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Abstract: The maximum entropy method (MEM) is a relatively new technique for solving underdetermined sys-
tems. It has been successfully applied in many different areas. All methods for solving underdetermined systems
introduce some additional, artificial constraints. The advantage of the maximum entropy method is that it uses the
most natural additional constraint: one that does not introduce any new, arbitrary and unwarranted information.
One important property of entropy maximization is that it favors uniform distribution. Network design and analysis
almost always involve underdetermined systems, especially when routing policy has to be determined. The number
of possible routings grows with the factorial of the number of the nodes in the network and the number of possible
topologies is exponential in the number of links. The number of constraints is typically polynomial in the number
of nodes in the network. That makes the network design problem a good candidate for the maximum entropy
method application. It is intuitively clear that an optimal network should not have overloaded or underutilized
links. The hope is that the maximum entropy constraint will give a starting topology and routing with smoothly
distributed traffic that would lead to the solution that is closer to the optimal. The problem is computationally fea-
sible and with proper identification and selection of certain parameters the method gives reasonable topology and
routing. It is possible to apply MEM if we start our analysis with totally interconnected network ofn nodes. Some
lines will be dropped later in the process of improving utilization or reducing the cost. To apply the maximum
entropy method we have to decide what will be the variables of the system. Some combination of required traffic
values can be used for that if we remember that for MEM application we do not need to start with probabilities,
but an arbitrary set of numbers which can be normalized. Additional parameters are introduced which allow the
control of optimization process. Philosophical discussions about the real meaning of the maximum entropy method
are interesting, but since the method was successfully applied in many areas, for any new area the most important
criterion is not how well can we explain the relation between the MEM and that area, but how useful are the results
we get by applying the method.
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1 Introduction

The network design problem is an old, but also an
unsolvable one. It is a very interesting problem be-
cause it has great practical value and since it is un-
tractable, heuristics and suboptimal solutions are used
for decades. It is an open problem and since unique
best solution can not be found, every new approach is
promising in the sense that solution obtained can be
better then previous ones, at least in some cases. The
maximum entropy method has been used recently in
many different areas for solving underdetermined sys-
tems. An analysis of both, network design problem
and maximum entropy method, is given here with the
argument that maximum entropy method can be a rea-
sonable way to approach the network design problem.

2 Maximum Entropy Method

The maximum entropy method was recently used with
great success in many different areas where underde-
termined systems are involved. It is most frequently
used in chemistry [1], but also in many other very di-
verse areas: character recognition [2], data analysis
[3], image processing [4], [5], economy [6]. Theoret-
ical developments also continue [7].

The basic idea is to get a unique solution from
the underdetermined system by introducing the addi-
tional constraint that the entropy function should be
maximized. The other methods that were used for
solving underdetermined systems use the same tech-
nique: they introduce additional, artificial constraints
that make the number of constraints equal to the num-
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ber of unknowns. The difference is that the maximum
entropy method introduces the most natural additional
constraint: one that does not introduce any new, arbi-
trary and unwarranted information. It uses only the
information that is given and makes no assumptions
about missing information.

Before we go to the formal definition of the max-
imum entropy principle, it is interesting to mention
that besides very pragmatic uses (like here) there were
very extensive philosophical discussions about the
real meaning of this principle. The predecessor of the
maximum entropy principle is the principle of insuf-
ficient reason (James Bernoulli:“Ars Conjectandi,”
1713). It states that in the absence of any informa-
tion (knowledge), all outcomes should be considered
equally possible. It was involved in the discussions
about prior probabilities (probabilities of one event,
state of the knowledge) and relative frequencies. Rela-
tive frequencies become predominant and some useful
works from Laplace and Bayes were criticized. Shan-
non’s works on information theory opened a new op-
portunity for revitalization of the principle of insuffi-
cient reason, this time as a more sophisticated maxi-
mum entropy principle that was introduced by Jaynes.

2.1 Definition of the MEM
Let us now give the formal definition of the maximum
entropy method:

Suppose that for a discrete random variableX
we know the valuesx1, x2, ..., xn that it can take,
but we do not know the corresponding probabilities
p1, p2, ..., pn. We also know expected values for
k < n − 1 functions ofX (for example, the firstk
moments):

E[ fr(X)] = mr r = 1, 2, ..., k. (1)

