
Multidimensional Data Structures and Techniques for Efficient Decision
Making

MADALINA ECATERINA ANDREICA

The Bucharest Academy of Economic Studies
6, Romana Square, District 1, Bucharest

ROMANIA
madalina.andreica@gmail.com

MUGUREL IONUT ANDREICA

Computer Science and Engineering Department
Politehnica University of Bucharest

Splaiul Independentei 313, sector 6, Bucharest
ROMANIA

mugurel.andreica@cs.pub.ro https://mail.cs.pub.ro/~mugurel.andreica

NICOLAE CATANICIU
National Scientific Research Institute for Labor and Social Protection

6-8 Povernei Str., District 1, Bucharest
ROMANIA

ncataniciu@incsmps.ro

Abstract: - In this paper we present several novel efficient techniques and multidimensional data structures which can
improve the decision making process in many domains. We consider online range aggregation, range selection and
range weighted median queries; for most of them, the presented data structures and techniques can provide answers in
polylogarithmic time. The presented results have applications in many business and economic scenarios, some of
which are described in detail in the paper.

Key-Words: - Decision making, Multidimensional data structures, Risk management, Range aggregation query, Range
selection query, Range minimum query, Weighted median.

1 Introduction
The process of decision making is both a permanent
necessity and a challenge in many economic and
industrial fields, like risk management, banking,
selection of financing means, such as leasing or credit,
bonity analysis of clients, e-commerce, operational
research, and many others. The importance of the
decision making process has been confirmed by the large
number of publications which develop and propose
efficient decision making techniques. These techniques
can be classified into several broad categories, such as
those handling certain and complete information, those
using uncertain data and objectives, and those based on
risk assessment. Some of the best known decision
making optimization methods are multi-attribute and
multi-objective decision making [1], fuzzy decision rules
[2] and dynamic programming [3].
 In order for the decision making process to obtain
significant results, we need two factors: a good
optimization technique and accurate input values.
Although a lot of effort has been directed towards

developing highly efficient decision making
optimization methods and models, the process of
obtaining accurate input information as quickly as
possible seems to have been mostly overlooked. This
paper presents several techniques and data structures for
obtaining aggregate information efficiently from a large
database, which can later be used as input data in a
decision process.
 The main scenario in which we consider the
implementation of the presented techniques is the
following: A large database, modeled as a
multidimensional data cube, is available on a central
server, which can be accessed by multiple clients (e.g.
economic agents). Every client can ask at any time for
the computation of some aggregate information (e.g.
min, max, sum, average, median) over several (large)
portions of the database. Different clients may be
interested in different parts of the database. Using
standard techniques in such cases would lead to
unacceptably high response times, especially in the case
of many clients accessing the database simultaneously.
On the other hand, the techniques we propose in this

Proceedings of the 10th WSEAS Int. Conference on MATHEMATICS and COMPUTERS in BUSINESS and ECONOMICS

ISSN: 1790-5109 249 ISBN: 978-960-474-063-5

paper lead to response times which are several orders of
magnitude better than the common methods. The
considered scenario occurs, for instance, in the case of
large companies or banks which have all of their data
stored in a data center which is accessed by their
geographically spread headquarters and subsidiaries.
 The rest of this paper is structured as follows. Section
2 presents several use cases for the implementation of
the techniques and data structures which are introduced
in Section 3. In Section 4 we discuss related work and
we conclude.

2 Use Cases
In this section we present several situations where our
techniques can be used successfully. Let’s consider the
case of a large retail company which handles thousands
of transactions per day (both in department stores and
over the Internet). The information associated to each
transaction (e.g. date and time, purchase price, quantity,
personal information about the customer, customer’s
answers to relevant surveys) is carefully stored in a
central database. Periodically, the company’s managers
have to decide upon the price, quantity and (types of)
products which should keep being sold or which should
be taken off the market or improved, or if any new
products should be launched. In this decision making
process, they need quick access to aggregate information
like: the total amount of sales of certain types of
products to customers of a certain age and income range;
the degree of satisfaction of each consumer target group
which acquired products with certain characteristics; the
percentage of the sales of each product from the total
amount of sales; the most likely characteristics (age and
income) of the highest paying consumers from a given
age and income range.
 Let’s consider now a financial consulting company
(e.g. specialized on risk assessment and management)
which owns a private database with information
regarding the outcomes of several strategic decisions
made by multiple companies over a large period of time.
A company is characterized by multiple parameters, such
as total income, profit, investments, financial sources,
market share, supply characteristics on the market, and
so on. A strategic decision is also characterized by
several specific parameters. When advising a client, the
consulting company may compute an aggregate of the
outcomes of the strategic decisions made by the
competing companies with similar characteristics to the
customer’s company (i.e. using intervals containing the
parameter values of the customer’s company).
 Another example consists of a bank which needs to
perform a bonity analysis of its clients soliciting
different credits. This is a crucial decision making
process, especially in the context of the present global

