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Abstract: The phenomena of desynchronization, synchronization, and forced oscillation has been 
investigation using describing function theory for a two input and two output nonlinear system 
containing saturation-type nonlinearities and subjected to high-frequency deterministic signal for the 
purpose of limit cycle quenching. The analytical results have been compared with the results of digital 
simulation/Matlab-Simulink for a typical example varying the nonlinear element. 
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Notation 
B          amplitude of high frequency external signal       
             (dither) 
C1, C2   amplitude of outputs of the two subsystem  
G1, G2  transfer functions of linear elements  
N1, N2   describing functions (DF) of nonlinear   
            elements 
N1i, N2i incremental input DFs of the nonlinear  
            elements 
N1eq     two sinusoidal input DF (DIDF) of nonlinear    
          element N1 
X1, X2   amplitude of input to nonlinear elements 
X1’, X2

’   amplitude of input to nonlinear elements   
            when the system exhibits forced oscillations 
Y1, Y2   amplitude of output (fundamental) of  
            nonlinear elements 
U1, U2  inputs of the two subsystems 
ωf         frequency of high frequency external signal  
ωB        frequency of self oscillations (limit cycle) 
Subscripts 1 and 2, correspond to quantities of two 
subsystems S1 and S2, respectively 
 
1 Introduction 
Recognition of nonlinear self-oscillations or limit 
cycles in multidimensional nonlinear systems as 
they are indeed has had a long history, and is 
closely related to the system stability [1-23]. 
Engineers are continually involved in the design of 
system simply to ensure that it meets the 
performance criterion, which strictly excludes the 
existence of limit cycles [1], [3], [4], [6] and [8]. 

One of the important and interesting methods of ex-
tinguishing such limit cycle is by the employment 
of high-frequency signal to the nonlinear system 
input. The high-frequency signal is usually called 
dither. The use of dither to turn limit cycles off is 
referred to as signal stabilization. In many cases the 
introduction of an extra signal is less expensive 
than actually replacing the nonlinear element [9]. It 
has been extensively investigated by Olden-burger 
and his students [9], among the first to discover this 
phenomenon experimentally and subsequently, to 
provide analytical justification. However, these are 
for single-input and single-output (SISO) systems 
with both deterministic and random inputs. Other 
notable works on signal stabilization of SISO 
systems can be seen from the wealth of literatures 
[4], [6], [9], [13-16]. There are, however, a large 
number of practical industrial problems with two- 
or higher-dimensional nonlinear control 
configurations [1], [4], [18], [19] and the analysis 
of signal stabilization there has a huge significance 
in its own right. Unfortunately, relatively small 
amount of work has been published on forced 
oscillation/signal stabilization of multidimensional 
systems and hence addressed here for a two-
dimensional system subjected to a deterministic 
dither. The describing function (DF) method 
provides a convenient tool and by virtue of its 
inherent approximations leads to a significant 
reduction in the complexity of analysis [1-10], [13-
17], [22], [23]. The dual input describing function 
(DIDF) is analogous to the conventional describing 
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function as far as the manner of using is concerned. 
      Investigation of signal stabilization via 
describing function theory can be executed in two 
stage process [20]. First, by use of DIDF theory, the 
dither and the original nonlinear element are 
replaced with an equivalent nonlinear element, 
whose form implicitly accounts for the presence of 
dither, but which no longer explicitly displays the 
dither signal. Second, the resulting system is made 
the object of a DF analysis to reveal the presence or 
absence of limit cycle [5], [9], [13-17], [20]. The 
variation of amplitude and frequency of limit cycle 
with variation of forcing signal amplitude 
(phenomena of forced oscillations, synchronization 
and desynchronisation) has been analyzed. The 
exact magnitude of dither for which limit cycle is 
extinguished (i.e. synchronization) or induced (i.e. 
desynchronisation) has been found. The technique 
is derived from the basic concept of DIDF, 
incremental input describing function (IDF) and 
relationship between system variables. Apart from 
directness of application, the method outlined has 
the notable advantage that it brings out the 
influence of individual system (effect of 
interaction/coupling) on the forced oscillation 
parameter, and can be applied to a higher-
dimensional system [10], [13]. This technique also 
forms the basis of computer algorithms for 
predicting limit cycle/forced oscillation [10]. This 
rather simple investigation scheme has been 
illustrated through examples and comparison of 
results with digital simulation without loss of 
generality [13], [21]. The system has also been 
simulated using Matlab 6.0 for forced oscillation 
investigation. 
 
