
Conceptual database security access permissions

ZAKARIA SULIMAN ZUBI1, MARWAN ALKABLAWI2

1Computer Science Department, Faculty of Science, Al-Tahadi University, Sirt, Libya, {zszubi@yahoo.com}

2Higher Institute of Technology, Sirt, Libya, {tafas2002@yahoo.com}

Abstract

 High-level conceptual database design is a
widespread method in database built with
conceptual models we will illustrate the "mini
world" of the database via Database Management
System (DBMS) in an independent form. The form
will be mapped by the use of a mapping method to
reach a DBMS specific model. The database
designer should keep in mind both data and
functional requirements throughout the whole
process.

 We will also indicate some database security
aspects in our model. Database applications usually
have to meet high security level, therefore we must
protect the database and the data stored in the
database against those who do not have the
appropriate access permissions. The design could be
established of the access permission system with the

specification of the project which may reach the
implementation through building the conceptual
model. In our approach we illustrate this access
design method from high-level to the
implementation. First we have to define the user
groups and their roles. In connection with the
conceptual model (Enhanced Entity Relationship
Model) we recommend the use of an improved
model, which already includes the privileges of the
users, too. These permissions can be represented in
a conceptual access matrix model. At this level the
privileges of the users are still DBMS-independent,
then by mapping, it reaches the low-level database
model (relational model), which can be
accompanied with the access matrix model. This is
the point where access permissions become
connected to DBMS-specific elements. Finally, we
point out a certain realizations of the access control
permissions.

Key words: Security access, access rights, database
conceptual design, access permissions, database
security.

1. Introduction

 Conceptual database design is a major
database design technique nowadays. Entity
Relationship model (ER), which was
introduced in the 70's, and its improved
implementation, "Enhanced Entity
Relationship model (EER), together with their
descendants may play an important role in the
process of the database design" [1].

 The above mentioned two models which have
two great advantages. First we provide a
DBMS-independent representation of the
modeled world. This means that in the early
stages of the design process the designer
should not deal with the actual database type,
therefore the resulting model can serve as the
basis for several different implementations.

Second, the ER and the EER models give a
graphic representation, which makes it easier
to grasp even for the non-technical user. These
database-centric models may serve as adequate
bases for the continuous communication
between the designer and the database users.
"This communication can (and should) lead to
a better and more precise problem
identification" [2].

 However, especially when working with
large databases, we shall not forget that usually
there is more than one user, who would access
the database [3]. Generally there are several
different users, with different access
permissions. It is also the responsibility of the
database designer to deal with the security
issues. The basis for the design of the access
permissions system is evidently the
communication between the designer and the

Proceedings of the 10th WSEAS International Conference on EVOLUTIONARY COMPUTING

ISSN: 1790-5109 77 ISBN: 978-960-474-067-3

mailto:%7Bzszubi@yahoo.com%7D
mailto:tafas2002@yahoo.com%7D

user [4]. As conceptual models are easily
understood by the user, it is a good idea to start
dealing with access permissions at this level.
Also, as these models are DBMS-independent,
the access permission system designed here
can be easily adopted to any implemented
database system.

 In the following sections we introduce a new
conceptual design method, which also includes
designing the access permission system.
Section 2 summarizes the theoretical
background of user privileges. In the Section 3
we offer a possible extension of the EER
model as far as notification is concerned. We
also show an alternative matrix-based
representation of the access permission
system- Section 4 covers the relevant mapping
issues. Section 5 touches on implementation
problems.

2. User Groups

 As we have already mentioned it is the
duty of the designer to collect the different
types of users who would use the system,
and the different access permissions these
possible users need. This does not mean that
the designer should exactly know who
would use the system and what for at this
early point. The designer should only be able
to design the different user groups. Those
users belong to one user group who have the
same access permissions in the given
system. When the system is put into
operation new users should be assigned to
one of these groups, and in this way they are
granted the proper access permissions.

 For the sake of security, each user should
enter an account identifier and a password
whenever accessing the database. Assigning
a user to a group basically means that the
account of that user should be assigned to a
certain group. Therefore users get the proper
access permissions through their identifiers.

 With databases where there is only one
user, or a small group of equal users it is a
generally accepted solution to protect the
database, itself with a common password
[5]. Certainly, this does not require any
special planning, nor does it reach the
requirements of a multi-user system.
Therefore the present paper does not deal
with this possibility any further.

