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Abstract: - The paper presents the elasticity evaluation of some advanced symmetric composite laminates based on 
epoxy resin reinforced alternatively with HM carbon, HS carbon and kevlar49 fibres. The laminates taken into account 
into this evaluation have following plies sequences: [0/30/-30/60]S, [0/45/90]2S, [90/452/0]S and are subjected to off-
axis loading systems. The elastic constants as well as the tensile-shear interaction have been determined. In order to 
obtain equal stiffness in all loading systems, a composite laminate have to present balanced angle plies.  
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1   Introduction 
The elasticity evaluation of advanced composite 
laminates is for a great importance in designing 
composite structures both for aerospace, automotive and 
medical techniques. It is well known that composite 
laminates with aligned reinforcement are very stiff along 
the fibres, but also very weak transverse to the fibres 
direction. This fact is more obvious in the case of 
advanced composite laminates reinforced with 
anisotropic carbon or aramid fibres. Getting equal 
stiffness of laminates is a demand. 
     The solution to obtain equal stiffness of laminates 
subjected in all directions within a plane is presented by 
various authors by stacking and bonding together plies 
with different fibres orientations [1-5].  
     A composite laminate subjected to off-axis loading 
system presents tensile-shear interactions in its plies. 
Tensile-shear interactions lead to distortions and local 
micro-structural damage and failure, so in order to obtain 
equal stiffness in all off-axis loading systems, a 
composite laminate have to present balanced angle plies 
[6-12]. 
     Tensile-shear interaction in a fibre-reinforced 
composite laminate occurs only if the off-axis loading 
system does not coincide with the main axes of a single 
lamina or if the laminate is not balanced. 

2   Theoretical Background 
A composite laminate (fig. 1) formed by a number of 
unidirectional reinforced laminae subjected regarding to 
the loading scheme presented in fig. 2 is considered. 
     The elasticity law for a unidirectional lamina K can 
be written as follows: 
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where rijK  represent the transformed stiffness, σxxK , σyyK 
are the mean stresses of K lamina on x- respective y-axis 
and τxyK represent the mean shear stress of K lamina 
against the x-y coordinate system. The balance equations 
of the laminate structure are: 
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where nxx , nyy are the normal forces on the unit length of 
the laminate on x- respective y-axis and nxy represents 
the shear force, in plane, on the unit length of the 
laminate against the x-y coordinate system. σxx , σyy are 
the normal stresses on x- respective y-axis of the 
laminate, τxy represent the shear stress of the laminate 
against the x-y coordinate system. tK , t represent the 
thickness of the K lamina respective the laminate 
thickness, nxxK , nyyK  are forces on the unit length of K 
lamina on x- respective y-axis directions and nxyK is the 
shear force in plane, on the unit length of K lamina 
against the x-y coordinate system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Constructive scheme of a composite laminate 
 
Beside the balance equations, the geometric conditions 
must be also determined, to compute the stresses. For 
composite laminates these conditions imply that all 
laminas are bonded together and withstand, in a specific 
point, the same strains εxx, εyy, γxy as well as for the entire 
laminate: 
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Fig. 2. Off-axis loading scheme of a composite laminate 
 
According to equations (1)-(5), the elasticity law for 
entire laminate can be computed: 
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where the laminate stiffness rij are: 
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So, the laminate elasticity can be expressed as follows: 
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Computing the laminate strains as a function of stresses, 
the expressions (8) are: 
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where cij represents the laminate compliance tensor. This 
tensor can be computed as a function of elastic 
constants. Thus [1]: 
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It is obvious that the laminate will exhibit different 
elastic constants if the loading system is applied at a 
randomly angle, Φ, to the x-y coordinate system. 
 
 
3   Some Advanced Composite Laminates 
The laminates taken into account at elasticity evaluation 
are based on epoxy resin reinforced alternatively with 
HM carbon, HS carbon and Kevlar49 fibres.  
     These laminates present the following plies sequence: 
[0/30/-30/60]S, [0/45/90]2S and [90/452/0]S. Carbon fibres 
of type HM (high modulus) present a value of Young 
modulus larger than 300 GPa. High strength (HS) carbon 
fibre is a general purpose, cost effective carbon fibre, 
designed for industrial and recreational applications and 
is usually used for non structural components of 
aircrafts. Kevlar49 fibre is characterized by low density 
and high tensile strength and modulus. These properties 
are the key to its successful use as reinforcement for 
plastic composites in aircraft, aerospace, marine, 
automotive, other industrial applications, and in sports 
equipment. It is available in various forms of fibres. 
Kevlar49 is used in high performance composite 
applications where lightweight, high strength and 
stiffness, vibration damping and resistance to damage 
and fatigue are key properties. Reinforced composites 
can save up to 40% of the weight of glass fibre 
composites at equivalent stiffness [13], [14]. 
 
 
4   Results 
General input data are: fibres volume fraction φ = 0.5 in 
all cases, laminates thickness t = 1 mm and off-axis 
loading systems varies between 0° and 90°. For HM 
carbon fibres, following data have been used [15]: 

• EM = 3.9 GPa;  
• E║ > 300 GPa;  
• E┴ < 100 GPa;  
• υM < 0.5;  
• υF < 0.4;  
• GM < 25 GPa;  
• GF < 50 GPa.  

For HS carbon fibres the input data are:  
• E║ < 300 GPa;  
• E┴ < 80 GPa.  

For Kevlar49 fibres the following data have been used:  

• E║ < 200 GPa;  
• E┴ < 50 GPa. 

The computed elastic constants Exx, Eyy, Gxy and υxy are 
presented in figs. 3 – 6. 
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5   Conclusions 
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Under off-axis loading, normal stresses produce shear 
strains (and of course normal strains) and shear stresses 
produce normal strains (as well as shear strains). The 
tensile-shear interaction is also present in laminates but 
does not occur if the loading system is applied along the 
main axes of a single lamina or if a laminate is balanced. 
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