
weight 0), for every initial point x(i) (1≤i≤n), thus 
obtaining n’=2·n points. We consider the points sorted in 
ascending order of their coordinates: x(1)≤x(2)≤…≤x(n’). 
For each point i we compute the value pleft(i)=the 
smallest index  such that x(i)-x(pleft(i))≤L. These values 
can be computed in O(n’) time (if the points are sorted), 
with a sliding window-type algorithm. In an optimal 
solution, the medians have the right endpoint positioned 
at the x-coordinate of some point. We will compute the 
following values: Dmin(i,j,0)=the minimum total sum of 
distances of the first i points after placing j intervals and 
the rightmost interval has its right endpoint at x(i); 
Dmin(i,j,1)=the minimum total sum of distances of the 
first i points after placing j intervals and the rightmost 
interval has its left endpoint at an x-coordinate less than 
or equal to x(i). We have the following equations: 
Dmin(0,j,0)= Dmin(0,j,1)=0 and Dmin(i,0,0)=Dmin(i,0,1)= 
+∞, for i>0. For i>0 and j>0, we have: 

{ }∑ −

+=<≤
−−⋅+−=

1)(

1min)(0min ))()(()()1,1,(min)0,,( ipleft

pqipleftp
qxLixqwjpDjiD  (3) 

∑ +=≤≤
−⋅+=

i

pqip
x(p))(x(q)w(q))(p,j,{D)(i,j,D
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     These equations are very similar to the equations used 
in [9] and, thus, the O(n·K) solution presented there can 
be easily adapted. The main difference consists of the 
fact that, when computing Dmin(i,j,0), we only have in the 

appropriate sorted double-ended queue (deque) values 
corresponding to candidate positions p (0≤p<pleft(i)), 
instead of the whole range [0,i-1]; the value 
corresponding to a position i’ is inserted into the deque 
only when we reach a position i, such that i’<pleft(i). 
     A well-known case of the interval K-median problem 
is where K=1. Like in the general case, we add the n 
extra points x(i)+L with zero weights, obtaining n’=2·n 
points. We will now slide the interval from left to right, 
placing its right endpoint at every point. While sliding 
the interval, we will maintain four values: wdleft, wdright 
and wleft, wright, representing the total weighted distance 
of the points on the left (right) side of the interval and 
the total weight of these points. We assign a type type(i) 
to every point i: type(i)=0 if it is one of the original 
points and type(i)=-j if point i was added as the extra 
point corresponding to point j (thus, x(i)=x(j)+L). 
Afterwards, we sort the points in increasing order of 
their coordinates and renumber them in this order 
(including the negative type(i) values). The pseudocode 
below presents the algorithm. We consider the points 
sorted in increasing order of their coordinates: 
Interval-1-Median(): 
right=1; wdleft=wleft=0; wright=sum of the values w(i) (2≤i≤n) 
wdm=wdc=wdright=sum of the values (x(i)-x(1))·w(i) (2≤i≤n) 
for i=2 to n’ do { 
  wdright=wdright-wright·(x(i)-x(i-1)); wright=wright-w(i) 
wdleft=wdleft+wleft·(x(i)-x(i-1)) 
if (type(i)<0) then { wleft=wleft+w(-type(i)) } 
wdm=min{wdm, wdright+wdleft} 
wdc=min{wdc, max{wdright, wdleft}} // only for L=0 } 

     wdm is the minimum sum of weighted distances, 
corresponding to the interval 1-median. In the 
multidimensional case we are given n d-dimensional 
weighted points, at coordinates (x(i,1),…,x(i,d)) and with 
weights w(i) (1≤i≤n). We want to place 1 hyper-
rectangle with side lengths L(j), 1≤j≤d (L(j) is the side 
length in dimension j) such that the sum of the distances 
(L1) from the points to the hyper-rectangle is minimized. 
The distance from a point i to a hyper-rectangle whose 
lower corner is at (xr(1), …, xr(d)) is: 

∑
= ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+>+−⋅
<−⋅

+≤≤
d

1j L(j)xr(j)j) x(i,ifL(j))),(xr(j)j)(x(i,w(j)
xr(j)j) x(i,ifj)),x(i,(xr(j)w(j)

