
A PERSISTENT CROSS-PLATFORM XML-BASED CLASS
OBJECTS CONTAINER

 MICHAL BLIŽŇÁK1, TOMÁŠ DULÍK2, VLADIMÍR VAŠEK3

Department of Applied Informatics1,2, Department of Automation and Control Engineering3

Faculty of Applied Informatics, Tomas Bata University
Nad Stráněmi 4511, 760 05, Zlín

CZECH REPUBLIC
bliznak@fai.utb.cz1, dulik@fai.utb.cz2, vasek@fai.utb.cz3

Abstract: This paper introduces new open-source cross-platform C++ software library able to store, serialize
and deserialize hierarchically arranged class instances and their data members via XML files. The library is
based on mature cross-platform library called wxWidgets so it can be successfully used on many target
platforms such as MS Windows, Linux or OS X. The article describes an inner structure of the software library,
used principles, and illustrates the usage on simple examples as well.

Keywords: Data, class, persistence, container, serialization, XML, tree, list, C++, wxWidgets, wxXmlSerializer,
wxXS

1 Introduction
The ability to store complex data processed by
software applications is one of the most important
features provided by various programming
frameworks or software libraries. Most of them
already offer some suitable technology, such as
various types of configuration files, integrated XML
parsers/builders or database layers. Unfortunately,
majority of these technologies are designed to store
only raw data (e.g. via database layers) or they require
a lot of additional programming to process complex
data types. Typical and most difficult case is the
implementation of persistent storage for class
instances and their hierarchy. In high-level
programming languages like Java or Python, it is very
easy to solve this by using serialization, however,
there are virtually no options for this in lower-level
programming languages like C++.

If the requirement is to implement a simple storage
for raw data, the best solution is probably to use a
suitable database system/layer. Nowadays database
servers and software libraries supporting various
database clients are able to store even pretty complex
data via technologies designated for mapping of
program objects (class instances) to database records
(for example JDO for Java programming language
[2]). Moreover, some of current database systems
allow user to store the data not only to local or remote
database server but also to local file using SQL
commands (for example SQLite database [3] or
Firebird embedded [4]).

Unfortunately, all of these database technologies lack
the ability to preserve the hierarchical relations

between object class instances. It means the user can
store data records but cannot define their hierarchy
(who is the parent and who is the child, etc).

The goal of this paper is to introduce a new simple
software library called wxXmlSerializer [8] (shortly
wxXS) which fills the gap in the nowadays offer of
available data persistence technologies. The wxXS is
designed for storing not only raw data, but also their
hierarchical relationship.

2 What the wxXmlSerializer is
Generally, the wxXS is a cross-platform software
library written in C++ programming language based
on wxWidgets [1] which offers a functionality needed
for creation of persistent hierarchical data
containers able to store various C++ class instances
(can be regarded as complex data records). wxXS
allows users to easily serialize hierarchically arranged
class instances and their data members to an XML
structure (storable in various output streams) and
deserialize them later. Currently supported data types
serializable by the wxXS are:

• Generic data types such as: bool, char,
int, long, float, double

• Most frequently used wxWidgets data types:
wxString, wxPoint, wxSize,
wxRealPoint, wxPen, wxBrush,
wxFont, wxColour,

• wxArrayString, array of wxRealPoint
values, arrays of common generic data types
and list of wxRealPoint values

Proceedings of the 10th WSEAS International Conference on AUTOMATION & INFORMATION

ISSN: 1790-5117 316 ISBN: 978-960-474-064-2

• Dynamic or static instances of the serializable
base class itself.

Moreover, the library architecture allows user to
extend built-in list of supported data types thus new I/
O handlers for custom or currently unsupported data
types (even user-defined data structures) can be
created by the user using a set of code macros
provided by the library and small amount of manual
programming.

The library can be used for wide range of application
scenarios, e.g.:

• simple saving and loading of the program
settings/configurations

• as a persistent dynamic n-ary tree-based data
container with methods needed for
comfortable management of its items (useful
for the software applications managing their
data in tree controls, applications working
with diagrams, etc.).

