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Abstract – In this paper, the design considerations of Global Positioning System (GPS) is presented. 
Simulation issues related to implementing a GPS jamming signal in a laboratory test environment are 
introduced. These issues pertain to jamming accuracy requirements. Furthermore, important design 
parameters that may affect jamming system performance are discussed.  In addition, an example of the 
Navigation Laboratory jamming system is given. It addresses fabrication issues, data requirements, 
error handling, local and remote operations, and how to attain high accuracy and repeatability during 
the generation and measurement of jamming. Moreover, a new approach for fast detection of GPS 
signal is presented. The entire data are collected together in a long vector and then tested as a one input 
pattern. Proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency 
domain between the tested data and the input weights of neural networks. It is proved mathematically 
and practically that the number of computation steps required for the presented time delay neural 
networks is less than that needed by conventional time delay neural networks (CTDNNs). Simulation 
results using MATLAB confirm the theoretical computations. 

Keywords— Global Positioning System, Active/Passive tracking devices, Jamming System, Fast 
Neural Networks, Cross Correlation, Frequency Domain. 

I. Introduction 
 
In recent years, GPS has become a major 
application in military and civilian devices. GPS 
is a satellite-based navigation system made up of 
a network of 24 satellites placed into orbit by the 
U.S. Department of Defense. GPS was originally 
intended for military applications, but in the 
1980s, the government made the system available 
for civilian use. GPS works in any weather 
conditions, anywhere in the world, 24 hours a 
day. There are no subscription fees or setup 
charges to use GPS. Figure 1 shows GPS 
applications. This device helps people in many 
aspects, but some of them misuse GPS and use 
this device to kill, spy and thief others [7,49,54]. 
In this paper, the advantages and disadvantages 
of using GPS are discussed. How to prevent bad 
people from misuse of GPS, and how to generate 
a jamming signal that will block GPS receiver is 
described. 
GPS has a variety of applications on land, at sea 
and in the air. Basically, GPS is usable 
everywhere except where it's impossible to 
receive the signal such as inside most buildings, 
in caves and other subterranean locations, and 
underwater. The most common airborne 
applications are for navigation by general 
aviation and commercial aircraft. At sea, GPS is 
also typically used for navigation by recreational 
boaters, commercial fishermen, and professional 
mariners. Land-based applications are more 
diverse. The scientific community uses GPS for 

its precision timing capability and position 
information. Surveyors use GPS for an increasing 
portion of their work. GPS offers cost savings by 
drastically reducing setup time at the survey site 
and providing incredible accuracy. Basic survey 
units, costing thousands of dollars, can offer 
accuracies down to one meter. More expensive 
systems are available that can provide accuracies 
to within a centimeter [6,54]. Recreational uses 
of GPS are almost as varied as the number of 
recreational sports available. GPS is popular 
among hikers, hunters, snowmobiles, mountain 
bikers, and cross-country skiers, just to name a 
few. Anyone who needs to keep track of where 
he or she is, to find his or her way to a specified 
location, or know what direction and how fast he 
or she is going can utilize the benefits of the 
global positioning system [13]. GPS is now 
common place in automobiles as well. Some 
basic systems are in place and provide 
emergency roadside assistance at the push of a 
button (by transmitting your current position to a 
dispatch center). More sophisticated systems that 
show your position on a street map are also 
available. Currently these systems allow a driver 
to keep track of where he or she is and suggest 
the best route to follow to reach a designated 
location.  
"Kill, spy and thief" is an easy word that people 
could say today, by using cheap and small 
devices and tools to achieve what they want. GPS 
was originally intended for military applications, 
to confuse the enemy on where their exact 
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location is or where the enemies GPS guided 
missiles. Also GPS allows just about anyone to 
track anyone else and know where and when, this 
technology is auto tracker. Finally GPS help 
thieves, what's happening lately is that the 
fascists and criminals are finding it much cheaper 
and less man-hour intensive to simply place a 
GPS receiver with digital recorder in victim's 
vehicles, then the record of where the victims 
traveled can be retrieved either by removal of the 
device, or by remote retrieval. This is possible 
with the device a criminal planted in the 
Colorado couple's vehicle. So GPS Tracking is 
an important field in GPS application and the 
types of auto tracking system will be discussed. 
 