2 Signal stabilization In this paper, we 
consider a two-dimensional nonlinear system 
configuration as represented in Fig. 1 with two 
inputs U1 and U2 and the two outputs C1 and C2 and 
saturation as the only nonlinearities present in both 
the subsystems S1 and S2. This nonlinearity is not 
uncommon. For example, frequently the valves 
used as actuators in process control applications 
give rise to nonlinearity as a result of actuator 
saturation, where the limit corresponds to a fully 
open or closed valve. Actuator saturator may lead 
to a large "overshoot" inducing a limit cycle [22]. 
This particular system has been used earlier by the 
authors for prediction of limit cycle parameters [9-
13]. The characteristics of nonlinear elements used 
in the examples considered are shown in Fig. 2. 
     It is a general class of two-dimensional system 
developed by the author [11, 12] considering the 
coupling effect between subsystems and 
relationships between individual parameters of 
significance within the subsystem. The system 

claims to be more suitable for the analysis of limit 
cycle/signal stabilization. 
    The system shown in Fig. 1 exhibits a limit cycle 
in the autonomous state [8-13]. We now examine 
the possibility of quenching the limit cycle by 
injecting a high-frequency dither. The dither can be 
injected either at u1 or u2 or at both the inputs 
simultaneously. However, for the present 
investigation we confine attention to the case when 
the dither, Bsinωft, (ωf is at least 10 times greater 
than limit cycle frequency [19]) is injected at u1 
only while u2 is kept unexcited from external 
sources. When the dither amplitude at u1 is 
gradually enhanced, the system would exhibit 
forced oscillations. The signals at various points in 
the system would then be composed of signals of 
frequency (ωf), signals of frequency of limit cycle 
(ωS) and the combination frequencies, k1ωf±k2ωS 
where k1, along with k2 assume various integer 
values. However, with increase of the dither 
amplitude B, the frequency of limit cycle (ωS)  
would also gradually change [4], [9], [14]. For a 
certain amplitude of dither, synchronization would 
occur i.e., the limit cycle would vanish and the 
system would exhibit forced oscillations at the 
dither frequency of only [4], [9], [20]. 
 

 
Fig.1: A general 2x2 nonlinear systems. 

 

 
Fig.2: Characteristics of nonlinear elements used in 

Examples 1 and 2. 
     
If subsequently the amplitude B is gradually re-
duced, a point may be reached at which the limit 
cycle would reappear and the system would exhibit 
forced oscillations once again. This phenomenon 
has been termed as desynchronisation [10]. The 
analysis of such oscillation even in a relatively 
simple two-dimensional nonlinear system is 
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exceedingly complex. This paper presents analysis 
of these phenomena based on the following 
assumptions:  
(a) The external signal is impressed on system only 
at u1 (cf. Fig. 1). 
(b) The linear elements composing various loops of 
the system possess low-pass characteristics (filter 
hypothesis) [1], [4], [9], [13-16], [20]. 
     Because of the low-pass characteristics of the 
linear elements, the components of high-frequency 
signal at C1 and C2 would be very small. Hence, the 
component of the high-frequency signal at the input 
to the nonlinear element, N1, would be equal to the 
magnitude of the dither at u1. 
     It may be noted that just prior to 
desynchronisation, the system would be exhibiting 
a forced harmonic oscillation, and consequently, 
this phenomenon which is relatively easier to 
analyse and is, therefore, considered first. 
 
2.1. Desynchronisation 
Let the system in Fig. 1 be subjected to a dither,  
Bsinωft, and consider the situation for a reasonably 
large B, when the limit cycle has been quenched 
and, consequently, the system is exhibiting a 
harmonic oscillation at dither frequency (ωf). Since 
the frequency of the dither is high, the magnitude of 
C1 and C2 can be assumed to be negligibly small. 
Hence, it follows that under these conditions, the 
inputs to the nonlinear elements N1 and N2 can be 
approximated, respectively, as (i) Bsinωft, and (ii) a 
vanishingly small signal. It has been shown in 
earlier works for SISO system [16-18], 20] that 
when B is gradually reduced the self-oscillations 
reappear at a point at which the forced oscillations 
become unstable and that this instability can be 
predicted by employing IDFs [4], [20]. Hence, in 
two-dimensional case also the limiting values of B 
at which the self-oscillations reappear can be 
obtained by replacing the nonlinear elements N1 
and N2 by their IDFs, N1i and N2i, for vanishingly 
small signals superposed on the finite amplitude 
signals of frequency ωf at their respective inputs. 
The linearised system is shown in Fig.3 and 
conditions for the stability limit can be obtained in 
a straightforward manner. 
 

 
Fig.3: Equivalent linearisation for incremental signals 

for the system of Fig. 1. 
 