financial crisis. This is why the banks should use as
much available data as possible and obtain the results in
the most efficient manner.
 On the other hand, there are several situations when
the access to available data should be significantly
improved. For instance, let’s consider the case of a
leasing company that wants to access some aggregate
information regarding the financial status of several
competing leasing companies on the market during a
specified period of time. At the moment, the company
can only obtain the financial balance sheets from the
Ministry of Finance, from which it can compute the
aggregate information by itself. It would be more
efficient if the Ministry provided an e-government
service for retrieving the required aggregate information
automatically. All the presented use cases can benefit
from using the techniques and data structures presented
in this paper, as most of the desired information can be
easily expressed as range aggregate queries.

3 Multidimensional Data Structures

3.1 Multidimensional Range Minimum Queries
The RMQ technique [4] is very versatile and can be
extended to multi-dimensional arrays. Each query asks
for the minimum (maximum) value in a range
[r(1,1),r(1,2)] x … x [r(d,1),r(d,2)] of a d-dimensional
array a. W.l.o.g., we assume that the array contains n
cells in every dimension (and, thus, nd cells overall). We
will consider the most general case, in which the
dimensions can be split into e≤d groups (group(j)=the
group of dimension j). Each group g (1≤g≤e) contains a
base dimension bd(g). The length of the interval of any
query for every dimension j is always equal to (f(j) x the
length of the query interval in dimension bd(group(j))),
with f(j)≥1 (f(j)=1 for j=bd(group(j))). Since all the
dimensions except the base dimensions are “linked” to
the base dimension in their group, we will compute the
following values: m(c(1), …, c(d), k(1), …, k(e)) = the
minimum value in a range where r(j,1)=c(j) and the
length of the query interval in dimension bd(g) is 2k(g).
We will consider the sequences (k(1), …, k(e)) in
increasing lexicographic order. When at least one k(*)
value is larger than 0, we can use eq. (1), where q(u)=1,
if (k(group(u))>0), and 0, otherwise.

)}1)(())((),...,1)1(())1((
)...,1,...(2)()()()((

{min))(),...,1(),(),...,1((

1))((

1),()(
}1,0{))(),...,1((

−⋅−⋅
≤≤⋅⋅⋅+

=

−

≤≤≤
∈

ekebdqkbdq
duufusuqucm

ekkdccm

ugroupk

duuqus
dss d

 (1)

 A better way to compute m(c(1), …, c(d), k(1), …,
k(e)) is to select just one value k(j)>0, set q(j)=1, replace
q(bd(u))·(k(u)-1) by k(u) in eq. (1) (for u≠j), and instead

Proceedings of the 10th WSEAS Int. Conference on MATHEMATICS and COMPUTERS in BUSINESS and ECONOMICS

ISSN: 1790-5109 250 ISBN: 978-960-474-063-5

of considering all the tuples (s(1), …, s(d)) in eq. (1), we
can consider only the tuples (s(1), …, s(d)) with s(p)=0
or 1, only if group(p)=j (and 0, if group(p)≠j). When all
the k(*) values are 0, we distinguish between two cases.
If every group contains only one dimension or all the f(j)
values of the non-base dimensions j are 1, then m(c(1),
…, c(d))=a(c(1), …, c(d)). Otherwise, the problem is
reduced to computing the minimum value in a range
[r(1,1),r(1,2)] x … x [r(d,1),r(d,2)], where r(j,1)=r(j,2)
if j is a base dimension in its group, or r(j,2)=r(j,1)+f(j)-
1, if j is not a base dimension. We can handle this case as
O(nd) (d-e)-dimensional RMQ queries (one for every
tuple of coordinates). The (d-e) dimensions are the
remaining (d-e) non-base dimensions, grouped as
follows. We remove the base dimension bd(g) from each
group g and set as the new base dimension of g the non-
base dimension j’ in g with the minimum value f(j’) (if it
exists). The new f(*) values of the non-base dimensions
j’’ from a group g will be f(j’’)/f(j’) (if this is not an
integer, we place j’’ in a separate group). In order to
compute the minimum value in a given range
[r(1,1),r(1,2)]x … x[r(d,1),r(d,2)], we compute the
values k’(j)=floor(log2(r(j,2)-r(j,1)+1)) and set
k(g)=k’(bd(g)) for every group g. The answer is:

