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Abstract: - Since the debut of the Advanced Encryption Standard (AES), it has been thoroughly studied by 
hardware designers with the goal of reducing the area and delay of the hardware implementation of this 
cryptosystem. This paper proposes an implementation of the AES mix columns operation. In this paper, a compact 
architecture for the AES mix columns operation and its inverse is presented. The hardware implementation is 
compared with previous work done in this area. We show that our design has a lower gate count than other 
designs that implement both the forward and the inverse mix columns operation. 
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1   Introduction 
In 2001, the National Institute of Standards and 
Technology (NIST) adopted the Rijndael algorithm as 
the advanced encryption standard (AES). The AES 
algorithm began immediately to replace the data 
encryption standard (DES), which had been in use 
since 1976. AES outperforms DES in improved long-
term security because of larger key sizes (128, 192, 
and 256 bits). Another major advantage of AES is the 
possibility of efficient implementation on various 
platforms.AES is suitable for small 8-bit 
microprocessor platforms and common 32-bit 
processors, and it is appropriate for dedicated 
hardware implementations.                                                                                    
Although AES is used in many different applications, 
hardware implementations of the algorithm focus 
mostly on throughput optimization. Early hardware 
implementations—the first attempts were undertaken 
during the selection process of the algorithm—were 
straightforward implementations that had no 
optimization goal in mind. In the meantime, more 
mature reports about AES hardware implementations 
have become available. Most of them stress 
throughput optimization with no hardware resource 
restrictions. Only a few implementations try to realize 
resource-efficient hardware [4]. AES can be divided 
into four basic operation blocks where data are treated 
at either byte or bit level. The byte structure seems to 
be natural for low profile microprocessor (such as 8-
bit CPU and microcontrollers). 
The array of bytes organized as a 4×4 matrix is also 
called "state" and those four basic steps; BytesSub,  

 
ShiftRow, Mix columns, and AddRoundKey are also 
known as layers. These four layer steps describe one 
round of the AES. The number of rounds is depended 
on the key length, i.e., 10, 12 and 14 rounds for the 
key length of 128, 192 and 256 bits respectively[3, 7]. 
The block diagram of the system with 128 bit data is 
shown below fig.1. 
Substitute bytes Transformation: 
This operation is a non-linear byte substitution. It 
composes of two sub-transformations; multiplicative 
inverse and affine transformation. In most 
implementations, these two sub-steps are combined 
into a single table lookup called S-Box. 
ShiftRow Transformation: 
This step is a simple permutation process, operates on 
individual rows, i.e. each row of the array is rotated 
by a certain number of byte positions. 
 
Mix columns Transformation: 
This is a substitution step that makes use of arithmetic 
over GF (28). Column vector is multiplied (in          
GF (28)) by a fixed matrix where bytes are treated as a 
polynomial of degree less than 4. 
AddRoundKey: 
Each byte of the array is added (respect to GF (2)) to 
a byte of the corresponding array of round subkeys. 
Excluding the first and the last round, the AES with 
128 bit round key proceeds for nine iterations. Round 
keys are generated by a procedure called round key 
expansion or key scheduling. Those sub-keys are 
derived from the original key by XOR the two 
previous columns. For columns that are in multiples 
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of four, the process involves round constants addition, 
S-Box and shift operations. 
 

 
          Fig.1 AES Encryption and Decryption 
 
All four layers described above (including key 
scheduling) have corresponding inverse operations. 
Therefore the deciphering is the reverse order of the 
ciphering process. However, it should be noted that 
the mix columns reverse operation requires matrix 
elements that are quite complicated compared to 
{01}, {02} or {03} of the forward one. This result in 
the more complex deciphering hardware compared 
with the ciphering hardware. 
In the next section we demonstrate how the standard 
procedure for mix columns transform is rewritten in 
order to simplify its hardware implementation. This 
paper is organized in the following way: Section 2 
presents the mathematical background of GF (28). 
Section 3 presents the hardware implementation. 
Section 4 compares this design with previous 
architectures and suggests appropriate uses for the 
presented design. Section 5 concludes the paper. 
 