II. GPS Tracking Technology 
A GPS tracking unit is a device that uses the 
Global Positioning System to determine the 
precise location of a vehicle, person, or other 
asset to which it is attached and to record the 
position of the asset at regular intervals. The 
recorded location data can be stored within the 
tracking unit, or it may be transmitted to a central 
location data base, or internet-connected 
computer, using a cellular (GPRS), radio, or 
satellite modem embedded in the unit. This 
allows the asset's location to be displayed against 
a map backdrop either in real-time or when 
analyzing the track later, using customized 
software. Such systems are not new; amateur 
radio operators have been operating their free 
GPS based nationwide real time Automatic 
Position Reporting System since 1982. 
 
A) TYPES OF GPS TRACKING DEVICES  
The types of GPS tracking devices technology 
available to the public: 

1- logger tracking device (Passive)  
Passive tracking is used to tell where a vehicle 
has been over a certain period of time, Figure 2 
shows passive tracking life cycle. Passive 
tracking devices is so difficult to detect because 
they use different technologies to report the GPS 
locations, and most of them don't report 
constantly-they may only send the location every 
20 minutes. 
Those devices can be as small as a matchbook 
and can be hidden just about anywhere. They are 
attached to a vehicle or individual and after a 
specific amount of time they must be retrieved. 
After retrieval the device is usually attached to a 
personal computer and the information is 
downloaded into a database that is provided by 
the device manufacture. Probably the best 
defense against passive/logger tracking devices 
comes in the form of a GPS blocker. These small 
units normally plug into your automobiles 
cigarette lighter port and provide protection for 

about 30 feet in any direction. Small handheld 
units are also available that run on batteries that 
also provide short range blocking. These units 
can range in price from $200 to $850.Best bet 
would be to if one of RF detectors/scanners is 
used under "Counter Surveillance" category. 
These will detect the transmissions of the GPS 
unit, but only if the unit is transmitting at the 
time you are scanning. So, if the unit just sent the 
location, and then you scan it, you will not detect 
anything. The unit must be transmitting at the 
same time you are scanning the vehicle. 

2-Real time tracking devices (active)  
Active tracking is intended to show where a 
vehicle is now, Figure 3 show real time tracking 
life cycle. 
Real type of tracking device is relatively easy to 
detect with a combination cell phone/GPS 
blocking device or RF detectors/scanners. These 
units range in cost from $300 to more than 
$1000. Of course either a cell phone or a GPS 
blocking device may accomplish the same affect. 
So the best solution to block GPS receiver 
devices is generating jamming signal. 
 
B) JAMMING AND BLOCKING GPS 
SIGNAL 
Jamming and blocking is process of generating 
noise  signal that concatenating and jamming 
with GPS signal and generate new signal that 
receiver can't understand and translate this new 
signal and this receivers loss the signal [3,5,49].  
 
C) GPS SPOOFING 
GPS Spoofing is process to feed the receiver 
false information so that it computes an 
erroneous time or location. This technique is so 
difficult because it is lay to GPS receivers [50]. 
How GPS Spoofing work? 
1. Feed the receiver false information so that it 
computes an erroneous time or location.  
2. The device thinks it is in Place A when it’s 
really in Place B. 
3. The simulator produces fake satellite radio 
signals that are stronger than the real signals 
coming from outer space. Most current GPS 
receivers are totally fooled, happily accepting 
these stronger signals while ignoring the weaker, 
authentic signals. 
4. Current GPS receivers are relatively stupid. 
They eagerly accept fake GPS satellite signals 
that are thousands of times stronger than any real 
satellite could possibly produce [50-53]. 
 