)}(),...,1()...,1)),...(1,(1

2)()2,(()()1,(({min))((

}1,0{))(),...,1((

ekkduur

ufurusurm ugroupk

dss d

≤≤−+

⋅−⋅+
∈ (2)

 The preprocessing time complexity is at most
O(2d·d·nd·logd(n)). A query is answered in O(2d) time. It
is obvious that the min function can immediately be
replaced by max, obtaining identical results for range
maximum queries.

3.2 Multidimensional Range Aggregate Queries
In this section we consider several alternatives for
multidimensional range aggregate queries over a
(dynamic) data cube, in which the aggregate function is
invertible. The data cube has a fixed number d of
dimensions and has m(j) entries in every dimension j
(1≤j≤d); the entries are numbered from 1 to m(j). A cell
of the data cube has coordinates (c(1), …, c(d))
(1≤c(j)≤m(j) ; 1≤j≤d) and has a value Cube(c(1), …,
c(d)). A query Q(a(1), b(1), …, a(d), b(d)) consists of
computing an aggregate (e.g. sum, product, xor) over the
values of the cells (c(1), …, c(d)) whose coordinates are
in the range: a(j)≤c(j)≤b(j) (1≤j≤d). An update U(u, c(1),
…, c(d)) modifies the value of the cell (c(1), …, c(d)) by
the value u (e.g. it increases/multiplies it by or sets it to
u). We are interested in supporting both types of
operations efficiently. The straight-forward solution is to
update every cell in O(1) time (just change the value of
Cube(c(1), …, c(d))) and compute the aggregate in O(nd)
time (n=max{m(1), …, m(d)}), by traversing every cell
in the given range. For the approaches we present next,

we will assume that the query has the form Q(b(1), …,
b(d)) and asks for an aggregate of the values of all the
cells in the range [1,b(1)]·…·[1,b(d)] (i.e. a prefix
subcube of the data cube). The aggregate of any arbitrary
range can be computed as a “sum” of the aggregates of
O(2d)=O(1) prefix subcubes [6]. Thus, considering only
prefix subcube queries is enough. In fact, we can
compute a prefix “sum” cube, with which we can
compute the “sum” (aggregate) of a prefix subcube in
O(1) time. However, when an update occurs, we need to
recompute the prefix “sum” cube (which takes O(nd)
time). Another solution is based on constructing a multi-
dimensional binary indexed tree [7], which supports
updates and prefix subcube queries in O(logd(n)) time
each (with only O(nd) memory consumption). Yet
another solution is based on using a multidimensional
block partitioning [5], which supports updates in O(nd/2)
time and queries in O(1) time. In this section we propose
a novel data structure, which supports both updates and
queries in O(nd/4) time. The main idea is to divide the
dimensions into two disjoint sets: the first set consists of
q dimensions and the second set consists of the
remaining d-q dimensions. The O(n) entries in every
dimension j are split into O(n/k) blocks (where k is a
function of n) of (approximately) k consecutive entries
each. The blocks are numbered starting with 1, as they
appear in increasing order (in increasing order of the
entries they contain). Moreover, for every entry p in the
jth dimension we know the block number of the block
which contains the entry, blk(j,p). For every combination
(x(1), x(2), …, x(q)), where x(j) is either an entry in
dimension j or a block in dimension j (thus, there are
O((n+n/k)q) tuples overall), we maintain a
multidimensional block partition BP(x(1), …, x(d)) of the
remaining d-q dimensions.
 When an update U(u, c(1), …, c(d)) occurs, we
proceed as follows. We consider all the tuples (x(1), …,
x(q)), where x(j) is either an entry x(j)=c(j), or a block
x(j)=blk(j, c(j)) (1≤j≤q; we consider O(2q)=O(1) tuples
overall). For each such tuple, we will update its
multidimensional block partition BP(x(1), …, x(d)). We
consider all the tuples (y(q+1), …, y(d)), where y(j) is
either an entry y(j)≥c(j) with blk(j, y(j))=blk(j, c(j)), or a
block y(j)>blk(j, c(j)) (q+1≤j≤d; we consider O((k+n/k)d-

