
Lightweight Mix Columns Implementation for AES

 Eslam Gamal Ahmed Eman Shaaban Mohamed Hashem
 Programmer_1@hotmail.com Eman.shaaban@yahoo.com mhashem100@yahoo.com
 Computer Systems Department Computer Systems Department Information System Department

Faculty of Computer and Information Science
Ain Shams University
Abbasiaa, Cairo

EGYPT

Abstract: - Since the debut of the Advanced Encryption Standard (AES), it has been thoroughly studied by
hardware designers with the goal of reducing the area and delay of the hardware implementation of this
cryptosystem. This paper proposes an implementation of the AES mix columns operation. In this paper, a compact
architecture for the AES mix columns operation and its inverse is presented. The hardware implementation is
compared with previous work done in this area. We show that our design has a lower gate count than other
designs that implement both the forward and the inverse mix columns operation.

Key-Words: AES, Galois field, Mix columns

1 Introduction
In 2001, the National Institute of Standards and
Technology (NIST) adopted the Rijndael algorithm as
the advanced encryption standard (AES). The AES
algorithm began immediately to replace the data
encryption standard (DES), which had been in use
since 1976. AES outperforms DES in improved long-
term security because of larger key sizes (128, 192,
and 256 bits). Another major advantage of AES is the
possibility of efficient implementation on various
platforms.AES is suitable for small 8-bit
microprocessor platforms and common 32-bit
processors, and it is appropriate for dedicated
hardware implementations.
Although AES is used in many different applications,
hardware implementations of the algorithm focus
mostly on throughput optimization. Early hardware
implementations—the first attempts were undertaken
during the selection process of the algorithm—were
straightforward implementations that had no
optimization goal in mind. In the meantime, more
mature reports about AES hardware implementations
have become available. Most of them stress
throughput optimization with no hardware resource
restrictions. Only a few implementations try to realize
resource-efficient hardware [4]. AES can be divided
into four basic operation blocks where data are treated
at either byte or bit level. The byte structure seems to
be natural for low profile microprocessor (such as 8-
bit CPU and microcontrollers).
The array of bytes organized as a 4×4 matrix is also
called "state" and those four basic steps; BytesSub,

ShiftRow, Mix columns, and AddRoundKey are also
known as layers. These four layer steps describe one
round of the AES. The number of rounds is depended
on the key length, i.e., 10, 12 and 14 rounds for the
key length of 128, 192 and 256 bits respectively[3, 7].
The block diagram of the system with 128 bit data is
shown below fig.1.
Substitute bytes Transformation:
This operation is a non-linear byte substitution. It
composes of two sub-transformations; multiplicative
inverse and affine transformation. In most
implementations, these two sub-steps are combined
into a single table lookup called S-Box.
ShiftRow Transformation:
This step is a simple permutation process, operates on
individual rows, i.e. each row of the array is rotated
by a certain number of byte positions.

Mix columns Transformation:
This is a substitution step that makes use of arithmetic
over GF (28). Column vector is multiplied (in
GF (28)) by a fixed matrix where bytes are treated as a
polynomial of degree less than 4.
AddRoundKey:
Each byte of the array is added (respect to GF (2)) to
a byte of the corresponding array of round subkeys.
Excluding the first and the last round, the AES with
128 bit round key proceeds for nine iterations. Round
keys are generated by a procedure called round key
expansion or key scheduling. Those sub-keys are
derived from the original key by XOR the two
previous columns. For columns that are in multiples

Proceedings of the 9th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC '09)

ISSN: 1790-5109 253 ISBN: 978-960-474-107-6

mailto:Programmer_1@hotmail.com
mailto:Eman.shaaban@yahoo.com
mailto:mhashem100@yahoo.com

of four, the process involves round constants addition,
S-Box and shift operations.

 Fig.1 AES Encryption and Decryption

All four layers described above (including key
scheduling) have corresponding inverse operations.
Therefore the deciphering is the reverse order of the
ciphering process. However, it should be noted that
the mix columns reverse operation requires matrix
elements that are quite complicated compared to
{01}, {02} or {03} of the forward one. This result in
the more complex deciphering hardware compared
with the ciphering hardware.
In the next section we demonstrate how the standard
procedure for mix columns transform is rewritten in
order to simplify its hardware implementation. This
paper is organized in the following way: Section 2
presents the mathematical background of GF (28).
Section 3 presents the hardware implementation.
Section 4 compares this design with previous
architectures and suggests appropriate uses for the
presented design. Section 5 concludes the paper.