D) GPS JAMMING TECHNIQUES AND 
CHARACTERISTICS 
Most jamming techniques fall into three major 
types usually based on bandwidth.  Continuous 
wave, or CW jamming, is usually defined as 
occupying less than 100 kHz of bandwidth. CW 
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jamming will be defined as one frequency only.  
Narrowband (NB) jamming will be defined as 
any unwanted signal occupying more than one 
MHz of bandwidth but less than or equal to the 
entire ±1.023 MHz bandwidth of C/A code.  NB 
is usually centered about L1 or L2 but not 
necessarily so. Wideband (WB) jamming will be 
defined as jamming signals occupying the entire 
±10.23 MHz bandwidth about L1 or L2 [3]. 
Characteristics common to all types of jamming 
are as follows: 
1. Pulsed NB, WB, and CW—Each of the 
previously mentioned jamming types can be 
pulsed at a maximum pulse repetition frequency 
(PRF) of 20 kHz.  The minimum pulse repetition 
frequency (PRF) is 10 Hz.  Duty cycle (DC) can 
range from 10 to 90%.Large values for both PRF 
and DC will make the jamming look continuous. 
very small values for both will not affect the GPS 
receiver noticeably [3,5]. 
2. Jamming levels—Variable from 20 to 80 dB 
J/S with an accuracy of ±0.5 dB in 0.5 dB 
increments of precision. Low values of J/S will 
have little effect on receiver performance. very 
high values provide little useful information 
because the GPS receiver has long since lost 
lock. The minimum value of 20 dB J/S was 
chosen because C/A acquisition at 24 dB J/S is a 
common military requirement. The maximum 
value was chosen because no GPS receivers can 
track at 80 dB J/S against a WB jammer without 
employing beam steering, nulling, or some other 
multi- element antenna technique [3]. 
3. Frequency offset—Allowable frequency offset 
of ±9 MHz in 1 kHz increments for CW and NB 
jamming types. Only wideband noise may not be 
offset in frequency. We chose to limit the 
frequency offset to ±9.0 MHz to avoid generating 
jamming outside the band, and to ensure that all 
the jamming energy enters the GPS receiver 
under test [3]. 
 

III. GPS Jamming Signal 
Anti-GPS is a device that prevents the GPS 
loggers, trackers and GPS/GSM devices to get 
positions from the Satellites. In order to generate 
those radio jamming signals, the structure of GPS 
signal must be known. 
 
A) GPS SIGNAL 
To design a simulation software-defined signal 
GPS receive it is necessary to know the 
characteristics of the signal and data transmitted 
from the GPS satellites and received by the GPS 
receiver antenna. 
The GPS signals are transmitted on two radio 
frequencies in the Ultra High Frequency (UHF) 
band. The UHF band covers the frequency band 
from 500MHz to 3GHz. These frequencies are 

referred to as L1 and L2 and are derived from a 
common frequency, L0 = 10.23MHz 
L1 = 154*f0 = 575.42MHz, 
L2 = 120*f0 = 1227.60MHz. 
It’s Navigation data have a bit rate of 50 bps, The 
navigation data contain information regarding 
satellite orbits. Signals are modulated onto the 
carrier signal using the binary phase shift keying 
(BPSK), The GPS signal use two pseudorandom 
number (PRN) code, the first one is the Coarse / 
Acquisition (C/A) code and the other one is the 
Precision code (P(Y)) code, C/A code is only 
modulated onto the L1 carrier while the P(Y) 
code is modulated onto both the L1 and the L2 
carrier. Figure 4 show GPS signal structure and 
how to generate L1 signal and L2 signal. 
The C/A code is a 1,023 bit long pseudorandom 
number (PRN) which, when transmitted at 1.023 
megabits per second (Mbit/s), repeats every 
millisecond. Pseudorandom numbers only match 
up, or strongly correlate, when they are exactly 
aligned. Each satellite transmits a unique PRN 
code, which does not correlate well with any 
other satellite's PRN code. In other words, the 
PRN codes are highly orthogonal to one another. 
The P-code is also a PRN, however each 
satellite's P-code PRN code is 6.1871 × 1012 bits 
long (6,187,100,000,000 bits) and only repeats 
once a week (it is transmitted at 10.23 Mbit/s). 
Figure 5 show GPS signal structure blocks 
diagrams. 
It follows that the signal transmitted from 
satellite k can be described as: 
 