q) such tuples). We update the cell (y(q+1), …, y(d)) of
BP(x(1), …, x(q)) by u (e.g. add u to it, multiply it by u,
xor it with u). Thus, an update takes O((k+n/k)d-q) time.
 In order to find the answer to a query Q(b(1), …,
b(d)), we consider all the tuples (x(1), …, x(q)), where
x(j) is either an entry x(j)≤b(j) with blk(j, x(j))=blk(j,
b(j)), or a block x(j)<blk(j, b(j)) (we consider
O((k+n/k)q) such tuples). For each such tuple (x(1), …,
x(q)), we will compute Qagg(x(1), …, x(q), b(q+1), …,
b(d))=the aggregate of the values of the following entries
(y(q+1), …, y(d)) of BP(x(1), …, x(q)): y(j) is either an

Proceedings of the 10th WSEAS Int. Conference on MATHEMATICS and COMPUTERS in BUSINESS and ECONOMICS

ISSN: 1790-5109 251 ISBN: 978-960-474-063-5

entry y(j)=b(j) or a block y(j)=blk(j, b(j)) (thus, we
consider O(2d-q)=O(1) tuples (y(q+1), …, y(d))). The
answer to the query is the aggregate of the values
Qagg(x(1), …, x(q), b(q+1), …, b(d)), over all the
considered tuples (x(1), …, x(q)). Thus, a query takes
O((k+n/k)q) time. We can choose the parameters k and q
as we see fit, possibly according to the expected ratio
between queries and updates. Note that when k=n1/2 and
q=d, we obtain O(1) update time and O(nd/2) query time;
if q=0 we move to the other end of the spectrum, where
an update takes O(nd/2) time and a query takes O(1) time.
If both queries and updates are equally probable, we can
choose q=d/2 (and k=n1/2), which, for even d, leads to
O(nd/4) query and update times.

3.3 Multidimensional Medians
We consider n points on the real line, each having an x-
coordinate x(i) and a weight w(i) (1≤i≤n). We want to
place (at most) K intervals of fixed length L, such that
the total sum of distances from the given points to the
intervals is minimum. The distance from a point x(i) to
an interval [a,b] is defined as: 0, if (a≤x(i)≤b); min{|x(i)-
a|, |x(i)-b|}, otherwise. The problem of determining
point K-medians (with fixed length L=0) has been
studied before [8, 9] and optimal O(n·K) algorithms have
been given. We will extend those algorithms to the L>0
case. In order to facilitate the solution to this problem,
we will add a new point at coordinate x(i)+L (with
weight 0), for every initial point x(i) (1≤i≤n), thus
obtaining n’=2·n points. We consider the points sorted in
ascending order of their coordinates: x(1)≤x(2)≤…≤x(n’).
For each point i we compute the value pleft(i)=the
smallest index such that x(i)-x(pleft(i))≤L. These values
can be computed in O(n’) time (if the points are sorted),
with a sliding window-type algorithm. In an optimal
solution, the medians have the right endpoint positioned
at the x-coordinate of some point. We will compute the
following values: Dmin(i,j,0)=the minimum total sum of
distances of the first i points after placing j intervals and
the rightmost interval has its right endpoint at x(i);
Dmin(i,j,1)=the minimum total sum of distances of the
first i points after placing j intervals and the rightmost
interval has its left endpoint at an x-coordinate less than
or equal to x(i). We have the following equations:
Dmin(0,j,0)= Dmin(0,j,1)=0 and Dmin(i,0,0)=Dmin(i,0,1)=
+∞, for i>0. For i>0 and j>0, we have:

{ }∑ −

+=<≤
−−⋅+−=

1)(

1min)(0min))()(()()1,1,(min)0,,(ipleft

pqipleftp
qxLixqwjpDjiD (3)