2 Mathematical Background
The basic operations used in the AES algorithm can
all be described very easily in terms of operations
over the finite Galois field GF (28). This property
allows us to reason about the algorithm using
established mathematical techniques, facilitating
security analysis as well as the construction of
optimal implementations. Second, finite field

operations can be implemented very efficiently in
hardware in comparison with integer arithmetic. If we
wish to define a conventional encryption algorithm
that operates on 8 bits at a time and we wish to
perform division. With 8 bits we can represent
integers in the range 0 through 255.However 256 is
not a prime number, so that if arithmetic is performed
in Z256 (Arithmetic modulo 256), this set of integers
will not be a field. The Closest prime number less
than 256 is 251[1]. Thus the set Z251 using arithmetic
modulo 251 is a field. However, in this case the 8-bit
patterns representing the integers 251 through 255
would not be used, resulting in inefficient use of
storage.

Fig. 2. Arithmetic Modulo 8

Fig. 3. Arithmetic in GF (23)

Proceedings of the 9th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC '09)

ISSN: 1790-5109 254 ISBN: 978-960-474-107-6

So if all arithmetic operations are to be used, and we
wish to represent a full range of integers in n bits,
then arithmetic modulo 2n will not work, equivalently,
the set of integers modulo 2n,For n>1 is not a field.
Furthermore, even if the encryption algorithm uses
only addition and multiplication, but not division, the
use of the set Z2

n is questionable. Suppose we wish to
use 3-bit blocks in our encryption algorithm, and use
only the operations of addition and multiplication.
Then arithmetic modulo 8 is well defined, as shown
in fig.2. However, note that in the multiplication
table, the nonzero integers do not appear an equal
number of times.
For example, there are only four occurrences of 3, but
twelve occurrences of 4. On the other hand, as was
mentioned, there are finite fields of the form GF (2n)
so there is in particular a finite field of order 23 = 8.
Arithmetic for this field is shown in fig.3. In this case,
the number of occurrences of the nonzero integers is
uniform for multiplication.
To summarize,
Integer 1 2 3 4 5 6 7
Occurrences in Z8 4 8 4 12 4 8 4
Occurrences in GF (23) 7 7 7 7 7 7 7
It would seem that an algorithm that maps the
integers unevenly onto themselves might be
cryptographically weaker than one that provides a
uniform mapping. Thus, the finite fields of the form
GF (2n) are attractive for cryptographic algorithms.
Modular Polynomial Arithmetic
Consider the set S of all polynomials of degree n-1 or
less over the field Zp. Thus, each polynomial has the
form where each ai takes on a value in the set {0, 1...
p 1}. There are a total of pn different polynomials in
S. For p = 3 and n = 2, the 32 = 9 polynomials in the
set are 0 , 1, 2, x , 2x , x + 1 , x + 2 , 2x + 1 and 2x + 2.
For p = 2 and n = 3, the 23 = 8 the polynomials in the
set are 0 , 1 , x , x + 1 , x2 , x2 + 1 , x2 + x and x2 + x +
1 With the appropriate definition of arithmetic
operations, each such set S is a finite field. The
definition consists of the following elements:
Arithmetic follows the ordinary rules of polynomial
arithmetic using the basic rules of algebra, with the
following two refinements.
1. Arithmetic on the coefficients is performed modulo
p. That is, we use the rules of arithmetic for the finite
field Zp.
2. If multiplication results in a polynomial of degree
greater than n-1, then the polynomial is reduced
modulo some irreducible polynomial m(x) of degree
n. That is, we divide by m(x) and keep the remainder.
For a polynomial f(x), the remainder is expressed as
r(x) = f(x) mod m(x).For Example:

The Advanced Encryption Standard (AES) uses
arithmetic in the finite field GF (28), with the
irreducible polynomial m(x) = x8 + x4 +x3 + x + 1.
Consider the two polynomials
f(x) = x6 + x4 + x2 + x+ 1 and g(x) = x7 + x + 1. Then
f(x) + g(x) = x6 + x4+ x2 + x + 1 + x7 + x + 1= x7 +x6 +
x4+ x2.
f(x) * g(x) = x13 + x11 + x9 + x8 + x7 +x7 + x5 + x3 + x2 +
x +x6 + x4 + x2 + x + 1 = x13 + x11 + x9 + x8 + x6 + x5+
x4 + x3 + 1
 x5 + x3
x8 + x4 +x3 + x + 1 x13 + x11 + x9 + x8 + x6 + x5+ x4 + x3 +1
 x13 + x9 + x8 + x6 + x5