 
where PC, Ppl1,and Ppl2 are the powers of 
signals with C/A or P code, Ck is the C/A code 
sequence assigned to satellite number k, Pk is the 
P(Y) code sequence assigned to satellite number 
k, Dk is the navigation data sequence, and fL1 
and fL2 are the carrier frequencies of L1 and L2, 
respectively. 
 
B) DEFINITIONS 
Radio jamming signals have the following 
characteristics: 
1. The jamming signals have same frequency. 
2. The jamming signals have the same type of 
modulation. 
3. The jamming signals have enough power to 
override any signal at receiver. 
Most jamming techniques fall into three major 
types usually based on bandwidth.  Continuous 
wave, or CW jamming, is usually defined as 
occupying less than 100 kHz of bandwidth.  In 
this paper, CW jamming will be defined as one 
frequency only.  Narrowband (NB) jamming will 
be defined as any unwanted signal occupying 
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more than one MHz of bandwidth but less than or 
equal to the entire ±1.023 MHz bandwidth of 
C/A code.  NB is usually centered about L1 or L2 
but not necessarily so. Wideband (WB) jamming 
will be defined as jamming signals occupying the 
entire ±10.23 MHz bandwidth about L1 or L2. 
All discussions of jamming signal ratio (J/S) will 
be related to dBm. J/S ratios are with respect to 
L1 or L2 P(Y) code only, where L1 = -133 dBm, 
L2 = -136 dBm.  Three dB are added for C/A-
code J/S comparisons. 
 

IV. Jamming Design Issues 
A) ACCURACY 
When measuring the GPS jamming signals, it is 
also important to note that the complete 20.46 
MHz of signal bandwidth for L1 or L2 P(Y) code 
should be measured to ensure that all the 
jamming energy is accounted for when 
performing the J/S calculations. GPS simulator 
signals must also have correct signal power 
levels.  Adjusting the power output to correct for 
the testing system's losses or gains usually attains 
this. Incorrect GPS simulator output levels will 
cause J/S to be artificially high or low, nullifying 
test results, even if the GPS jamming levels are 
correct. 
It is needed to be able to determine J/S as 
accurately as possible. Any error in determining 
this parameter can have a large impact on system 
performance. For example, suppose it is required 
to determine how a +1.0 dB error in measuring 
the amplitude of jamming would affect the 
overall accuracy of our J/S calculation. Assume 
there is no amplitude error in S, the GPS signal 
level, and that it is a constant value. Given 

1 dB = 10 Log JM / JT 
Where  
JM = Measured jamming power 
JT = True jamming power 
Then  
JT= 1.26 JM or a positive 26% error in 
measurement 
For a -1.0 dB error in measuring jamming 
amplitude, we have 
   -1 dB = 10 Log JM / JT  
                  or      JT = 0.79 JM 
This corresponds to a negative 21% error in our 
measurement.  

B) FREQUENCY  
There are other important jamming parameters 
besides amplitude tolerances.  Frequency is also 
an important issue.  CW jammer or NB jammer 
center frequency location relative to the GPS 
signal is important, especially if testing a GPS 
receiver that can notch-out CW and NB jammers 
in the frequency domain.  Too much drift from 
the commanded center frequency of the signal 
generators could nullify test results. We chose to 

limit the frequency offset to ±9.0 MHz to avoid 
generating jamming outside the band, and to 
ensure that all the jamming energy enters the 
GPS receiver under test. 