∑ +=≤≤
−⋅+=

i

pqip
x(p))(x(q)w(q))(p,j,{D)(i,j,D

1min0min 0min1 (4)

 These equations are very similar to the equations used
in [9] and, thus, the O(n·K) solution presented there can
be easily adapted. The main difference consists of the
fact that, when computing Dmin(i,j,0), we only have in the

appropriate sorted double-ended queue (deque) values
corresponding to candidate positions p (0≤p<pleft(i)),
instead of the whole range [0,i-1]; the value
corresponding to a position i’ is inserted into the deque
only when we reach a position i, such that i’<pleft(i).
 A well-known case of the interval K-median problem
is where K=1. Like in the general case, we add the n
extra points x(i)+L with zero weights, obtaining n’=2·n
points. We will now slide the interval from left to right,
placing its right endpoint at every point. While sliding
the interval, we will maintain four values: wdleft, wdright
and wleft, wright, representing the total weighted distance
of the points on the left (right) side of the interval and
the total weight of these points. We assign a type type(i)
to every point i: type(i)=0 if it is one of the original
points and type(i)=-j if point i was added as the extra
point corresponding to point j (thus, x(i)=x(j)+L).
Afterwards, we sort the points in increasing order of
their coordinates and renumber them in this order
(including the negative type(i) values). The pseudocode
below presents the algorithm. We consider the points
sorted in increasing order of their coordinates:
Interval-1-Median():
right=1; wdleft=wleft=0; wright=sum of the values w(i) (2≤i≤n)
wdm=wdc=wdright=sum of the values (x(i)-x(1))·w(i) (2≤i≤n)
for i=2 to n’ do {
 wdright=wdright-wright·(x(i)-x(i-1)); wright=wright-w(i)
wdleft=wdleft+wleft·(x(i)-x(i-1))
if (type(i)<0) then { wleft=wleft+w(-type(i)) }
wdm=min{wdm, wdright+wdleft}
wdc=min{wdc, max{wdright, wdleft}} // only for L=0 }

 wdm is the minimum sum of weighted distances,
corresponding to the interval 1-median. In the
multidimensional case we are given n d-dimensional
weighted points, at coordinates (x(i,1),…,x(i,d)) and with
weights w(i) (1≤i≤n). We want to place 1 hyper-
rectangle with side lengths L(j), 1≤j≤d (L(j) is the side
length in dimension j) such that the sum of the distances
(L1) from the points to the hyper-rectangle is minimized.
The distance from a point i to a hyper-rectangle whose
lower corner is at (xr(1), …, xr(d)) is:

∑
= ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+>+−⋅
<−⋅

+≤≤
d

1j L(j)xr(j)j) x(i,ifL(j))),(xr(j)j)(x(i,w(j)
xr(j)j) x(i,ifj)),x(i,(xr(j)w(j)

L(j)xr(j)j)x(i, xr(j)if0,
 (5)

 We can decompose the problem into d one-
dimensional problems. For each dimension j, we can
find the coordinate xr(j) independently of the other
dimensions, by solving a 1D interval 1-median problem,
considering points i (1≤i≤n) with x-coordinates equal to
x(i,j) and having weights w(i), and the length of the
interval median is L(j).
 A situation which arises often in multidimensional
data analysis is that of computing the median of a
subrange of the given multidimensional data (using the
L1 metric). Let’s consider the 1D case first and see how

Proceedings of the 10th WSEAS Int. Conference on MATHEMATICS and COMPUTERS in BUSINESS and ECONOMICS