 x11 + x4 + x3

 x11 + x7 + x6 + x4 + x3
 x7 + x6 +1
Therefore, f(x) * g(x) mod m(x) = x7 + x6+1.
Computational Considerations
A polynomial f(x) in GF (2n)
 f(x) =an-1 x

n-1+an-2 x
n-2+…+ a1 x+a0 can be uniquely

represented by its n binary coefficients (an-1an-2...a0).
Thus, every polynomial in GF (2n) can be represented
by an n-bit number.
Addition
We have seen that addition of polynomials is
performed by adding corresponding coefficients and,
in the case of polynomials over Z2 addition is just the
XOR operation. So, addition of two polynomials in
GF (2n) corresponds to a bitwise XOR operation.
Multiplication
There is no simple XOR operation that will
accomplish multiplication in GF (2n) However; a
reasonably straightforward, easily implemented
technique is available. We will discuss the technique
with reference to GF (28) using m(x) = x8 + x4 +x3 + x
+ 1, which is the finite field used in AES. The
technique readily generalizes to GF (2n). The
technique is based on the observation that
x8 mod m(x) = m(x) - x8 = x8 + x4 +x3 + x + 1 (1)
A moment's thought should convince you that
equation (1) is true; if not, divide it out. In general, in
GF (2n) with an nth-degree polynomial p(x), we have
xn mod p(x) = [p(x)- xn]. Now, consider a polynomial
in GF (28), which has the form f(x) = b7x

7+ b6x
6 + b5x

5
+ b4x

4 + b3x
3 +b2x

2 + b1 x + b0. If we multiply by x,
we have x * f(x) = (b7x

8+ b6 x
7 + b5x

6 + b4x
5 + b3x

4
+b2x

3 + b1 x
2 + b0x) mod m(x)If b7 = 0, then the result

is a polynomial of degree less than 8, which is already
in reduced form, and no further computation is
necessary.
If b7 = 1, then reduction modulo m(x) is achieved
using equation (1): x * f(x) = (b6 x

7 + b5x
6 + b4x

5 +
b3x

4 +b2x
3 + b1 x

2 + b0x) + (x4 +x3 + x + 1) It follows
that multiplication by x (i.e., 00000010) can be

Proceedings of the 9th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC '09)

ISSN: 1790-5109 255 ISBN: 978-960-474-107-6

implemented as a 1-bit left shift followed by a
conditional bitwise XOR with (00011011), which
represents (x4 +x3 + x + 1).

 To summarize,
 (b6b5b4b3b2b1b00) If b7 = 0
x * f(x) = (2)
 (b6b5b4b3b2b1b00) (00011011) If b7 = 1

Multiplication by a higher power of x can be achieved
by repeated application of equation (2). By adding
intermediate results, multiplication by any constant in
GF (28) can be achieved.

3 Mix columns Implementation
The forward mix column transformation (in
encryption process), called mix columns, operates
on each column individually. Each byte of a column
is mapped into a new value that is a function of all
four bytes in that column. The transformation can be
defined by the following matrix multiplication on
State.
 02 03 01 01 s0,0 s0,1 s0,2 s0,3 s’0,0 s’0,1 s’0,2 s’0,3
 01 02 03 01 s1,0 s1,1 s1,2 s2,3 s’1,0 s’1,1 s’1,2 s’1,3
 01 01 02 03 s2,0 s2,1 s2,2 s2,3 = s’2,0 s’2,1 s’2,2 s’2,3
 03 01 01 02 s3,0 s3,1 s3,2 s3,3 s’3,0 s’3,1 s’3,2 s’3,3

Each element in the product matrix is the sum of
products of elements of one row and one column. In
this case, the individual additions and multiplications
are performed in GF (28).
The mix columns transformation on a single column
j (0≤ j≤ 3) of State can be expressed as :-
s’0,j = (2* s0,j) (3* s1,j) s2,j s3,j
s’1,j = s0,j (2* s1,j) (3* s2,j) s3,j
s’2,j = s0,j s1,j (2* s2,j) (3* s3,j) (3)
s’3,j = (3* s0,j) s1,j s2,j (2* s3,j)
As mix columns only requires multiplication by {02}
and {03}, which, as we have seen, involved simple
shifts, conditional XORs, and XORs. This can be
implemented in a more efficient way that eliminates
the shifts and conditional XORs. Equation Set (3)
shows the equations for the mix columns
transformation on a single column. Using the identity
{03} · x = ({02} · x) x, we can rewrite equation Set
(3) as follows:
Tmp = s0,j s1,j s2,j s3,j
s’0,j = s0,j Tmp [2*(s0,j s1,j)]
s’1,j = s1,j Tmp [2*(s1,j s2,j)] (4)
s’2,j = s2,j Tmp [2*(s2,j s3,j)]
s’3,j = s3,j Tmp [2*(s3,j s0,j)]
Multiplication by 02 equivalents to multiply by x
which can be implemented using equation (2) as in