3 The Technological Background
wxXS library was created as an add-on to well known
cross-platform software library wxWidgets [1].
wxWidgets gives the programmers a single, easy-to-
use API for writing their applications on multiple
platforms that still utilize the native platform's
controls and utilities. Link with the appropriate library
for your platform (Windows/Unix/Mac, others
coming shortly) and compiler (almost any popular C+
+ compiler), and your application will adopt the look
and feel appropriate to that platform. On top of great
GUI functionality, wxWidgets supports network
programming, streams, clipboard and drag and drop,
multithreading, image loading and saving in a variety
of popular formats, database support, HTML viewing
and printing, and much much more [1].

wxXS library uses the streams, XML and RTTI
classes provided by the wxWidgets so it can be used
only together with this library. However, this
“disadvantage” is balanced by the fact, that these
crucial technologies are maintained and improved
continuously by the wide and reliable open-source
community. Moreover, the license policy [6] used by
the wxWidgets library do not restrict the programmer
in any way so the applications and derivates based on
the wxWidgets can be distributed both as an open-
source projects and commercial applications. wxXS
itself is created under the same license so it can be
used absolutely freely for any purpose, even for
commercial projects.

4 The Library Structure
wxXS consists of three main classes encapsulating its
basic functionality. It includes also several auxiliary
classes encapsulating the I/O functionality for various
data types and implements typed data containers used
by the library. Now let’s take a look to the purpose of
the three main library classes which are:

• wxXmlSerializer class

• xsSerializable class

• xsProperty class

Figure 1: The library structure

wxXmlSerializer class is the main data
manager class and implements the common data
container functionality. Its member functions allow
user to manage instances of serializable classes
(encapsulated by the xsSerializable) and
provide the I/O functionality (serialization and
deserialization of stored serializable class objects).
This class can be used as it is or as a base class for
various derivations enhancing its built-in
functionality.

xsSerializable class is the base class for so
called “serializable” classes (i.e. classes manageable
by the wxXmlSerializer class). It provides
functionality needed for hierarchical arrangement of
serialized class instances (every class instance
includes linked list of another xsSerializable
class instances, i.e. its children), I/O operations and it
also holds information about serialized data members
(instances of xsProperty class).

xsProperty class encapsulates a single data
members (properties) of serialized class object (an
instance of xsSerializable class). It stores
information about memory address of the data
member, its data type, default value, a name of the
data member in the XML structure and flag telling

Proceedings of the 10th WSEAS International Conference on AUTOMATION & INFORMATION

ISSN: 1790-5117 317 ISBN: 978-960-474-064-2

whether the property should be serialized or not.

I/O and data conversion operations provided by the
xsSerializable class are performed via the
xsPropertyIO I/O handler class and its derivates,
which are responsible for conversion of serialized
property values to/from its string representation and
for reading and writing of this textual information
from/to the XML structure.

Except built-in support for common data types the
user can simply create new I/O handler class by using
set of code macros defined in the library headers. This
powerful feature will be discussed in more details
later.

5 wxXS: From Simple Data To
Hierarchical Data Container

wxXS library can be used in many ways but the main
idea is following: the user can create classes derived
from xsSerializable base class and then define
which of the class members will be serialized and
which not. For serialization of these class instances, it
is necessary to add them to a data manager, which is
an instance of wxXmlSerializer class. There is
also one instance of xsSerializable class called a root
item included in the data manager class as its member
object. All the other serialized objects added to the
data manager are inserted into the linked list of the
root item. Serialized class data members called
properties are encapsulated by an xsProperty class

The xsProperty class instances can be created in
several ways:

• using universal macros
XS_SERIALIZE(member, field) or
XS_SERIALIZE_EX(member, field,
defval)

• using one of defined macros designed for
particular data type (e.g.
XS_SERIALIZE_LONG(member,
field) or
XS_SERIALIZE_LONG_EX(member,
field, defval)

• using the function
xsSerializable::AddProperty(xs
Property *property)

The argument member is the name of data member,
which should be serialized and the argument field is a
name used for its identification in the output XML
structure. The macros must be placed somewhere in a
class implementation code (typically in a constructor).

Macros with suffix “_EX” in their names allow user
to define default property value. In this case, the
property is serialized only if its current value differs
from the default one. This approach leads to smaller
size of the output XML structure because only
changed property values are serialized.