L(j)xr(j)j)x(i, xr(j)if0,
 (5) 

     We can decompose the problem into d one-
dimensional problems. For each dimension j, we can 
find the coordinate xr(j) independently of the other 
dimensions, by solving a 1D interval 1-median problem, 
considering points i (1≤i≤n) with x-coordinates equal to 
x(i,j) and having weights w(i), and the length of the 
interval median is L(j). 
     A situation which arises often in multidimensional 
data analysis is that of computing the median of a 
subrange of the given multidimensional data (using the 
L1 metric). Let’s consider the 1D case first and see how 
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we can support efficient range weighted median queries, 
i.e. Q(i,j)=find the sum of weighted distances from the 
median of the points x(r), with i≤r≤j, to all the points in 
the range. We will show that, with appropriate 
preprocessing (O(n)), we will be able to answer every 
such query in O(log(n)) time. We define wsum(i,p) (i≤p), 
the sum of the weights of all the points between i and p 
(inclusive), wdsumLR(i,p)=the sum of the weighted 
distances from every point j (i≤j≤p) to point p, and 
wdsumRL(i,p)=the sum of the weighted distances from 
every point j (i≤j≤p) to point i. With O(n) preprocessing, 
we can compute each of these values in O(1) time. We 
compute wpsum(i)=the sum of the weights from point 1 
to point i (wpsum(0)=0 and wpsum(i≥1)=w(i)+wpsum(i-
1)), wdpsum(i)=the sum of the values w(j)·x(j) (1≤j≤i): 
wdpsum(0)=0 and wdpsum(i≥1)=w(i)·x(i)+wdpsum(i-1) 
(obviously, all of these values can be computed in O(n) 
time overall). Then, wsum(i,p)=wpsum(p)-wpsum(i-1), 
wdsumLR(i,p)=wsum(i,p)·x(p) - (wdpsum(p)-wdpsum(i-
1)), and wdsumRL(i,p) = (wdpsum(p)-wdpsum(i-1))-
wsum(i,p)·x(i). With these values, we can binary search 
the largest value r between i and j, such that wsum(r+1, 
j)-wsum(i,r-1)>0 (or r=i if the condition is never met). 
The optimal location ropt of the median is either r or r+1 
(if r+1 is inside the interval [i,j]). The cost of placing the 
median at position ropt is wdsumLR(i,ropt)+ 
wdsumRL(ropt,j). 
     This method can be extended to multiple dimensions, 
as follows. Let’s assume that we have a data cube with d 
dimensions, having m(j) distinct coordinates in each 
dimension j (1≤j≤d) (thus, the cube contains 
m(1)·m(2)·…· m(d) data points). The pth value in the jth 
dimension has an assigned coordinate, x(j,p) (1≤j≤d; 
1≤p≤m(j)). Each value Cube(c(1), …, c(d)) is the weight 
of a point with coordinates (x(1,c(1)), …, x(d, c(d))). We 
want to answer efficiently queries of the following type: 
find the location of the median (under the L1 metric) of 
all the points with the coordinates in the range [a(1), 
b(1)]x…x[a(d), b(d)] (a point (c(1), …, c(d)) is within 
the range if x(j,a(j))≤x(j,c(j))≤x(j,b(j)), for every 1≤j≤d). 
     This multidimensional range weighted median 
problem can be reduced to d 1D median problems. The 
jth such problem considers the range [a(j),b(j)] among 
m(j) distinct points with appropriately chosen weights 
w(j,i) (1≤i≤m(j)). Let’s assume that the median of the jth 
problem is located at x(j,r(j)). The median of all the 
points in the d-dimensional range is located at (x(1,r(1)), 
…, x(d,r(d))). In order to answer range weighted median 
queries, we will first construct d data cubes with the 
same size as the initial Cube: DCubej(c(1), …, 
c(d))=x(j,c(j))·Cube(c(1), …, c(d)). For each such data 
cube j (1≤j≤d), we will construct a prefix sum data cube: 
PSDCubej(b(1), …, b(d))=the sum of the values 
DCubej(c(1), …, c(d)), with 1≤c(j)≤b(j) (for every 