figure 4 The gate count of this implementation (using
combinational circuits only) as shown in fig.(5) is as
follows: 8 XORs to calculate (s0,j s1,j) in equation
(4.1), so 32 XORs are required for the same
calculations in equations 4.

 Fig. 4. x * f(x) Implementation (C= 02 * B)

Additional 8 XORs are needed to calculate Tmp.
3 XORs are required to calculate 2*(s0,j s1,j) in
equation (4.1) so we need 12 XORs for the same
calculations in equations 4. Finally we need an 8
XORs (with 3 inputs) OR 16 XORs (with 2 inputs) to
calculate (s’0,j) in equation (4.1), so we need 32
XORs (with 3 inputs) OR 64 XORs (with 2 inputs) to
calculate equations 4. Finally we can implement
Forward mix columns transformation using
32+8+12+64 = 116 XORs with 2 inputs, OR (52
XORs with 2 inputs + 32 XORs with 3 inputs with
total 84 XORs).
In fig. 5, the block labeled Mul by (2) means multiply
its input by 2 using the implementation shown in fig.
4 (using 3 XOR gates). Each arrow represent 8 bits
and each block such as S’1,j represent 8 wires holds
values of S’1,j.

The inverse mix column transformation (in
decryption process), called InvMix Columns, is
defined by the following matrix multiplication:
 0E 0B 0D 09 s0,0 s0,1 s0,2 s0,3 s’0,0 s’0,1 s’0,2 s’0,3
 09 0E 0B 0D s1,0 s1,1 s1,2 s2,3 s’1,0 s’1,1 s’1,2 s’2,3
 0D 09 0E 0B s2,0 s2,1 s2,2 s2,3 = s’2,0 s’2,1 s’2,2 s’2,3
 0B 0D 09 0E s3,0 s3,1 s3,2 s3,3 s’3,0 s’3,1 s’3,2 s’3,3

Each element in the product matrix is the sum of
products of elements of one row and one column. In
this case, the individual additions and multiplications
are performed in GF (28). The mix Columns
transformation on a single column j (0≤ j≤ 3) of
State can be expressed as:-
s’0,j = (0E* s0,j) (0B* s1,j) (0D* s2,j) (09* s3,j)
s’1,j = (09* s0,j) (0E* s1,j) (0B* s2,j) (0D* s3,j)
s’2,j = (0D* s0,j) (09* s1,j) (0E* s2,j) (0B* s3,j) (5)
s’3,j = (0B* s0,j) (0D* s1,j) (09* s2,j) (0E* s3,j)

Proceedings of the 9th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC '09)

ISSN: 1790-5109 256 ISBN: 978-960-474-107-6

Fig. 5. Forward mix columns operation

Equation set (5) is formulated to simplify its hardware
implementation as follows:

Tmp = 09 * (s0,j s1,j s2,j s3,j)
s’0,j =s0,j Tmp 2*[2*(s0,j s2,j)] 2*[(s0,j s1,j)]
s’1,j =s1,j Tmp 2*[2*(s1,j s3,j)] 2*[(s1,j s2,j)]
s’2,j =s2,j Tmp 2*[2*(s0,j s2,j)] 2*[(s2,j s3,j)] (6)
s’3,j =s3,j Tmp 2*[2*(s1,j s3,j)] 2*[(s3,j s0,j)]