In fact, we do not need to know the values
x1, x2, ..., xn, or analytical expressions for functions
fr, r = 1, 2, ..., k. It is sufficient to know the values
fr(Xi); r = 1, 2, ..., k; i = 1, 2, ..., n. Also, we do
not have to start with probabilitiesp1, p2, ..., pn. We
can start with any set of numberst1, t2, ..., tn. Then
we introduce

pi =
ti

∑
tj

Thisgives us (together with
∑

pi = 1 ) k+1 < n
constraints forn unknown variablesp1, p2, ..., pn.
This system is underdetermined and has an infinite
number of solutions. We want to find the unique solu-
tion that maximizes the entropy of the system. That is

the best solution, in the sense that it uses only the in-
formation given. It is neutral to the missing informa-
tion (it does not introduce any hidden assumptions).
This additional constraint can be expressed as:

Maximize the entropy function

H(p1, p2, ..., pn) = − K

n∑

i=1

pi ln(pi). (2)

If we selectK = 1, entropy will be expressed in
natural units (rather than in bits).

2.2 Solution
We will use the method of Lagrange multipliers.
This will not guarantee us that probabilities are non-
negative. We introduce the substitutionpi = e−qi .
This gives us a stronger constraint than the one that
we wanted: all probabilities are now positive definite
(none of them can be zero). Our problem now is to
maximize

H(q1, q2, ..., qn) =
n∑

i=1

qi e−qi (3)

under the conditions

n∑

i=1

e−qi = 1 (4)

n∑

i=1

e−qifr(xi) = mr , r = 1, 2, ..., k (5)

When we introduce Lagrange multipliers
λ, µ1, µ2, ..., µk, we get the function:

F (q1, q2, ..., qn) = (6)

n∑

i=1

qi e−qi + λ

n∑

i=1

e−qi +
k∑

r=1

µr

n∑

i=1

e−qi fr(xi)

All partial derivatives should be zero:

δF

δqi
= e−qi [1 − qi − λ −

k∑

r=1

µr fr(xi)] = 0 , (7)

i = 1, 2, ..., n

e−qi is never zero, so we get

qi = 1 − λ −

k∑

r=1

µr fr(xi) , i = 1, 2, ..., n (8)
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The problem is now solved: (4), (5), and (8) give
n + k + 1 equationsfor n + k + 1 unknown variables
p1, p2, ..., pn, µ1, µ2, ..., µk, λ. The system should
have unique solution, but it is not linear and some nu-
meric method have to be used.

To make the calculations easier, we introduce the
partition function:

Z(µ1, µ2, ..., µk) =
n∑

i=1

pi e−λ =
n∑

i=1

e−λ−qi (9)

Z(µ1, µ2, ..., µk) =
1

e

n∑

i=1

e
∑k

r=1
µr fr(xi) (10)

It is easy to see that

λ = − lnZ(µ1, µ2, ..., µk) (11)

mr =
δ

δµr
lnZ(µ1, µ2, ..., µk) (12)

or

mr =
n∑

i=1

[mr − fr(xi)]e
∑k

j=1
µj fj(xi) = 0 , (13)

r = 1, 2, ..., k

(13) givesk equations fork unknown variables
µ1, µ2, ..., µk. When we solve it, from (11) we get
λ, and then from (8)q1, q2, ..., qn, and finally, from
pi = e−qi we get p1, p2, ..., pn.

We can introducetj = eµj , j = 1, 2, ..., k. Then
(11) and (13) become:

λ = 1 − ln[
n∑

i=1

Πk
j=1t

fj(xi)

j ] (14)

n∑

i=1

[mr − fr(xi)]Π
k
j=1t

fj(xi)

j = 0, (15)

r = 1, 2, ..., k

There is a standard algorithm to solve this system.
However, the function that we need to minimize is not
convex even in the simplest case when there is only
one constraint: expected value. The standard Newton-
Rapson procedure will not work. But the Jacobian
matrix for the system we are solving is symmetric and
positive definite. This gives us a scalar potential func-
tion which is strictly convex and whose minimum is
easy to find. The use of the second order Taylor ex-
pansion is recommended. However, after much expe-
rience with the algorithm, we consider that it is not
even worth trying to find the exact value forα that de-
termines how far to go along a certain direction, let
alone inverting the Jacobian matrix every time.

2.3 Selection Principle
The previous model has constraintspi > 0, i =
1, 2, ..., n. This may be too strong since the proba-
bilities need only to be nonnegative. To makepi ≥ 0,
we can introducepi = q2

i instead ofpi = e−qi , which
we had before.

In practice, we have to decide whichpi will be
zero. We can do it in advance and consider a model
that has onlyn − m probabilities (ifm probabilities
are selected to be zero). If we select too many proba-
bilities to be zero, the system may become overdeter-
mined.