ISSN: 1790-5109 252 ISBN: 978-960-474-063-5

we can support efficient range weighted median queries,
i.e. Q(i,j)=find the sum of weighted distances from the
median of the points x(r), with i≤r≤j, to all the points in
the range. We will show that, with appropriate
preprocessing (O(n)), we will be able to answer every
such query in O(log(n)) time. We define wsum(i,p) (i≤p),
the sum of the weights of all the points between i and p
(inclusive), wdsumLR(i,p)=the sum of the weighted
distances from every point j (i≤j≤p) to point p, and
wdsumRL(i,p)=the sum of the weighted distances from
every point j (i≤j≤p) to point i. With O(n) preprocessing,
we can compute each of these values in O(1) time. We
compute wpsum(i)=the sum of the weights from point 1
to point i (wpsum(0)=0 and wpsum(i≥1)=w(i)+wpsum(i-
1)), wdpsum(i)=the sum of the values w(j)·x(j) (1≤j≤i):
wdpsum(0)=0 and wdpsum(i≥1)=w(i)·x(i)+wdpsum(i-1)
(obviously, all of these values can be computed in O(n)
time overall). Then, wsum(i,p)=wpsum(p)-wpsum(i-1),
wdsumLR(i,p)=wsum(i,p)·x(p) - (wdpsum(p)-wdpsum(i-
1)), and wdsumRL(i,p) = (wdpsum(p)-wdpsum(i-1))-
wsum(i,p)·x(i). With these values, we can binary search
the largest value r between i and j, such that wsum(r+1,
j)-wsum(i,r-1)>0 (or r=i if the condition is never met).
The optimal location ropt of the median is either r or r+1
(if r+1 is inside the interval [i,j]). The cost of placing the
median at position ropt is wdsumLR(i,ropt)+
wdsumRL(ropt,j).
 This method can be extended to multiple dimensions,
as follows. Let’s assume that we have a data cube with d
dimensions, having m(j) distinct coordinates in each
dimension j (1≤j≤d) (thus, the cube contains
m(1)·m(2)·…· m(d) data points). The pth value in the jth
dimension has an assigned coordinate, x(j,p) (1≤j≤d;
1≤p≤m(j)). Each value Cube(c(1), …, c(d)) is the weight
of a point with coordinates (x(1,c(1)), …, x(d, c(d))). We
want to answer efficiently queries of the following type:
find the location of the median (under the L1 metric) of
all the points with the coordinates in the range [a(1),
b(1)]x…x[a(d), b(d)] (a point (c(1), …, c(d)) is within
the range if x(j,a(j))≤x(j,c(j))≤x(j,b(j)), for every 1≤j≤d).
 This multidimensional range weighted median
problem can be reduced to d 1D median problems. The
jth such problem considers the range [a(j),b(j)] among
m(j) distinct points with appropriately chosen weights
w(j,i) (1≤i≤m(j)). Let’s assume that the median of the jth
problem is located at x(j,r(j)). The median of all the
points in the d-dimensional range is located at (x(1,r(1)),
…, x(d,r(d))). In order to answer range weighted median
queries, we will first construct d data cubes with the
same size as the initial Cube: DCubej(c(1), …,
c(d))=x(j,c(j))·Cube(c(1), …, c(d)). For each such data
cube j (1≤j≤d), we will construct a prefix sum data cube:
PSDCubej(b(1), …, b(d))=the sum of the values
DCubej(c(1), …, c(d)), with 1≤c(j)≤b(j) (for every

1≤j≤d). As was shown in [6], each prefix sum data cube
can be computed in O(nd·d) time.
 Let’s denote by RangeSum(X, [u(1), v(1)], …, [u(d),
v(d)]) the sum of the values X(c(1), …, c(d)), with
u(j)≤c(j)≤v(j) (1≤j≤d); if some v(j)=0, then the sum is 0.
Using PSDCubej, we can compute RangeSum(Dcubej,
[u(1), v(1)], …, [u(d), v(d)]) in O(2d)=O(1) time. We
will also compute a prefix sum data cube for the initial
cube: PSCube(b(1), …, b(d)) is the sum of all the values
Cube(c(1), …, c(d)), with 1≤c(j)≤b(j) (for every 1≤j≤d).
 With these data cubes, we can solve the range
weighted median problem for every dimension j (1≤j≤d)
as follows. For the jth dimension, the interval [a(j), b(j)]
is the 1D interval of points on which we will focus; this
interval has b(j)-a(j)+1 points, each point p (a(j)≤p≤b(j))
having the coordinate x(j,p) and a weight w(p)=
RangeSum(Cube, [u(k), v(k)] (1≤k≤d)), where
u(j)=v(j)=p and u(j’)=a(j’) and v(j’)=b(j’) (for 1≤j’≤d,
j’≠j). We now have to show how to compute the values
wsum(i,p), wdsumLR(i,p) and wdsumRL(i,p). wsum(i,p)
is RangeSum(Cube, [u(k), v(k)] (1≤k≤d)), where u(j)=i,
v(j)=p, and u(j’)=a(j’) and v(j’)=b(j’) (for 1≤j’≤d, j’≠j).
Let’s denote by wdsum(i,p)=RangeSum(DCubej, [u(k),
v(k)] (1≤k≤d)), where u(j)=i, v(j)=p, and u(j’)=a(j’) and
v(j’)=b(j’) (for 1≤j’≤d, j’≠j). We have: wdsumLR(i,p)=
wsum(i,p)·x(j,p)-wdsum(i,p) and wdsumRL(i,p)=
wdsum(i,p)-wsum(i,p)·x(j,i). We can compute every
value wsum(i,p), wdsumLR(i,p) and wdsumRL(i,p) in
O(2d)=O(1) time. Thus, we can find r(j) in O(log(n))
time. The overall time complexity is O(d·log(n))=
O(log(n)) (since d is a constant).