Now let’s illustrate these mechanisms on a simple
example implementing an application settings class
serialized via wxXmlSerializer.

The first step is declaration of a serializable class
encapsulating the application settings.

Example 1:

class Settings : public xsSerializable
{
public:
 // RTTI and clone ability must be
 // supported by the class
 XS_DECLARE_CLONABLE_CLASS(Settings);
 // Default constructor.
 Settings();
 // Copy constructor needed by the
 // serializer’s class
 Settings(static Settings &obj);
 // Destructor.
 virtual ~Settings(){;}
protected:
 // Protected serialized data members.
 wxString m_sTextData;
};

The implementation of the serializable class declared
above is straightforward as well:

// Define RTTI and the clone ability
XS_IMPLEMENT_CLONABLE_CLASS(Settings,
xsSerializable);

// Default constructor
Settings::Settings()
{
 // Initialize member data
 m_sTextData = wxT("Textual data
encapsulated by the class object");
 // Mark serialized members
 XS_SERIALIZE(m_sTextData, wxT("text"));
}

// Copy constructor
Settings::Settings(static Settings &obj)
: xsSerializable(obj)
{
 // Copy the member data.
 m_sTextData = obj.m_sTextData;
 // Mark the data members which should be
serialized.
 XS_SERIALIZE(m_sTextData, wxT("text"));
}

Now the data manager (serializer) class must be
defined to handle an instance of the Settings class. In

Proceedings of the 10th WSEAS International Conference on AUTOMATION & INFORMATION

ISSN: 1790-5117 318 ISBN: 978-960-474-064-2

this example, the standard wxXmlSerializer
class is used. Generally, there are two ways how to
handle the serializable class objects by the serializer
class:

• one serializable objects can be set as a root
node of the serializer,

• several serializable objects can be appended
to a default root node included in the
serializer or to another already managed
serializable objects..

These quite different approaches differ in the way the
stored serialized class instance can be handled and
accessed. For better understanding, both of these
ways are discussed bellow.

Let us use the first mentioned way to serialize the
Settings class object to a file called “settings.xml”
stored on a harddrive. The code bellow can be placed
anywhere in the application implementation:

Example 2:

// Create a serializer object.
wxXmlSerializer m_XmlIO;

// Initialize the serializer.
m_XmlIO.SetSerializerOwner(wxT("SettingsSamp
le"));
m_XmlIO.SetSerializerRootName(wxT("settings"
));
m_XmlIO.SetSerializerVersion(wxT("1.0.0"));

// Create a serialized settings class object
with its default values.
Settings *m_pSettings = new Settings();
if(m_pSettings)
{
 // Insert the object into serializer as
 // its root node.
 m_XmlIO.SetRootItem(m_pSettings);

 m_XmlIO.SerializeToXml(wxT("settings.xml
"), xsWITH_ROOT);
}

A content of the output XML file is:

<?xml version="1.0" encoding="utf-8"?>
<settings owner="SettingsSample"
version="1.0.0">
 <settings_properties>
 <object type="Settings">
 <property name="text"
type="string">Textual data encapsulated by
the class object</property>
 </object>
 </settings_properties>
</settings>

The stored XML file can be loaded back in a simple
way:

if(wxFileExists(wxT("settings.xml")))
{
 // Load settings from file
 m_XmlIO.DeserializeFromXml(wxT("settings
.xml"));
}

After deserialization, loaded data can be accessed in a
very simple way using a function called
wxXmlSerializer::GetRootNode(), which
returns a pointer to the serializer's root node (in our
example to a class object encapsulating the stored
data).