 As in the design process of the access
permissions we categories users into

different groups (one user may belong to
more than one group) we can speak of the
number of user groups and the number of
users in a group. The simplest case is when
we only have 1 user. Evidently the number
of groups would be 1, just like the number of
the users. It can be imagined that there are
more users (n), but all of them has the same
access permissions in which case we have 1
user group with n users. The present paper
focuses on the general case when we have
more user groups, each of which may
contain more users. We have to mention at
this point, that what really counts during the
design process is not the number of the users
in a group but the number of the groups.
That is why we concentrate on the design
process of the access permissions of the
separate groups.

3. The conceptual design of access
permissions

 "Conceptual design, as far as the user groups
are concerned, starts with setting up the
different groups"[6]. To make it simpler let us
suppose that these groups are independent,
without any hierarchical dependencies between
them.

 First we have to identify the separate groups
of users, and give unique names to these
groups. The next step would be to assign
proper access permissions to our groups.
Before that, we should discuss what
permissions can be assigned to a group.

 In everyday use, users would meet some kind
of graphical (or character-based) interface
through which he or she can manipulate the
data. Every operation executed on the database
is somehow connected to the data stored in the
database. The possible operations are the
following:

• INSERT - inserting new data.

• DELETE - removing data.

• UPDATE - modifying data.

 • QUERY - selecting data.

 This means that during the access
permissions design process the designer should
decide what data may the users belonging to
the different groups insert, delete, modify or
select.

Proceedings of the 10th WSEAS International Conference on EVOLUTIONARY COMPUTING

ISSN: 1790-5109 78 ISBN: 978-960-474-067-3

 At conceptual level we have to match these
access permissions to the different elements of
the scheme. This way we can assign access
permissions to entities, attributes, or
relationships (which connect the entities).

 As entity types are nothing else than a group
of entities that can be characterized by a set of
closely related attributes, we can say that users
perceive entities through their attributes. This
way access permissions assigned to the
different entities correspond to access
permissions assigned to their attributes. This
also means that access permissions assigned to
an entity type always belong to the actual
entity regardless of whether it is a special
entity type (main class, subclass, weak entity),
or not.

 Relationships between entity types model
how entities are connected to each other [7].
According to this access permissions assigned
to the relationships define what operations the
user may perform on the relationships between
entities (create, delete, update, and query
existing relationships).

 Attributes cannot exist on their own, during
the modeling phase we assign them to either
entity types or to relationships. Therefore
access permissions assigned to attributes can
only be interpreted through the entity types and
the relationships.

 Sometimes access permissions cannot clearly
be assigned to the whole of an entity or a
relationship. Suppose that a user has certain
privileges (insert, update, delete, and query)
only to some of the attributes of an entity type.
This is called vertical restriction of the access
permissions. (For example a certain group of
users may have access to the name, the address
and the telephone number recorded in the
database, but should not see the salary
information. We say that the query permission
is vertically restricted to the name, address and
telephone number attributes). Another type of
restriction is when the user may have access to
all the attributes, but only to certain entities.
(For example the users may modify only their
own personal information). This is called
horizontal restriction. It is common that a
certain privilege is restricted both horizontally
and vertically. (For example a user may only
change his address and telephone number but
not his name). This is called mixed restriction.

 Vertical, horizontal and mixed restriction of
permissions may also appear in connection
with permissions assigned to relationships.

Access permissions assigned to relationships
refer primarily to permissions to the
connection between the entities; however this
relationship may as well have different
attributes. If the permissions were not
restricted vertically they would apply to all the
attributes, too. Horizontal and mixed
restrictions work analogously to entity types.

 Let us look at an example after this
theoretical introduction. Suppose that a
company organizes training courses for its
workers. Teachers come from within the
company and from outside as well. Several
groups may be started from the same course
according to interest. At the end of the courses
workers should take exams, which serve as
feedback about their success. The database
would make it easier to grasp the workers
educational progress, which might provide
useful information for future organizational
questions.

 The hypothetical system would operate
online, so workers would be able to register for
the courses and check their own results.
Worker without online connection may register
on forms, when the administrators would
record their registration on the system. It is
also the duty of the system administrators to
maintain the details of the courses and the
workers and to announce new courses-
Teachers mainly use the system to record exam
marks and to query personal information of the
students.