3.4 Multidimensional Range Selection
We consider d sorted arrays w(1), …, w(d), of size n
(w(i,j)≤w(i,j+1), 1≤i≤d, 1≤j≤n-1). We want to select the
kth smallest weight in the set of points with coordinates
(c(1), …, c(d)) (1≤c(i)≤n, 1≤i≤d), where the weight of a
point (c(1), …, c(d)) is (w(1,c(1)) op w(2, c(2)) op …
w(d,c(d))), where op is + (addition), * (multiplication) or
max. If O(nd) storage is available, we could store all the
point weights and then select the kth smallest weight in
O(nd·(d+log(nd))), by sorting the weights, or in O(nd·d)
time, by using QuickSelect. Instead, we will binary
search the kth smallest weight wk in the range
[0,WMAX=(w(1,n) op … op w(d,n))]. The feasibility test
for a candidate weight wt consists of computing the
number of points p whose weight is at most wt. if p≥k,
then wt≥wk; otherwise, wt<wk. Computing p is easy
when op=max. For each i (1≤i≤d) we compute
limit(i)=the largest index j (0≤j≤n) such that w(i,j)≤wt
(using binary search). We consider w(i,0)=-∞. Then,
p=limit(1)·…·limit(d). The time complexity of the
feasibility test is O(d·log(n)). The other cases can be
solved by the following recursive function:

Proceedings of the 10th WSEAS Int. Conference on MATHEMATICS and COMPUTERS in BUSINESS and ECONOMICS

ISSN: 1790-5109 253 ISBN: 978-960-474-063-5

ComputeP(di, wt):
if (di=1) then {
 binary search the largest index j (0≤j≤n), s.t. w(1,j)≤wt
 return j } else { // di≥2
 p=0; for j=1 to n do p=p+ComputeP(di-1, wt op-1 w(di, j))
 return p }
 op-1 denotes the inverse operation of op (i.e. op-1=-
for op=+, and op-1=/ for op=*). The time complexity of
the feasibility test for op=+ or * is O(nd-1·log(n)). The
overall complexity of the algorithm is obtained by
multiplying the complexity of the feasibility test by
log(WMAX). When the weights are integers, the
algorithm finds the exact solution. In case of real
numbers, it finds the kth smallest weight with any fixed
arbitrary precision ε>0 (the binary search ends when the
length of the search interval is smaller than ε). If O(nq)
storage is available (1≤q≤d/2), then we could use the
following technique. We consider the first q dimensions
and generate and store the (multi)set S1 of all the O(nq)
“sums”: (w(1,c(1)) op w(2, c(2)) op … op w(q, c(q))),
with 1≤c(i)≤n, 1≤i≤q. Then, we sort all these “sums” and
denote by S1(j) the jth smallest sum in S1. Afterwards, we
generate sequentially each of the O(nd-q) “sums”
considering the dimensions q+1, …, d. For each such
“sum” S=(w(q+1,c(q+1)) op w(q+2, c(q+2)) op … op
w(d,c(d))), with 1≤c(i)≤n, q+1≤i≤d, we binary search the
largest index j, such that S1(j)≤(wt op-1 S) (j may be 0),
where wt is the candidate weight. The sum of all these
indices j is the number p used by the feasibility test. The
time complexity of this approach is O(nmax{q,d-q}·log(nq)).
ComputeP is a particular case of this more general
solution, with q=1.
 Let’s denote by ww(k) the kth smallest weight among
all the points (1≤k≤nd). We now want to be able to
compute efficiently an aggregate agg of the k smallest
weights, where agg=op=+, * or max. When agg=max,
the answer is ww(k), since ww(i)≤ww(i+1) (1≤i≤nd-1).
For the other cases, we could compute all the weights
ww(1), …, ww(k), but this would be too inefficient. We
will use the same binary search algorithm as before, but
we also compute the prefix “aggregate” array PS1, such
that PS1(j)=(S1(1) agg S1(2) agg … agg S1(j)). We have
PS1(j)=PS1(j-1) agg S1(j) (for j≥1) and PS1(0)=0 for
agg=+ and 1 for agg=*. We will compute a value pagg,
initialized to 0 (for agg=+) or 1 (for agg=*). Within the
feasibility test, when computing for each “sum” S of the
remaining O(nd-q) “sums” the largest index j such that
(S1(j) agg S)≤wt, we increment p by j and we set pagg to
(pagg agg PS1(j) agg mop(S, j)), where mop(u,v)=u·v for
agg=+, and mop(u,v)=uv for agg=*. At the end of the
binary search, we obtain the weight ww(k), together with
the corresponding values p and pagg. It is possible that
p≠k, when the weights are not distinct. The aggregate of
the k smallest weights will be (pagg agg mop(ww(k), k-
p)).