The second possible way of managing the stored
serializable objects is illustrated in the next example.
Assume existing serializable class called TreeNode
created in a similar way like the Setting class from the
previous example. This class poses as a node in a tree
structure encapsulating some user-defined data. Let us
create a few of these nodes, add them to the serializer
object and store the serializer content to a disk file:

Example 3:

// Create a serializer object.
wxXmlSerializer m_XmlIO;

// Initialize the serializer.
m_XmlIO.SetSerializerOwner(wxT("TreeSample")
);
m_XmlIO.SetSerializerRootName(wxT("tree"));
m_XmlIO.SetSerializerVersion(wxT("1.0.0"));

// Create new tree node object...
TreeNode *m_pNode = new TreeNode();
// ... and assign it to the serializer as a
child of the root node.
m_XmlIO.AddItem(n_XmlIO.GetRootNode(),
m_pNode);
// Another possible way how to assign a new
// serializable object as a
// child to existing parent object is for
// example like this:
m_pNode->AddChild(new TreeNode());
TreeNode *m_pNode2 = m_pNode->AddChild(new
TreeNode());
m_pNode2->AddChild(new TreeNode());

// Serialize tree data to given output file.
m_XmlIO.SerializeToXml(wxT("data.xml"));

 A content of the output XML file created by previous
code is:

<?xml version="1.0" encoding="utf-8"?>
<tree owner="TreeSample" version="1.0.0">

Proceedings of the 10th WSEAS International Conference on AUTOMATION & INFORMATION

ISSN: 1790-5117 319 ISBN: 978-960-474-064-2

 <object type="TreeNode">
 <object type="TreeNode" />
 <object type="TreeNode">
 <object type="TreeNode" />
 </object>
 </object>
</tree>

Whole tree structure can be re-built by a single
program line later:

// Load tree data from file
m_XmlIO.DeserializeFromXml(wxT("data.xml"));

After successful deserialization the stored class
instances can be accessed by member functions of
xsSerializable class like:

● xsSerializable::GetParent,

● xsSerializable::GetFirstChild,

● xsSerializable::GetLastChild,

● xsSerializable::GetSibbling,

etc. In addition, various member functions of
wxXmlSerializer class can be used. For more
information about all available data handling
functions supported by the wxXS library please see
the reference documentation available at [8].

6 Extending The wxXmlSerializer
There are many built-in data types supported directly
by the wxXS but aside of them, also custom data
types can be processed by the library. For this case,
the wxXS provides set of code macros and classes
suitable for a creation and registration of user-defined
I/O handlers.

In the following example a new I/O handler suitable
for serialization/deserialization of wxColourData
class is created and used.

First of all, the user must declare new I/O handler
class and define code macros used for marking of a
serialized data members. This should be done in
appropriate header file. The declaration code can be
as follows:

Example 4:

// Declaration of a class
// 'xsColourDataPropIO' encapsulating the
// custom property I/O handler for
// 'wxColouData' data type.
XS_DECLARE_IO_HANDLER(wxColourData,
xsColourDataPropIO);

// Code macros which create new serialized
// wxColourData property
#define XS_SERIALIZE_COLOURDATA(x, name)
XS_SERIALIZE_PROPERTY(x, wxT("colourdata"),
name);

#define XS_SERIALIZE_COLOURDATA_EX(x, name,
def) XS_SERIALIZE_PROPERTY_EX(x,
wxT("colourdata"), name,
xsColourDataPropIO::ToString(def));

Let us discuss the code listed above in more details.
The macro XS_DECLARE_IO_HANDLERS declares
a new class called xsColourDataPropIO suitable
for processing of data members with data type
wxColourData (which is a class provided by the
wxWidgets used for data transfer between an
application and the color picker dialog). User-defined
macros XS_SERIALIZE_COLOURDATA and
XS_SERIALIZE_COLOURDATA_EX can be later
used in the implementation code to mark
wxColourData class members in the similar way
as the XS_SERIALIZE macro was used in the
previous examples. Note that the text string
“colourdata” must be a unique identifier used for
identification of this data type in serialized XML
structure.