 The different users can be categorized into
three groups, namely: administrators, teachers
and students. According to the problem
specification members of the different groups
have different access permissions to the data
stored in the database. Figure 1. Shows the
EER model of the problem, with the access
permissions added. As this diagram is basically
an EER model with represented access
permissions, we call it hereafter Enhanced
Entity Relationship with Access Permissions
mode, (EERAP).

 The basic EER model is extended in a way
that access permissions are added to the
elements of the model in rectangles surrounded
with dotted lines. Figure 1 shows for example
that staff members and teachers can only query
the details of courses, while administrators
may also record, modify and delete them.

 Vertical restriction can be seen at the
PERSON entity type, where teachers may
query every detail except the Address attribute

Proceedings of the 10th WSEAS International Conference on EVOLUTIONARY COMPUTING

ISSN: 1790-5109 79 ISBN: 978-960-474-067-3

(Q(All:- Address)). This restriction may as
well be indicated like this: Q(All: PID, Name,
Telephone, Contact). This notation may seem
more straightforward, however when there are
several attributes, with only a few exceptions,
the first type is much more efficient and
advisable to use.

 WORKER entity type exemplifies horizontal
restriction. Every worker may manipulate only

his own responsibilities. It is always practical
to explicitly give the conditions that explain
which entities should be visible for the users
within the horizontal restriction. In the above
example this condition may be given with the
help of the user ID, which in the meantime
identifies users in the system. If there is no
connection between the condition and the user
ID, the adequate user IDs should be stored in a
system table for each condition.

Figure 1. EERAP model

Figure 1 also gives more examples of mixed
restriction. For example the query permission
of the PERSON entity type is restricted both
horizontally and vertically if the user belongs
to the Student group.

 HER Lind therefore EERAP models may
help to solve designer-customer
misunderstandings, and clarify problem
specification. For future use it is advisable 10
sums up information gathered this way in
matrices. The entity types, relationships and

attributes of (he EER mode! provide the rows
of the matrix- Columns of the matrix represent
the user groups. Elements of the matrix show
what permissions (insert, delete, update, and
query) the different groups have for the certain
attributes. Restrictions may be shown beside
the elements. The Conceptual Access Matrix
of the above example looks like this:

Proceedings of the 10th WSEAS International Conference on EVOLUTIONARY COMPUTING

ISSN: 1790-5109 80 ISBN: 978-960-474-067-3

 Student Teacher Administrator
Course:
 Course code

Q Q Q;I;D;U

 Course name Q Q Q;I;0;U
 Length Q Q Q;I;D;U
Lecture: Time Q Q Q;I;D;U
 Classroom Q Q Q;I;D;U
Exam: Exam date Q Q;I;D;U Q;I;D;U
 Beginning Q Q;I;D;U Q;I;D;U
 Type Q Q;I;D;U Q;I;D;U
Person: PID Q Q Q;I;D;U
 Name Q Q Q;I;D:U
 Address Q(own data based on SID) Q(own data based on

SID)
Q;I;D;U

 Telephone Q(own data based on SID} Q Q;I;D;U
 Contact Q Q Q;I;D;U
Worker: Responsibility Q(own data based on SID) Q Q;I;D;U
Teacher: Academic-
Degree

Q Q Q;I;D;U

announce Q Q Q;I;D:U
supply Q Q:I;D;U Q;I;D;U
register
 for

Q;
I(own data based on SID);
D(own data based on SID);
U(own data based on SID)

Q Q;I;D;U

Hold lesson) Q Q Q;I;D;U
sit for
(an exam)

Q;
 I(own data based on SID);

D(own data based on SID, if
Result is NULL);

U(own data based on SID)

Q Q;I;D;U

Result Q Q;U(own lecture) Q;D

Figure 2. - Conceptual Access Matrix

The representation of the Conceptual Access
Matrix is somewhat closer to the actual
realization as the different access permissions
are broken down to data. However this is still a
DBMS independent representation of the
access permissions.
4. Mapping the EERAP model

 The next step of the conceptual design
process is the selection of the type of the
database system (relational, network,
hierarchical). Following the selection we have
to map the elements of the high level model to
the elements of a relational, a hierarchical or a
network model according to our selection. As
the high level model includes the system of
access permissions we have to expand this step
with the mapping rules of these permissions.
As the most popular logical model is the
relational model, let us now briefly cover how
these permissions can be mapped to the
elements of this model type- We cannot give a

full description of the mapping here because of
space reasons.