 

2    Mathematical Background 
The basic operations used in the AES algorithm can 
all be described very easily in terms of operations 
over the finite Galois field GF (28). This property 
allows us to reason about the algorithm using 
established mathematical techniques, facilitating 
security analysis as well as the construction of 
optimal implementations. Second, finite field 

operations can be implemented very efficiently in 
hardware in comparison with integer arithmetic. If we 
wish to define a conventional encryption algorithm 
that operates on 8 bits at a time and we wish to 
perform division. With 8 bits we can represent 
integers in the range 0 through 255.However 256 is 
not a prime number, so that if arithmetic is performed 
in Z256 (Arithmetic modulo 256), this set of integers 
will not be a field. The Closest prime number less 
than 256 is 251[1]. Thus the set Z251 using arithmetic 
modulo 251 is a field. However, in this case the 8-bit 
patterns representing the integers 251 through 255 
would not be used, resulting in inefficient use of 
storage.  

 
Fig. 2.  Arithmetic Modulo 8 

 

 
Fig. 3.  Arithmetic in GF (23) 
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So if all arithmetic operations are to be used, and we 
wish to represent a full range of integers in n bits, 
then arithmetic modulo 2n will not work, equivalently, 
the set of integers modulo 2n,For n>1 is not a field. 
Furthermore, even if the encryption algorithm uses 
only addition and multiplication, but not division, the 
use of the set Z2

n is questionable. Suppose we wish to 
use 3-bit blocks in our encryption algorithm, and use 
only the operations of addition and multiplication. 
Then arithmetic modulo 8 is well defined, as shown 
in fig.2. However, note that in the multiplication 
table, the nonzero integers do not appear an equal 
number of times. 
For example, there are only four occurrences of 3, but 
twelve occurrences of 4. On the other hand, as was 
mentioned, there are finite fields of the form GF (2n) 
so there is in particular a finite field of order 23 = 8. 
Arithmetic for this field is shown in fig.3. In this case, 
the number of occurrences of the nonzero integers is 
uniform for multiplication.  
To summarize, 
Integer                 1 2 3  4  5 6 7 
Occurrences in Z8               4 8 4 12 4 8 4 
Occurrences in GF (23)  7 7 7  7  7 7 7 
It would seem that an algorithm that maps the 
integers unevenly onto themselves might be 
cryptographically weaker than one that provides a 
uniform mapping. Thus, the finite fields of the form 
GF (2n) are attractive for cryptographic algorithms. 
Modular Polynomial Arithmetic 
Consider the set S of all polynomials of degree n-1 or 
less over the field Zp. Thus, each polynomial has the 
form where each ai takes on a value in the set {0, 1... 
p 1}. There are a total of pn different polynomials in 
S. For p = 3 and n = 2, the 32 = 9 polynomials in the 
set are 0 , 1, 2, x , 2x , x + 1 , x + 2 , 2x + 1 and 2x + 2. 
For p = 2 and n = 3, the 23 = 8 the polynomials in the 
set are 0 , 1 , x , x + 1 , x2 , x2 + 1 , x2 + x and x2 + x + 
1 With the appropriate definition of arithmetic 
operations, each such set S is a finite field. The 
definition consists of the following elements: 
Arithmetic follows the ordinary rules of polynomial 
arithmetic using the basic rules of algebra, with the 
following two refinements. 
1. Arithmetic on the coefficients is performed modulo 
p. That is, we use the rules of arithmetic for the finite 
field Zp. 
2. If multiplication results in a polynomial of degree 
greater than n-1, then the polynomial is reduced 
modulo some irreducible polynomial m(x) of degree 
n. That is, we divide by m(x) and keep the remainder. 
For a polynomial f(x), the remainder is expressed as 
r(x) = f(x) mod m(x).For Example:  

The Advanced Encryption Standard (AES) uses 
arithmetic in the finite field GF (28), with the 
irreducible polynomial    m(x) = x8 + x4 +x3 + x + 1. 
Consider the two polynomials     
f(x) = x6 + x4 + x2 + x+ 1 and g(x) = x7 + x + 1.  Then 
f(x) + g(x) = x6 + x4+ x2 + x + 1 + x7 + x + 1= x7 +x6 + 
x4+ x2. 
f(x) * g(x) = x13 + x11 + x9 + x8 + x7 +x7 + x5 + x3 + x2 + 
x +x6 + x4 + x2 + x + 1 = x13 + x11 + x9 + x8 + x6 + x5+ 
x4 + x3 + 1   
                                    x5 + x3 
x8 + x4 +x3 + x + 1     x13 + x11 + x9 + x8 + x6 + x5+ x4 + x3 +1  
                   x13         + x9 + x8 + x6 + x5 
 