4 Conclusions
In this paper we presented several novel
multidimensional data structures and techniques for
computing range aggregate queries efficiently in
multidimensional databases (modeled as data cubes).
The techniques reduce the time complexity dramatically,
compared to the naive solutions. The proposed methods
were thoroughly analyzed, mostly from a theoretical
perspective. They have many applications in a wide
range of domains, as was shown in Section 2.
 Efficient range query techniques and data structures
were developed in the context of OLAP data cubes [6],
multidimensional databases, data compression [7], and
even job and communication scheduling [5]. Computing
the median of a set of points has applications in
personnel scheduling problems [9]. As mentioned in the
introduction, the presented techniques can be used in
order to efficiently provide accurate input data to
decision making optimization techniques [1, 2, 3].

References:
[1] C. Resteanu, M. Somodi, M. Andreica, E. Mitan,

Distributed and Parallel Computing in MADM
Domain using the OPTCHOICE Software, Proc. of
the 7th WSEAS Intl. Conf. on Applied Computer
Science, 2007, pp. 376-384.

[2] M. Stoica, D. Nicolae, M. A. Ungureanu, A.
Andreica, M. E. Andreica, Fuzzy Sets and Their
Applications, Proc. WSEAS Intl. Conf. on Math. and
Comp. in Business. and Econ., 2008, pp. 197-202.

[3] H. Ben-Ameur, M. Breton, J. M. Martinez, Dynamic
Programming Approach for Valuing Options in the
GARCH Model, Management Science, Vol. 55, No.
2, 2009, pp. 252-266.

[4] M. A. Bender, M. Farach-Colton, The LCA Problem
revisited, Proc. of the Latin American Symp. on
Theoretical Informatics, Lecture Notes in Computer
Science, vol. 1776, 2000, pp. 88-94.

[5] M. I. Andreica, N. Tapus, Efficient Data Structures
for Online QoS-Constrained Data Transfer
Scheduling, Proc. of the 7th IEEE Intl. Symp. on
Parallel and Distrib. Computing, 2008, pp. 285-292.

[6] C.-T. Ho, R. Agrawal, N. Megiddo, R. Srikant,
Range Queries in OLAP Data Cubes, ACM SIGMOD
Record, Vol. 26, No. 2, 1997, pp. 73-88.

[7] P. M. Fenwick, A New Data Structure for
Cumulative Frequency Tables, Software – Practice
and Experience, Vol. 24, No. 3, 1994, pp. 327-336.

[8] R. Fleischer, M. J. Golin, Y. Zhang, Online
Maintenance of k-Medians and k-Covers on a Line,
Algorithmica, Vol. 45, 2006, pp. 549-567.

[9] M. I. Andreica, R. Andreica, A. Andreica, Minimum
Dissatisfaction Personnel Scheduling, Proc. of the
32nd ARA Congress, 2008, pp. 459–463.

Proceedings of the 10th WSEAS Int. Conference on MATHEMATICS and COMPUTERS in BUSINESS and ECONOMICS

ISSN: 1790-5109 254 ISBN: 978-960-474-063-5