 In the mapping phase we create a system of
relations out of the system of the entities-
relationships-attributes. The final relational
scheme is reached with optimizing storage and
running needs after applying the known
mapping rules. The privilege system designed
at conceptual level should be adjusted to this
scheme. Attributes represented in the
Conceptual Access Matrix are converted to
table fields. The final relational scheme
together with the attached access permissions -
similarly to the conceptual matrix - may be
represented in a matrix (Access Matrix).

 The next phase of the conceptual design
process is the physical design [8]. The present
paper does not deal with this step, as it has no
influence on design of the privilege system.

Proceedings of the 10th WSEAS International Conference on EVOLUTIONARY COMPUTING

ISSN: 1790-5109 81 ISBN: 978-960-474-067-3

5. Implementation

 The final phase of building a database is
realization, which includes testing and setting
it up.

 In order of secure operation we have to pay
enough time to establishing the adequate
access permission system in the realization
phase. The different DBMS systems offer
different solutions in this respect. Some of
them (like MS Access) have built-in
components for defining user groups and make
it possible to assign system and object level
access permissions to them (for example you
may control what forms a certain group can
use). The final step is the classification of users
into the groups, If we are to create the
privilege system on SQL level, then user
groups correspond to different roles. We can
use the CREATE ROLE command to create
user groups. Then with the help of the GRANT
command we can assign system and object
privileges to these roles. Finally, the newly
created users (CREATE USER) get their
appropriate roles (GRANT). The different
views may play an important role in realizing
the security expectations of the database
system (CREATE VIEW).

 Whenever creating a multi-user system it
should be assured that in the final version it
would be possible to create new users, to
delete users, and to modify the privileges of
existing users. (Often in large systems one user
may belong to more groups, therefore the user
should choose at start-up which accounts to
use.) To ensure such system functions there is
a need for creating the appropriate user
interfaces where the adequate person can
accomplish them. This person is usually called
the DBA (Database Administrator). Sometimes
more people belong to a group called DBA,
who own the highest possible privileges in the
system.

6. Summary

 For the sake of security user privileges should
already be dealt with at design time in multi-
user systems- The present paper offered a
possible way of including access permissions
in the conceptual design process- The modified
conceptual design process according to this is
as follows:

1- Problem specification

2. Conceptual design

 2.1. Building the EER model

 2.2. Creating the EERAP model

 2.3. Filling in the Conceptual Access
Matrix
3- Choosing the DBMS type

4. Logical design

4.1. Creating the appropriate low level
model (relational, network, hierarchical)

 4.2. Building the Access Matrix

5. Physical design

6. Implementation

 Although conceptual design includes not only
the design of database requirements, but the
design of functional requirements as well, the
present paper focuses mainly on the design
process of access permissions connected to the
former, with special regards to extend the
conceptual model.

References

[1] C. Batini, S. Ceri and S.B. Navathe,
Conceptual Database Design - An Emily-
Relationship approach (Benjamin Cummings,
Redwood City. CA, 1992).

[2] R. Elmasri and S.B. Navathe, Fundamentals
of Database Systems Benjamin Cummings,
Redwood City, CA, 1994).

[3] A-H.M. ler Hofstede and Th. P. van der
Weide. Expressiveness in conceptual data
modelling. Data & Knowledge Engineering 10(1)
(1993), 65-100.

[4] P. Palvia, C. Lio and P. To, The impact of
conceptual data models on end-user performance,
J. of Database Management, Vol. 3(4) (1992) 4-
15.

[5] H. A. Proper, Data schema design as a schema
evolution process. Data &
Knowledge Engineering 22 (1997), 159-189.

[6] H-A. Proper and Th.P. van der Weide.
EVORM: General theory for the evolution of
application models. IEEE Trans. on Data &
Knowledge Engineering 7(6) (1997), W 996.

[7] P. Shoval. S. Shiran, Entity-relationship and
object-oriented data modelling – an experimental
comparison of design quality. Data & Knowledge
Engineering 21 (1997), 297-315.

Proceedings of the 10th WSEAS International Conference on EVOLUTIONARY COMPUTING

ISSN: 1790-5109 82 ISBN: 978-960-474-067-3

[8] F. Steimann, On the representation of rotes in
object-oriented and conceptual modelling, Data &
Knowledge Engineering 35 (2000), 83-106.

Proceedings of the 10th WSEAS International Conference on EVOLUTIONARY COMPUTING

ISSN: 1790-5109 83 ISBN: 978-960-474-067-3