The condition for self-oscillations to just reappear 
is thus obtained as 
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    As shown above, the magnitudes of the high-
frequency signals at the inputs to the nonlinear ele-
ments N1 and N2 are approximated by Bsinωft and 
zero, respectively. Hence, it follows that in Eq.(1), 
N1i is the slope at the origin of the modified charac-
teristic of N for an input Bsinωft, while N2i is the 
slope at the origin of the characteristic of N2 [1], [4], 
[23]. The following examples illustrate the 
procedure for determining the value of B for which 
desynchronisation would take place and self-
oscillations would reappear. 
      Example 1. Considering the system of Fig. 1, 
where G1(s)=2/s(s+1)2, G2(s)=1/s(s+4) and the two 
nonlinear elements have ideal saturation 
characteristics as shown in Fig. 2a. Since the value 
of N2i for small signals is equal to unity, Eq. (1) 
leads to 
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Substituting G1( jω ) and G2( jω ) and separating in 
real and imaginary parts finally yields: 

( ) 01182104 =++− iNωω  

and 
( ) 02

1264614 =+−+ ωω iNiN . 

     Simultaneous solution of the above equations 
yields: N1i = 0.51 (critical).  
    The IDF for the saturation characteristic with 
given s1 (= 1.5) is given by [1], [4], [17], [20] 

⎟
⎠
⎞

⎜
⎝
⎛ −

∏
=

BiN
5.11sin

2
1 . 

Hence, the amplitude B of the dither that would 
make the IDF equal to the critical value of 0.51 is 
found to be B=2.09. 
    Example 2. Consider the system of Example 1 
but  the characteristics of nonlinear elements are as 
shown in Fig. 2b. The value of dither amplitude for 
desynchronisation is found to be B=1.5. It is 
important to note that the above analysis is based 
on the assumption that the amplitude of signal XS 
(self-oscillation) is zero at all points in the system. 
However, once the amplitude of self-oscillation is 
different from zero, the signals at the various points 
would represent forced oscillations. Consequently, 
the frequency of self-oscillation that the system 
would eventually sustain after desynchronisation 
would be different from the one predicted above. 
So, the above analysis predicts only the critical 
amplitude B at which the process of 
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desynchronisation sets in. 
 
2.2. Forced oscillations 
We now present an analysis of the forced oscilla-
tions in the system of Fig. 1 when it exhibits self-
oscillations while being subjected to a high-
frequency input Bsinωft at u1. As a consequence of 
assumed low-pass characteristics of linear 
elements, the input to the nonlinear element N1 is 
composed of dither signal of frequency ωf and self-
oscillating signal of frequency ωS, while the input 
to the nonlinear element N2 is composed only of 
self-oscillating signal of frequency ωS. 
Consequently, an analysis of the components of the 
frequency of self-oscillation, ωS, can be visualized 
as the analysis of the system of Fig. 4a. The system 
of Fig. 4a is obtained by replacing the nonlinear 
element N1 in Fig. 1 by its modified characteristics 
[3], [4], [9], [13-16], [20] determined by the 
component of the frequency ωf at its input. In view 
of the low-pass characteristics of the linear 
elements and the high-frequency of dither, this 
component can be approximated as Bsinωft. The 
dither frequency should be much greater compared 
to self-oscillation frequency and the frequency ratio 
is considered irrational so that the DIDF will 
depend only on amplitude of two signals [1, 4, 18, 
20]. 
 

 
 a)            b) 

Fig.4: (a) Equivalent system for analysing forced 
oscillations of Fig. 1 with external input at U1. 

 (b) Linearised equivalent for the system 
of  Fig. 1 for analysing forced oscillation. 

 
    The component of frequency ωf at the input to 
the non-linear element N2 is negligibly small and 
therefore, the characteristics of the element N2 in 
Fig. 4a would remain unaltered. The system of Fig. 
4a can subsequently be analyzed for possible self-
oscillations by employing the techniques developed 
in [4], [10]. If such an analysis shows the presence 
of self-oscillation for the system of Fig. 4a, then the 
system of Fig. 1 would exhibit forced oscillation of 
the frequencies ωS and ωf. A rigorous analysis of 
such a system is extremely complex. However, if 
the whole system is assumed to exhibit an 

oscillation predominantly at a single frequency and 
if the loops possess low-pass characteristics, then a 
simpler analysis, based on harmonic balance 
approach can be developed along the following 
lines. 
    The characteristic equation in frequency domain 
is obtained as 

( ) ( ) ( ) ( ) 0.1212122211 −=++ NeqNjGjGNjGeqNjG ωωωω  (3) 

The three unknowns, X1, X2 and w require three inde-
pendent equations for their evaluation. Separating 
the real and imaginary parts only two independent 
equations can be developed. The characteristic 
equation alone is not sufficient for analysis of self-
oscillation in multidimensional systems. However, 
representing the system of Fig. 4a alternatively as 
in Fig. 4b, the following conditions must be 
fulfilled for ensuring harmonic balance. 
(i) The phase condition 