1≤j≤d). As was shown in [6], each prefix sum data cube 
can be computed in O(nd·d) time. 
     Let’s denote by RangeSum(X, [u(1), v(1)], …, [u(d), 
v(d)]) the sum of the values X(c(1), …, c(d)), with 
u(j)≤c(j)≤v(j) (1≤j≤d); if some v(j)=0, then the sum is 0. 
Using PSDCubej, we can compute RangeSum(Dcubej, 
[u(1), v(1)], …, [u(d), v(d)]) in O(2d)=O(1) time. We 
will also compute a prefix sum data cube for the initial 
cube: PSCube(b(1), …, b(d)) is the sum of all the values 
Cube(c(1), …, c(d)), with 1≤c(j)≤b(j) (for every 1≤j≤d). 
     With these data cubes, we can solve the range 
weighted median problem for every dimension j (1≤j≤d) 
as follows. For the jth dimension, the interval [a(j), b(j)] 
is the 1D interval of points on which we will focus; this 
interval has b(j)-a(j)+1 points, each point p (a(j)≤p≤b(j)) 
having the coordinate x(j,p) and a weight w(p)= 
RangeSum(Cube, [u(k), v(k)] (1≤k≤d)), where 
u(j)=v(j)=p and u(j’)=a(j’) and v(j’)=b(j’) (for 1≤j’≤d, 
j’≠j). We now have to show how to compute the values 
wsum(i,p), wdsumLR(i,p) and wdsumRL(i,p). wsum(i,p) 
is RangeSum(Cube, [u(k), v(k)] (1≤k≤d)), where u(j)=i, 
v(j)=p, and u(j’)=a(j’) and v(j’)=b(j’) (for 1≤j’≤d, j’≠j). 
Let’s denote by wdsum(i,p)=RangeSum(DCubej, [u(k), 
v(k)] (1≤k≤d)), where u(j)=i, v(j)=p, and u(j’)=a(j’) and 
v(j’)=b(j’) (for 1≤j’≤d, j’≠j). We have: wdsumLR(i,p)= 
wsum(i,p)·x(j,p)-wdsum(i,p) and wdsumRL(i,p)= 
wdsum(i,p)-wsum(i,p)·x(j,i). We can compute every 
value wsum(i,p), wdsumLR(i,p) and wdsumRL(i,p) in 
O(2d)=O(1) time. Thus, we can find r(j) in O(log(n)) 
time. The overall time complexity is O(d·log(n))= 
O(log(n)) (since d is a constant). 
 