                                      x11                            + x4 + x3 

                                      x11           + x7 + x6    + x4 + x3 
                        x7 + x6          +1          
Therefore, f(x) * g(x) mod m(x) = x7 + x6+1. 
Computational Considerations 
A polynomial f(x) in GF (2n) 
 f(x) =an-1 x

n-1+an-2 x
n-2+…+ a1 x+a0 can be uniquely 

represented by its n binary coefficients (an-1an-2...a0). 
Thus, every polynomial in GF (2n) can be represented 
by an n-bit number. 
Addition 
We have seen that addition of polynomials is 
performed  by adding corresponding coefficients and, 
in the case of polynomials over Z2 addition is just the 
XOR operation. So, addition of two polynomials in  
GF  (2n)  corresponds  to  a bitwise XOR operation.  
Multiplication 
There is no simple XOR operation that will 
accomplish multiplication in GF (2n) However; a 
reasonably straightforward, easily implemented 
technique is available. We will discuss the technique 
with reference to GF (28) using m(x) = x8 + x4 +x3 + x 
+ 1, which is the finite field used in AES. The 
technique readily generalizes to GF (2n). The 
technique is based on the observation that                             
x8  mod m(x) = m(x) - x8 = x8 + x4 +x3 + x + 1  (1)  
A moment's thought should convince you that 
equation (1) is true; if not, divide it out. In general, in 
GF (2n) with an nth-degree polynomial p(x), we have 
xn mod p(x) = [p(x)- xn]. Now, consider a polynomial 
in GF (28), which has the form f(x) = b7x

7+ b6x
6 + b5x

5 
+ b4x

4 + b3x
3 +b2x

2 + b1 x + b0. If we multiply by x, 
we have x  * f(x) =  (b7x

8+ b6 x
7 + b5x

6 + b4x
5 + b3x

4 
+b2x

3 + b1 x
2 + b0x) mod m(x)If b7 = 0, then the result 

is a polynomial of degree less than 8, which is already 
in reduced form, and no further computation is 
necessary. 
If b7 = 1, then reduction modulo m(x) is achieved 
using equation (1): x * f(x) = (b6 x

7 + b5x
6 + b4x

5 + 
b3x

4 +b2x
3 + b1 x

2 + b0x) + (x4 +x3 + x + 1) It follows 
that multiplication by x (i.e., 00000010) can be 
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implemented as a 1-bit left shift followed by a  
conditional  bitwise  XOR  with  (00011011), which 
represents (x4 +x3 + x + 1). 
 
 To summarize, 
                  (b6b5b4b3b2b1b00)                          If b7 = 0 
x * f(x) =                                                               (2) 
                 (b6b5b4b3b2b1b00)  (00011011) If b7 = 1 
 
Multiplication by a higher power of x can be achieved 
by repeated application of equation (2). By adding 
intermediate results, multiplication by any constant in        
GF (28) can be achieved. 
 
 

3   Mix columns Implementation 
The forward mix column transformation (in 
encryption process), called mix columns, operates 
on each column individually. Each byte of a column 
is mapped into a new value that is a function of all 
four bytes in that column. The transformation can be 
defined by the following matrix multiplication on 
State. 
  02  03  01  01        s0,0    s0,1   s0,2  s0,3          s’0,0    s’0,1   s’0,2    s’0,3 
  01  02  03  01        s1,0    s1,1   s1,2  s2,3          s’1,0    s’1,1   s’1,2   s’1,3 
  01  01  02  03        s2,0    s2,1   s2,2  s2,3    =   s’2,0    s’2,1   s’2,2    s’2,3 
  03  01  01  02        s3,0    s3,1   s3,2  s3,3       s’3,0    s’3,1   s’3,2   s’3,3 