018021 =+ cc θθ  .                   (4a) 

where θc = loop angle of subsystems.  
(ii) The gain condition: 

( )( ) 12/21/1 =RCRC .                (4b) 

(iii) The amplitude ratio condition 
( )
( )ω

ω
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    It may be noted that N1eq and X1
’ are related 

through the DF expression for the modified 
characteristic of the element N1 (DIDF), while N2 
and X2

’ are related through the DF expression of the 
element N2. Eq.(4) constitutes three equations for 
the solution of the three unknowns w, X1

’, X2
’. 

     Example 3. Consider again the system of 
Example 1. Substituting G1(jω), G2(jω) in Eqs.(4a) 
and (4b) finally yields 
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Again, substituting G1(jω), G2(jω) in Eq. (4) finally 
yields 
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  Furthermore, the relations between X1

’ and N1eq 
and, X2' and N2 are obtained from the given 
nonlinear characteristics as [2], [4]  

( ) ( )
( ) ( )duuXJBuJ

u

uS
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1sin

'
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where J0, and J1 are Bessel's function of first kind 
of order 0 and 1, respectively. 

 
a) 

 
b) 

Fig.5: (a) Variation of C1 and C2 with dither amplitude,   
illustration of limit cycle quenching (signal 

stabilisation), results of Example 3. (b) Variation of 
frequency with dither amplitude results of Example 3. 

 
    We also note that the input to nonlinear element 
N2 can be approximated by a signal of frequency of 
self-oscillation alone. Therefore, the gain for the 
nonlinear element N2 would be defined by its DF: 
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    The procedure for evaluation of the frequency of 
oscillations and other parameters is executed in the 
following sequential steps: 

(a) certain value of ω is assumed; 
(b) Eq. (5) yields a value of N2; 
(c) consequently Eq.(6) yields N1eq; 
(d) subsequently Eq.(7) yields a value of X1

'/X2
'; 

(e) for the N2 and N1eq obtained in steps (b) and (c) 
above and for a particular value of B an 
alternative ratio X1

'/X2
' can be obtained from 

Eqs.(8) and (9); 
(f) steps (a)-(e) are repeated for several assumed 

values of w, while keeping the value of B a 
fixed number. 

    The frequency for which the ratio X1
'/X2

' can be 

obtained by two alternative means are equal is the 
frequency of self-oscillation of the system. The 
other variables associated with self-oscillations can, 
subsequently be calculated. For example, if the 
frequency of oscillation is found out, N1eq and N2 can 
be determined from Eqs. (5) and (6). From these 
values X1

’ and X2
' and hence C1 and C2 can be 

calculated. For various values of B, this procedure 
is repeated and the variations of C1, C2 and co for 
various B are depicted in Fig. 5 along with the 
results of digital simulation. The digital simulation 
technique used is similar to the Subramanian's work 
on SISO system [21] and also used by the authors' 
earlier work on limit cycle prediction for two-
dimensional autonomous system [13]. The dither 
frequency chosen in the work is 10 rad/s. Fig.6 
depicts the build up of subsystem output C1 at B 
=1.0, which shows the periodic nature of oscilla-
tion. The forced oscillation has less settling time. 
The low-frequency demand signal is the excitation 
signal used to initiate the oscillation. The system 
was also simulated through MATLAB 6.0 for 
predicting the above phenomenon at various dither 
values. The simulation results are also shown in 
Fig.5. The analytical results have excellent 
agreement with simulation results. 
    Example 4. Consider the same system of 
Example 2. The results from simulation and 
analytical technique are compared in Fig.7. It can 
be seen that the simulation provides a good match 
with the frequency and amplitude of oscillation. 
Synchronization occurs at B=1.875. 

 
Fig.6: Build up of oscillation is subsystem-1. 
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   a) 

 
Fig.7: (a) Variation of C1 and C2 with dither amplitude, 

illustration of limit cycle quenching (signal 
stabilisation), results of Example 4. 

(b) Variation of frequency with dither amplitude. Results 
of  Example 4. 

 
3 Conclusions 
Comparison of analytical results with the results of 
digital simulation of the example considered, shows 
that the simplifying assumptions made in the 
analysis lead to results of acceptable accuracy. In 
addition, the method of analysis also aids the 
conceptual visualization of the mechanism leading 
to these interesting phenomena. However, the 
signal stabilization for the system comprising 
several interconnected subsystems exhibiting limit 
cycle at different frequencies are yet to be explored 
and this method of analysis may be appended by 
Neural Network model [15]. 
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