3 Network Design Problem
Computer networks consist of computers, called
nodes, and communication lines, called links, that in-
terconnect them. All data that is exchanged among
nodes is divided into packets. Destination address is
added to messages and these packets are sent to neigh-
boring computers that send to their neighbors and so
on, until the message reaches its destination.

The network design problem is:

• For given locations of nodes, traffic matrix (of-
fered traffic for each pair of nodes) and cost ma-
trix (cost to transfer a message for each pair of
nodes)

• With performance constraints: reliability, de-
lay (time that a message spend in the network),
throughput

• Find values for variables: topology (which nodes
will be connected directly with a line and which
will have to communicate indirectly, using other
nodes as intermediate stations), line capacities
(how much traffic will each link be able to carry),
flow assignment - routing (which paths messages
between any pair of nodes will follow)

• Minimize the cost (of building and maintaining
the whole network).

Other formulations of the problem are: minimize
delay for the given cost or maximize throughput for
given cost and delay. It has been shown that all these
problems are similar and that the same techniques can
be applied. Different aspects of the network design
problem, particularly routing and link capacity were
investigated [8], [9], [10]. More recent results are in
[11] and [12] and the latest survey [13].

This problem is intractable if full and exact solu-
tion is required. Networks can have many hundreds
of nodes (computers). Fortunately, experience has
shown that network design can be done hierarchically
and still be near optimal. An example is a network for
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a country. First, we can decide where to put trunks be-
tweenmajor cities, then connect small cities to near-
est major cities, then make local networks inside the
cities. This approach allows us to work with networks
of at most 50 nodes at a time. This is a great help, but
the problem is still intractable.

The network design problem, that was for many
decades investigated with emphasis on wide area net-
works, is recently revitalized with application to mo-
bile ad hoc networks [14], [15], [16].

4 Suitability of the MEM for the Net-
work Design Problem

Network design and analysis almost always involve
underdetermined systems, especially when routing
policy has to be determined. The number of possi-
ble routings grows with the factorial of the number of
the nodes in the networks and the number of possible
topologies is exponential in the number of links. The
number of constraints (such as “everything that goes
in must go out” for each node that is neither source nor
sink) is typically polynomial in the number of nodes
in the network.

The problem of network design is to find a topol-
ogy, routing and capacity assignment such that cost or
delay is minimized. Once the topology and the rout-
ing are decided, there are exact methods for capacity
assignment that will minimize delay or cost. How-
ever, there are very few theoretical results on how to
select topology and routing. Most of the algorithms
that are used today are heuristic and many of them do
not even have intuitive justification other then “easy
to calculate” or “only simple thing we can do.” Here
is presented an attempt to use the maximum entropy
method to select (initial) topology and routing. The
problem of selecting topology and routing is (almost)
always an underdetermined one. To solve it, most
methods that are currently used introduce new, arti-
ficial constraints. These artificial constraints do not
have any justification other than that they make the
number of unknowns and the number of constraints
equal. The maximum entropy method has the nice
property that it solves underdetermined systems with-
out introducing any new, unwarranted information.
The other advantage of the maximum entropy method
is that it makes things as equal as possible. It is intu-
itively appealing that a network should not have “hot
spots,” i.e. traffic should be distributed as equally as
possible along all lines. The same goal can be attained
by using some other function that has maximum when
all variables are equal. One very simple such function
is the product of all variables. The product function
expression seems simpler then entropy function ex-

pression which involves logarithms, but when we re-
member that we need partial derivatives we see that
entropy function is better since it separates variables.

It is possible to apply MEM if we start our anal-
ysis with totally interconnected network ofn nodes.
Some lines will be dropped later in the process of
improving utilization or reducing the cost. To apply
the maximum entropy method we have to decide what
will be the variables of the system. Some combination
of required traffic values can be used for that if we re-
member that for MEM application we do not need to
start with probabilities, but an arbitrary set of numbers
which can be normalized.

There is no theoretical explanation of which of
the heuristics used so far are better and under what
circumstances. It is worthwhile to try to find new so-
lutions for the network design problem since it is a
very difficult one and far from being solved. Com-
puter networks are very numerous today and carry a
lot of traffic and reducing a cost for only 1% would be
a significant result. Philosophical discussions about
the real meaning of the maximum entropy method are
interesting, but since method was successfully applied
in many areas, for any new area the most important
criterion is not how well can we explain the relation
between the MEM and that area, but how useful are
the results we get by applying the method.

5 Variables and Constraints

Let us consider given traffic matrixti,j , line capacity
C and total traffic T.

The network design problem has to be fitted to the
model described in the previous section. It is possible
to apply MEM if analysis is started with totally inter-
connected network ofn nodes. Initial feasible routing
is then trivial. Some lines will be dropped later in the
process of improving utilization or reducing the cost.