C) PULSE 
For pulse jamming (turning CW, NB, and WB 
jamming on and off at some rate), care should be 
taken to limit the two pulse description 
parameters, pulse repetition frequency (PRF) and 
duty cycle (DC).  Large values for both PRF and 
DC will make the jamming look continuous, and 
very small values for both will not affect the GPS 
receiver noticeably. Realistic values found 
through experimentation are: 
Minimum PRF: 1 Hz, Maximum PRF: 20 kHz 
Minimum DC: 10%, Maximum DC: 90% 
These values should only be considered as a 
starting point and are tailor able for specific 
requirements. 

D) MODULATION 
The overriding goal of any GPS jamming 
modulation/mixing scheme is to completely fill a 
given bandwidth of frequency with energy that 
will cause the GPS receiver to lose lock or never 
attain lock. There are many types of modulation 
options available. Some standard modulation 
types are amplitude modulation (AM), frequency 
modulation (FM), and biphase shift keying 
(BPSK).  Mixing of noise with a carrier 
frequency to produce WB jamming is another 
common practice. Other options are as follows: 
sweeping the center frequency, summing two 
different kinds of modulation together (AM and 
FM, for instance), RF summation of multiple 
signal generator jamming signals, and others. 
The possibilities are almost endless. 

E) J/S RANGE 
Another design parameter not already addressed 
is the absolute limits placed upon the J/S values 
of the GPS jamming system.  Low values of J/S 
will have little effect on receiver performance, 
and very high values provide little useful 
information because the GPS receiver has lon 
since lost lock.  Values chosen for the jamming 
system located inside the Navigation Laboratory 
were 7 to 80 db J/S in 0.50 dB increments of 
precision. The minimum value of 7 dB J/S was 
chosen because C/A acquisition a 24 dB J/S is a 
common military requirement.  The maximum 
value was chosen because no GPS receivers can 
track at 80 dB J/S against a WB jammer without 
employing beam steering, nulling, or some other 
multi-element antenna technique. 

F) JAMMING SYSTEM SPECIFICATIONS 
The system offers the following GPS jamming 
types: 
• CW—Successive oscillations that are identical 
under steady-state conditions. 
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• NB—Generated from a pseudorandom 
Gaussian distributed noise sequence.  A 2 MHz 
bandwidth contained within a 20.46 MHz band 
usually centered about the L1 or L2 frequency. 
• WB—Generated from a pseudorandom 
Gaussian distributed noise sequence. A 20.46 
MHz bandwidth centered on the L1 or L2 
frequency.  
The different jamming signals used were: 
* Non-Coherent Continuous Wave (NCW) 
Frequency: 1450~1600 MHz. 
* Coherent CW (CCW) Frequency: 1450~1600 
MHz. 
* Amplitude Modulation (AM): Carrier 
frequency: 1450~1600 MHz, Modulation 
waveform: Sine, Modulation frequency: 1 kHz, 
Modulation depth: 50.0 percent. 
* Frequency Modulation (FM): Carrier 
frequency: 1450~1600 MHz ,Modulation 
waveform: Sine, Modulation frequency: 1 kHz, 
Frequency deviation: [+ or -]50 kHz. 
* Band-limited White Noise (WB): Center 
frequency: 1450~1600 MHz Bandwidth: 20 
MHz. 
Common characteristics to all types of jamming 
are: 
• Pulsed NB, WB, and CW. Each of the 
previously mentioned jamming types can be 
pulsed at a maximum pulse repetition frequency 
of 20 kHz. The minimum PRF is 10 Hz. Duty 
cycle can range from 10 to 90%. 
• Jamming levels—Variable from 7 to 80 dB J/S 
with an accuracy of ±0.5 dB in 0.5 dB increments 
of precision. 
• Frequency offset—Allowable frequency offset 
of ±9 MHz in 1 kHz increments for CW and NB 
jamming types. Only wideband noise may not be 
offset in frequency. 
 