Now see the implementation code part:

// Define custom data I/O handler
XS_DEFINE_IO_HANDLER(wxColourData,
xsColourDataPropIO);

// Two following static member functions of
// the data handler class MUST
// be defined manualy:

// wxString xsPropIO::ToString(T value) ->
// creates a string representation of the
// given value:
wxString
xsColourDataPropIO::ToString(wxColourData
value)
{
 wxString out;

 out << xsColourPropIO::ToString(
 value.GetColour());

 for(int i = 0; i < 16; i++)
 {
 out << wxT("|") <<

xsColourPropIO::ToString(value.
GetCustomColour(i));

 }
 return out;
}

// T xsPropIO::FromString(const wxString&
// value) -> converts data from
// given string representation to its
// relevant value:

Proceedings of the 10th WSEAS International Conference on AUTOMATION & INFORMATION

ISSN: 1790-5117 320 ISBN: 978-960-474-064-2

wxColourData
xsColourDataPropIO::FromString(const
wxString& value)
{
 wxColourData data;

 if(!value.IsEmpty())
 {
 int i = 0;
 wxStringTokenizer tokens(value,
wxT("|"), wxTOKEN_STRTOK);

 data.SetColour(xsColourPropIO::FromS
tring(tokens.GetNextToken()));

 while(tokens.HasMoreTokens())
 {
 data.SetCustomColour(i,

 xsColourPropIO::FromString(
 tokens.GetNextToken()));

 i++;
 }

 s}
 return data;
}

The most of the implementation effort is hidden in the
XS_DEFINE_IO_HANDLER macro, the user must
manually create only two static functions responsible
for conversion of processed data value to its string
representation and vice versa. These static functions
are then internally used be core library classes for
serialization and deserialization but they can be used
also for any other purposes. For example, in the code
above you can see similar static functions called
xsColourPropIO::FromString() and
xsColourPropIO::ToString() defined by
built-in I/O handler designed for processing of
wxColour data members.

The last step needed for proper initialization of the
new I/O handler class is its registration. It should be
done as soon as possible, typically in the application
initialization code. For registration of the I/O handler,
the XS_REGISTER_IO_HANDLER macro can be
used in the following way:

// Register new property I/O handler
// 'xsColourDataPropIO' for a data type with
// name 'colourdata'.
XS_REGISTER_IO_HANDLER(wxT("colourdata"),
xsColourDataPropIO);

7 Conclusion
The aim of the paper was to introduce a new cross-
platform software library wxXmlSerializer
(wxXS) suitable for easy and elegant creation of
serializable hierarchical data containers using the

wxWidgets library and C++ programming language.
The library is available as an open-source project and
can be used for both commercial and open-source
software projects.

The wxXS was already successfully used as a
technological background for various projects such as
the wxShapeFramework [7] cross-platform graphics
library or the UML code generation tool called
CodeDesigner developed at the Tomas Bata
University.

The library features described in this document are
only a tiny fraction of comprehensive functionality
provided by the library. For more information about
its usage and abilities please see the library reference
or code examples available at the Source Forge web
site (http://www.sourceforge.net/wxxs).

8 Acknowledgements
This work was supported by the Ministry of
Education of the Czech Republic under grant No.
MSM7088352102.

9 References

[1] J. Smart, K. Hock, S. Csomor, Cross-
Platform GUI Programming with
wxWidgets, Prentice Hall PTR, 2006

Internet sources:

[2] Java Data Objects (JDO) at Sun
Developer Network (SDN), 2008:
http://java.sun.com/jdo/http://java.sun.co
m/jdo/

[3] SQLite database home website, 2008:
http://www.sqlite.org/

[4] Firebird database home website, 2008:
http://www.firebirdsql.org/

[5] wxWidgets home website, 2008:
http://www.wxwidgets.org/

[6] wxWidgets license documents, 2008:
http://www.wxwidgets.org/about/newlicen
.htm

[7] wxShapeFramework library website,
2008: http://sourceforge.net/projects/wxsf

[8] wxXmlSerializer library website, 2008:
http://sourceforge.net/projects/wxxs

Proceedings of the 10th WSEAS International Conference on AUTOMATION & INFORMATION

ISSN: 1790-5117 321 ISBN: 978-960-474-064-2

http://www.sourceforge.net/wxxs
http://sourceforge.net/projects/wxxs
http://sourceforge.net/projects/wxsf
http://www.wxwidgets.org/about/newlicen.htm
http://www.wxwidgets.org/about/newlicen.htm
http://www.wxwidgets.org/
http://www.firebirdsql.org/
http://www.sqlite.org/
http://java.sun.com/jdo/http://java.sun.com/jdo/
http://java.sun.com/jdo/http://java.sun.com/jdo/