As shown in fig. (6) the gate count of this
implementation (using combinational circuits only) is
as follows: We need 8 XORs to calculate (s0,j s1,j)

in equation (6.1), so 32 XORs are required for
equations set 6. We need 3 XORs to calculate 2*(s0,j

 s1,j) in equation (6.1), so 12 XORs are required
for the same calculations in equations 6. Additional 8
XORs are required to calculate (s0,j s2,j) in
equation (6.1), so we need 16 XORs for the same
calculations in equations 6. We need additional 3
XORs to calculate 2*(s0,j s2,j) in equation (6.1), so
6 XORs are required for the same calculations in
equations 6. We need additional 3 XORs to calculate
2*(2*(s0,j s2,j)) in equation (6.1) so 6 XORs are
required for the same calculations in equations 6. We
need additional 3 XORs to calculate 2*(2*(2*(s0,j
s2,j))) in equation (6.1), so 6 XORs are required for
the same calculations in equations 6. Additional 8
XORs are required to calculate 09*(s0,j s2,j), 8

XORs to calculate 09*(s1,j s3,j), and 8 XORs to
calculate Tmp. Finally we need 24 XORs to calculate
s’0,j in equation (6.1), and 96 XORs for the same
calculations in equations 6. Implementing inverse
mix columns transformation uses
32+12+16+6+6+6+16+8+96 = 198 XOR.
Implementing forward and inverse mix columns
transformation uses 116 +198 = 314 XOR gates.

Fig. 6 Inverse mix columns operation

4 Comparison
The total number of gates required for implementing
mix columns operation in our proposed design is 116
+198 =314 XOR gates. In [6], 16 multipliers are used
for the implementation, with 212 gates each with total
3392. In [5], the total number of gates is 176 in
Encryption only. In [2], the total number of gates is
292XOR+32AND = 324 gates with 140 gates in
encryption. Since our design is implemented using
combinational circuits only, each resultant mix
column takes a single clock cycle. The proposed mix

Proceedings of the 9th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC '09)

ISSN: 1790-5109 257 ISBN: 978-960-474-107-6

column implementation takes four clock cycles
compared to 28 clock cycles in [4].
Table 1 illustrates the comparison between our design
and other designs that implements mix columns
operation.

Design
Encryption Decryption Total

No.of
Gates

Critical
Path

No.of
Gates

Critical
Path

No.of
Gates

Critical
Path Status

Our
Design 116 4 198 8 314 8 Separated

In [2] 140 4 - - 324 6 Combined
In [5] 176 5 - - - - -

In [6] - - - - 3392 - -

Critical path in our proposed design is 8 gates. The
Status is “separated” means that the implementation
of encryption and decryption circuits is in two
separate modules with no overlap.

5 Conclusion
In this paper we have proposed an alternative
lightweight design for both forward and inverse mix
columns operation required in the AES hardware
implementation. The comparisons indicate that the
proposed mix-column design have less complexity
than previous relevant work in gate size and no. of
clock cycles. This compact design can help in
implementing AES for smart cards, RFID Tags, and
wireless sensors. This design prevents timing attack
on mix columns as the resultant columns take the
same duration not depending on multiplicand.
Merging the two separate circuits into a combined
one gives more reduction in gate count reach to 44
XOR gates.

References
[1]William Stalling “Cryptography and Network Security
Principles and Practices” Fourth Edition, Prentice Hall,
November 16, 2005.
[2]Hua Li and Zac Friggstad “An Efficient Architecture for
the AES Mix columns Operation” Circuits and Systems,
2005. ISCAS 2005. IEEE International Symposium on
Volume, Issue, 23-26 May 2005 Page(s): 4637-4640 Vol. 5
[3]P. Noo-intara, S. Chantarawong, and S. Choomchua
“Architectures for Mix columns Transform for the AES”
ICEP 2004, Phuket, THAILAND, 2004, pp. 152–156.

[4] M. Feldhofer, J. Wolkerstorfer and V. Rijmen “AES
implementation on a grain of sand” Information Security,
IEE Proceedings Volume 152, Issue 1, Oct. 2005 Page(s):
13 – 20.
[5] H. Kuo, I. Verbauwhede, and P. Schaumont, “A 2.29
gbits/sec, 56 mw non-pipelined rijndael aes encryption ic in
a 1.8v, 0.18 um cmos technology.” [Online]. Available:
citeseer.nj.nec.com/kuo02gbitssec.html

[6] S. Mangard, M. Aigner, and S. Moninikus, “A highly
regular and scalable aes hardware architecture,” IEEE
Transactions on Computers, April 2003, vol. 52, no. 4, pp.
483–491.
[7] N. I. of Standards and Technology, Federal Information
Processing Standard 197, the Advanced Encryption
Standard (AES),
http://csrc.nist.gov/publications/fips/fips197/fips197.pdf,
2001.

Proceedings of the 9th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC '09)

ISSN: 1790-5109 258 ISBN: 978-960-474-107-6