G) SIMULATION OF JAMMING SIGNAL 
There are many simulation tools to simulate 
jamming signal but the best tool is using matlab 
simulink, matlab V7.7.0 (R2008b) and simulink 
are used. Figure 6 show simulink library browser. 
First of all I simulate Band-Limited White Noise, 
The Band-Limited White Noise block generates 
normally distributed random numbers that are 
suitable for use in continuous or hybrid systems. 
The primary difference between this block and 
the Random Number block is that the Band-
Limited White Noise block produces output at a 
specific sample rate, which is related to the 
correlation time of the noise. 
Theoretically, continuous white noise has a 
correlation time of 0, a flat power spectral 
density (PSD), and a covariance of infinity. In 
practice, physical systems are never disturbed by 
white noise, although white noise is a useful 
theoretical approximation when the noise 
disturbance has a correlation time that is very 

small relative to the natural bandwidth of the 
system. 
In Simulink software, you can simulate the effect 
of white noise by using a random sequence with 
a correlation time much smaller than the shortest 
time constant of the system. The Band-Limited 
White Noise block produces such a sequence. 
The correlation time of the noise is the sample 
rate of the block. For accurate simulations, use a 
correlation time much smaller than the fastest 
dynamics of the system. You can get good results 
by specifying: 

 
Where fmax is the bandwidth of the system in 
rad/sec. 
To produce the correct intensity of this noise, the 
covariance of the noise is scaled to reflect the 
implicit conversion from a continuous PSD to a 
discrete noise covariance. The appropriate scale 
factor is 1/tc, where tc is the correlation time of 
the noise. This scaling ensures that the response 
of a continuous system to the approximate white 
noise has the same covariance as the system 
would have to true white noise. Because of this 
scaling, the covariance of the signal from the 
Band-Limited White Noise block is not the same 
as the Noise power (intensity) dialog box 
parameter. This parameter is actually the height 
of the PSD of the white noise. While the 
covariance of true white noise is infinite, the 
approximation used in this block has the property 
that the covariance of the block output is the 
Noise Power divided by tc. 
Figure 7 show Band-Limited White Noise block 
diagram, a model using Band-Limited White 
Noise block and Scope block is made. Band-
Limited White Noise block have three 
parameters noise power and sample time and 
seed. Figure 8 show scope diagram result.  
Second frequency modulation passband is 
simulated. The FM Modulator passband block 
modulates using frequency modulation. The 
output is a passband representation of the 
modulated signal. The output signal's frequency 
varies with the input signal's amplitude. Both the 
input and output signals are real sample-based 
scalar signals. 
If the input is u(t) as a function of time t, then the 
output is: 

 

fc ter. 
where: 

 is the Carrier frequency parame
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 is the Initial phase parameter. 
Kc is the Modulation constant parameter. 
Typically, an appropriate Carrier frequency value 
is much higher than the highest frequency of the 
input signal. By the Nyquist sampling theorem, 
the reciprocal of the model's sample time 
(defined by the model's signal source) must 
exceed twice the Carrier frequency parameter. 
To use those blocks go to simulink library 
browser. Figure 9 show FM modulation Block 
diagram, we make a model using sine wave block 
and FM modulation passband block and Scope 
block to see result. FM modulation passband 
block have parameters carrier frequency and 
initial phase and frequency deviation. Figure 10 
show scope diagram result. 
Third The Multiband-Limited White Noise is 
simulated. This block models multiband noise 
using four different band limited white noise 
blocks, each one with its own power and time 
scale. A first order lowpass filter with a 
selectable cut off frequency is applied to the last 
three noises (have look under the mask).The 
output sampling time has to be multiple of the 
first sample time. Figure 12 shows Multiband-
Limited White Noise Block Diagram and Figure 
11 show Multiband-Limited White Noise 
subsystem Block Diagram, we make a model 
using Band-Limited White Noise block and 
Scope block to see result. Band-Limited White 
Noise block have three parameters noise power 
and sample time and seed. Then Figure 13 show 
scope diagram result. 