To apply the maximum entropy method, it has to
be decided what will be the variables of the system.
Some combination of the required traffic values can
be used for that, since for the MEM application it is
not necessary to start with the probabilities, but with
an arbitrary set of numbers which can be normalized.

It may be desirable to have as variables the traffic
along different lines; that is what should be made as
equal as possible. However, these variables are too
coarse. From them the routing can not be determined.
The more serious problem is that there are no natural
constraints on these variables.

This forces us to select as variables of the system
something finer: the traffic of a particular message
type (message types are distinguished by the source
and destination for a message) on a particular line.
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The number of different message types isn(n−1)
(from each node to every other node, except itself).
The number of different lines is alson(n − 1). As-
sumption is that each pair of nodes is connected with
two lines, one in each direction. If full duplex is con-
sidered, the number of lines is one half of the previ-
ous case. However, the same model has to be retained
since routing has to be determined. The only differ-
ence will be the fact that offered load matrix is sym-
metric.

There is a variable for each pair (message-type,
line) so the total number of variables isn2(n − 1)2.
Each variable can be marked with four indices of the
form Tmessage;line wheremessageandline are repre-
sented each with two indices:sourceanddestination.
The final form of the variables isTMS,MD;LS,LD.

Constraints that enforce feasible routing can be
determined as follows. For each node there is an equa-
tion for each message type. The total number of equa-
tions is thenn2(n − 1), plus the equation that es-
tablishes that the sum of all probabilities is equal to
1. In this case, the last condition is equivalent to the
requirement that the total network traffic is equal to
some given constant within a certain range.

The equations will express the following condi-
tions: for each transit node the flow-in is equal to the
flow-out for each message type separately. For the
source nodes and the sink nodes, equation is balanced
by the required load for particular message type.

All the coefficients on the left side of this system
will be 0, 1 or -1. The right side of the system is the
offered load. This system represents constraints from
the general MEM model.

The matrix for this system is large, but fortunately
very sparse. In each equation only2(n − 1) coeffi-
cients are different from zero (the number of input and
output lines for one node). Some of the coefficients
on the right side of the system are not zero, but ne-
glecting that, the total number of the coefficients that
are different from zero is2n2(n − 1)2 (the number
of equations times the non-zero coefficients in each
equation). The total number of the elements in the
system isn4(n − 1)3 (the number of equations times
the number of variables). The density of the matrix is
then calculated as 2

n2(n−1)
. The density approaches

zero with the cube of the number of nodes, which
means that is inappropriate or impossible to keep such
a matrix in the memory (even though the computation
would be faster). It will be necessary to define a func-
tion that will, based on the indices, compute coeffi-
cients of the matrix.

Table 1 lists memory requirements and matrix
density for different size networks, assuming opti-
mistic four bytes per variable, neglecting first equation

and right side of the system.

Nod. Variables Equat. Memory Density
3 36 18 2.5 KB 11.11%
5 400 100 152.6 KB 2.00%

10 8100 900 27.8 MB 0.22%
20 144400 7600 4.2 GB 0.03%

Table 1: Memory requirements

Weimplemented an algorithm for calculating ma-
trix values, rather than keeping them in the memory.

The previous model makes it possible to use the
MEM for the network design problem. It uses feasi-
ble routing as a constraint and it gives a solution, but
not the one that we hoped for. The reason to use the
MEM was its tendency towards equalization, but in
that model the variables were not those that had to be
equalized but those that were necessary for the feasi-
ble routing.

It is possible to modify the MEM model in any
desired way and to guide the process.

6 Conclusion

The network design problem is a candidate for the
maximum entropy method application since the rout-
ing problem is an underdetermined one. It is intu-
itively clear that an optimal network should not have
overloaded or underutilized links. The hope is that
the maximum entropy constraint will give a starting
topology and routing with smoothly distributed traf-
fic that would lead to the solution that is closer to the
optimal. The problem is computationally feasible and
it seems that, with proper identification and selection
of certain parameters, the method will give reasonable
topology and routing.

The criterion for use of the maximum entropy
method in the network design will be how useful re-
sults can we get from it. If nothing else, we can use
the property of the maximum entropy method that it
tries to make the probabilities as equal as possible for
given constraints. Without trying to prove it now for-
mally, it seems natural that a network should not have
“hot spots”, lines that carry much more traffic that
other lines. The maximum entropy method can help
to smooth traffic along all lines.

A combination of theory and experiments should
be applied in this research. Known theoretical prop-
erties of networks set initial computer experiments
which, in turn, point to some new properties that may
be theoretically proven.
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