 
3.4 Multidimensional Range Selection 
We consider d sorted arrays w(1), …, w(d), of size n 
(w(i,j)≤w(i,j+1), 1≤i≤d, 1≤j≤n-1). We want to select the 
kth smallest weight in the set of points with coordinates 
(c(1), …, c(d)) (1≤c(i)≤n, 1≤i≤d), where the weight of a 
point (c(1), …, c(d)) is (w(1,c(1)) op w(2, c(2)) op … 
w(d,c(d))), where op is + (addition), * (multiplication) or 
max. If O(nd) storage is available, we could store all the 
point weights and then select the kth smallest weight in 
O(nd·(d+log(nd))), by sorting the weights, or in O(nd·d) 
time, by using QuickSelect. Instead, we will binary 
search the kth smallest weight wk in the range 
[0,WMAX=(w(1,n) op … op w(d,n))]. The feasibility test 
for a candidate weight wt consists of computing the 
number of points p whose weight is at most wt. if p≥k, 
then wt≥wk; otherwise, wt<wk. Computing p is easy 
when op=max. For each i (1≤i≤d) we compute 
limit(i)=the largest index j (0≤j≤n) such that w(i,j)≤wt 
(using binary search). We consider w(i,0)=-∞. Then, 
p=limit(1)·…·limit(d). The time complexity of the 
feasibility test is O(d·log(n)). The other cases can be 
solved by the following recursive function: 
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ComputeP(di, wt): 
if (di=1) then { 
  binary search the largest index j (0≤j≤n), s.t. w(1,j)≤wt 
  return j } else { // di≥2 
  p=0;  for j=1 to n do p=p+ComputeP(di-1, wt op-1 w(di, j)) 
  return p } 
     op-1 denotes the inverse operation of op (i.e. op-1=- 
for op=+, and op-1=/ for op=*). The time complexity of 
the feasibility test for op=+ or * is O(nd-1·log(n)). The 
overall complexity of the algorithm is obtained by 
multiplying the complexity of the feasibility test by 
log(WMAX). When the weights are integers, the 
algorithm finds the exact solution. In case of real 
numbers, it finds the kth smallest weight with any fixed 
arbitrary precision ε>0 (the binary search ends when the 
length of the search interval is smaller than ε). If O(nq) 
storage is available (1≤q≤d/2), then we could use the 
following technique. We consider the first q dimensions 
and generate and store the (multi)set S1 of all the O(nq) 
“sums”: (w(1,c(1)) op w(2, c(2)) op … op w(q, c(q))), 
with 1≤c(i)≤n, 1≤i≤q. Then, we sort all these “sums” and 
denote by S1(j) the jth smallest sum in S1. Afterwards, we 
generate sequentially each of the O(nd-q) “sums” 
considering the dimensions q+1, …, d. For each such 
“sum” S=(w(q+1,c(q+1)) op w(q+2, c(q+2)) op … op 
w(d,c(d))), with 1≤c(i)≤n, q+1≤i≤d, we binary search the 
largest index j, such that S1(j)≤(wt op-1 S) (j may be 0), 
where wt is the candidate weight. The sum of all these 
indices j is the number p used by the feasibility test. The 
time complexity of this approach is O(nmax{q,d-q}·log(nq)). 
ComputeP is a particular case of this more general 
solution, with q=1. 
     Let’s denote by ww(k) the kth smallest weight among 
all the points (1≤k≤nd). We now want to be able to 
compute efficiently an aggregate agg of the k smallest 
weights, where agg=op=+, * or max. When agg=max, 
the answer is ww(k), since ww(i)≤ww(i+1) (1≤i≤nd-1). 
For the other cases, we could compute all the weights 
ww(1), …, ww(k), but this would be too inefficient. We 
will use the same binary search algorithm as before, but 
we also compute the prefix “aggregate” array PS1, such 
that PS1(j)=(S1(1) agg S1(2) agg … agg S1(j)). We have 
PS1(j)=PS1(j-1) agg S1(j) (for j≥1) and PS1(0)=0 for 
agg=+ and 1 for agg=*. We will compute a value pagg, 
initialized to 0 (for agg=+) or 1 (for agg=*). Within the 
feasibility test, when computing for each “sum” S of the 
remaining O(nd-q) “sums” the largest index j such that 
(S1(j) agg S)≤wt, we increment p by j and we set pagg to 
(pagg agg PS1(j) agg mop(S, j)), where mop(u,v)=u·v for 
agg=+, and mop(u,v)=uv for agg=*. At the end of the 
binary search, we obtain the weight ww(k), together with 
the corresponding values p and pagg. It is possible that 
p≠k, when the weights are not distinct. The aggregate of 
the k smallest weights will be (pagg agg mop(ww(k), k-
p)). 

4   Conclusions 
In this paper we presented several novel 
multidimensional data structures and techniques for 
computing range aggregate queries efficiently in 
multidimensional databases (modeled as data cubes). 
The techniques reduce the time complexity dramatically, 
compared to the naive solutions. The proposed methods 
were thoroughly analyzed, mostly from a theoretical 
perspective. They have many applications in a wide 
range of domains, as was shown in Section 2. 
     Efficient range query techniques and data structures 
were developed in the context of OLAP data cubes [6], 
multidimensional databases, data compression [7], and 
even job and communication scheduling [5]. Computing 
the median of a set of points has applications in 
personnel scheduling problems [9]. As mentioned in the 
introduction, the presented techniques can be used in 
order to efficiently provide accurate input data to 
decision making optimization techniques [1, 2, 3].  
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