 
Each element in the product matrix is the sum of 
products of elements of one row and one column. In 
this case, the individual additions and multiplications 
are performed in   GF (28). 
The mix columns transformation on a single column 
j (0≤ j≤ 3) of State can be expressed as :- 
s’0,j =  (2* s0,j)  (3* s1,j)  s2,j  s3,j  
s’1,j =   s0,j   (2* s1,j) (3* s2,j)  s3,j                                               
s’2,j =   s0,j  s1,j (2* s2,j) (3* s3,j)             (3) 
s’3,j =  (3* s0,j)  s1,j  s2,j (2* s3,j)  
As mix columns only requires multiplication by {02} 
and {03}, which, as we have seen, involved simple 
shifts, conditional XORs, and XORs. This can be 
implemented in a more efficient way that eliminates 
the shifts and conditional XORs. Equation Set (3) 
shows the equations for the mix columns 
transformation on a single column. Using the identity 
{03} · x = ({02} · x) x, we can rewrite equation Set 
(3) as follows: 
Tmp = s0,j  s1,j  s2,j  s3,j  
s’0,j =  s0,j  Tmp  [2*( s0,j  s1,j) ] 
s’1,j  =  s1,j  Tmp  [2*( s1,j  s2,j) ]            (4) 
s’2,j =  s2,j  Tmp  [2*( s2,j  s3,j) ]  
s’3,j =  s3,j  Tmp  [2*( s3,j  s0,j) ] 
Multiplication by 02 equivalents to multiply by x 
which can be implemented using equation (2) as in 

figure 4 The gate count of this implementation (using 
combinational circuits only) as shown in fig.(5)  is as 
follows: 8 XORs to calculate ( s0,j  s1,j)  in equation 
(4.1), so 32 XORs are required for the same 
calculations in  equations 4. 
 

 

 Fig. 4. x * f(x) Implementation (C= 02 * B) 

Additional 8 XORs are needed to calculate Tmp.       
3 XORs are required to calculate 2*(s0,j  s1,j)  in 
equation (4.1) so we need 12 XORs for the same 
calculations in  equations 4. Finally we need an 8 
XORs (with 3 inputs) OR 16 XORs (with 2 inputs) to 
calculate (s’0,j)  in equation (4.1), so we need 32 
XORs (with 3 inputs) OR 64 XORs (with 2 inputs) to 
calculate  equations 4. Finally we can implement 
Forward mix columns transformation using 
32+8+12+64 = 116 XORs with 2 inputs, OR (52 
XORs with 2 inputs + 32 XORs with 3 inputs with 
total 84 XORs). 
In fig. 5, the block labeled Mul by (2) means multiply 
its input by 2 using the implementation shown in fig. 
4 (using 3 XOR gates). Each arrow represent 8 bits 
and each block such as S’1,j represent 8 wires holds 
values of S’1,j. 

The inverse mix column transformation (in 
decryption process), called InvMix Columns, is 
defined by the following matrix multiplication:  
  0E  0B  0D  09      s0,0    s0,1   s0,2  s0,3       s’0,0    s’0,1   s’0,2   s’0,3 
  09   0E  0B  0D     s1,0    s1,1   s1,2  s2,3       s’1,0    s’1,1   s’1,2   s’2,3 
  0D  09   0E  0B     s2,0    s2,1   s2,2  s2,3     =   s’2,0    s’2,1   s’2,2   s’2,3 
  0B  0D  09   0E     s3,0    s3,1   s3,2  s3,3          s’3,0    s’3,1   s’3,2   s’3,3 
 
Each element in the product matrix is the sum of 
products of elements of one row and one column. In 
this case, the individual additions and multiplications 
are performed in   GF (28).  The   mix Columns   
transformation   on a single column j (0≤ j≤ 3) of 
State can be expressed as:- 
s’0,j =  (0E* s0,j)  (0B* s1,j) (0D* s2,j) (09* s3,j)  
s’1,j =  (09* s0,j)   (0E* s1,j) (0B* s2,j) (0D* s3,j)   
s’2,j =  (0D* s0,j)  (09* s1,j) (0E* s2,j) (0B* s3,j) (5) 
s’3,j =  (0B* s0,j) (0D* s1,j) (09* s2,j) (0E* s3,j) 
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Fig. 5. Forward mix columns operation 
 

 
Equation set (5) is formulated to simplify its hardware 
implementation as follows: 
 
Tmp =  09 * ( s0,j  s1,j  s2,j  s3,j ) 
s’0,j =s0,j Tmp 2*[2*(s0,j s2,j)] 2*[(s0,j s1,j)] 
s’1,j =s1,j Tmp 2*[2*(s1,j s3,j)] 2*[(s1,j s2,j)] 
s’2,j =s2,j Tmp 2*[2*(s0,j s2,j)] 2*[(s2,j s3,j)] (6) 
s’3,j =s3,j Tmp 2*[2*(s1,j s3,j)] 2*[(s3,j s0,j)] 
 
As shown in fig. (6) the gate count of this 
implementation (using combinational circuits only) is 
as follows: We need 8 XORs to calculate ( s0,j  s1,j)  

in equation (6.1), so  32 XORs are required for 
equations set 6. We need 3 XORs to calculate 2*(s0,j 

 s1,j)    in equation (6.1), so  12 XORs are required 
for the same calculations in equations 6. Additional 8 
XORs are required to calculate (s0,j  s2,j)  in  
equation (6.1), so we need 16 XORs for the same 
calculations in equations 6. We need additional 3 
XORs to calculate 2*(s0,j  s2,j)  in equation (6.1), so 
6 XORs are required for the same calculations in 
equations 6. We need additional 3 XORs to calculate 
2*(2*(s0,j  s2,j))  in equation (6.1) so 6 XORs are 
required for the same calculations in equations 6. We 
need additional 3 XORs to calculate 2*(2*(2*( s0,j  
s2,j)))  in equation (6.1), so 6 XORs are required for 
the same calculations in equations 6. Additional 8 
XORs are required to calculate 09*( s0,j  s2,j), 8 

XORs to calculate      09*( s1,j  s3,j), and 8 XORs to 
calculate Tmp. Finally we need 24 XORs to calculate 
s’0,j in equation (6.1), and 96 XORs for the same 
calculations  in equations 6. Implementing inverse 
mix columns transformation uses 
32+12+16+6+6+6+16+8+96 = 198 XOR. 
Implementing forward and inverse mix columns 
transformation uses 116 +198 = 314 XOR gates. 

 
Fig. 6 Inverse mix columns operation 

 
 

4   Comparison 
The total number of gates required for implementing 
mix columns operation in our proposed design is 116 
+198 =314 XOR gates. In [6], 16 multipliers are used 
for the implementation, with 212 gates each with total 
3392. In [5], the total number of gates is 176 in 
Encryption only. In [2], the total number of gates is 
292XOR+32AND = 324 gates with 140 gates in 
encryption. Since our design is implemented using 
combinational circuits only, each resultant mix 
column takes a single clock cycle. The proposed mix 
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column implementation takes four clock cycles 
compared to 28 clock cycles in [4].  
Table 1 illustrates the comparison between our design 
and other designs that implements mix columns 
operation. 
 

Design 
Encryption Decryption Total 

No.of 
Gates 

Critical 
Path 

No.of 
Gates 

Critical 
Path 

No.of 
Gates 

Critical 
Path Status 

Our 
Design 116 4 198 8 314 8 Separated 

In [2] 140 4 - - 324 6 Combined 
In [5] 176 5 - - - - - 

In [6] - - - - 3392 - - 

 
Critical path in our proposed design is 8 gates. The 
Status is “separated” means that the implementation 
of encryption and decryption circuits is in two 
separate modules with no overlap. 
 
 
5   Conclusion 
In this paper we have proposed an alternative 
lightweight design for both forward and inverse mix 
columns operation required in the AES hardware 
implementation. The comparisons indicate that the 
proposed mix-column design have less complexity 
than previous relevant work in gate size and no. of 
clock cycles. This compact design can help in 
implementing AES for smart cards, RFID Tags, and 
wireless sensors. This design prevents timing attack 
on mix columns as the resultant columns take the 
same duration not depending on multiplicand. 
Merging the two separate circuits into a combined 
one gives more reduction in gate count reach to 44 
XOR gates. 
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