V. ANTI-GPS in a Laboratory 

 
s in the jamming system 

 better if we have more advanced 

PS 
annels (2ch) and the 

e only that can be offset 

jamming power (in dBm) 
Hz frequency spectrum 

Controlled by the JamCtrl, it 
s not used for 

ng Receiver: 
 PC. PC uses UTC to timestamp 

evice: 
ny Device receives and sends GPS signal 

 JSR values 
r loss of lock than FM jamming. Specifications 

o
 
VI. Fast Detection of GPS Signals by 

 

Environment 
In this section, implementation of anti-GPS in lab 
is explained. You must understand what are 
techniques and their Characteristics to help you 
understand these test equipments. Each piece of 
test equipment is described next, including how
that equipment function

1. Personal Computer: 
Computer contains a GPIB interface card and 
Cables, an IRIG B timing card, a SCSI card, an 
A/D & D/A card, a video card, and an Ethernet 
card.  100MB of random access memory (RAM) 
is also included to prevent any virtual memory 
swapping to disk during operations. Of course, it 
would be
devices. 

2. Arbitrary Waveform Generator: 
A piece of electronic test equipment used to 
generate electrical waveforms, generate Gaussian 
distributed pseudorandom noise sequences 
consisting of 10,000 data points clocked at a 2 
MHz rate.  The arbitrary waveform generator can 

clock through the modulating sequences at a 
maximum rate of 250 MHz.  The values can lie 
anywhere between ±1.0 VDC. We need 
AWG2021 this is the best one for Anti-G
application with 2 ch
frequency from 2-250 MHZ, FM modulation. 

3. RF Signal Generator: 
Output a pure sine wav
±9 MHz from L1 or L2.  

4. Spectrum Analyzer: 
Measure all generated 
across the 20.46 M
surrounding L1 or L2. 

5. RF Switch Driver: 
Routes signals during BIT and is not used for 
normal operations. 
routes signals during BIT and i
normal operations. 

6. GPS Timi
Provides UTC to
saved data. 

7. GPS D
A
L1&L2. 
 
As mentioned above, Power received at L1 from 
each GPS satellite is -133 dBm and Power 
received at L1 from each GPS satellite is -136. 
So in order to generate jamming signal we must 
generate jamming signal at range 1450-1600 and 
frequency offset is +- 9 MHZ and PRF between 
1HZ and 20 KHZ and DC is between 10% and 
90% and J/S is between 7 dB and 80 dB. Finally, 
the best jamming modulation signals are 
Frequency Modulation and Band-limited White 
Noise. The problem is how to create enough 
power to override any signal at receiver and what 
is the range of jamming. Results are shown in 
Tables 1 and 2. Band-limited White Noise 
Jamming requires 13-15 dB higher
fo

f GPS Jammer is shown in table 3. 

using High Speed Neural Networks 
Finding GPS signal, in the incoming data, is a 
searching problem. First neural networks are 
trained to classify the GPS signal from other 
signals and this is done in time domain. In 
information detection phase, each position in the 
incoming matrix is tested for presence or absence 
of the GPS signal. At each position in the input 
one dimensional matrix, each sub-matrix is 
multiplied by a window of weights, which has 
the same size as the sub-matrix. The outputs of 
neurons in the hidden layer are multiplied by the 
weights of the output layer. When the final 
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output is high, this means that the sub-matrix 
under test contains the GPS signal and vice versa. 
Thus, we may conclude that this searching 
problem is a cross correlation between the 

 domain, speed up in 

can be represented as 1xn matrix. Th
hidden neurons h(i) can be calculated

en neuron for a 
particular sub-matrix I. It can be obtained to the 
whole input matrix Z as follows: 

lation operation. 
Given any two functions f and d, their cross 
correlation can be obtained by: 

Therefore, Eq. 2 may be written 

incoming data and the weights of neurons in the 
hidden layer.   
The convolution theorem in mathematical 
analysis says that a convolution of f with h is 
identical to the result of the following steps: let F 
and H be the results of the Fourier 
Transformation of f and h in the frequency 
domain. Multiply F and H* in the frequency 
domain point by point and then transform this 
product into the spatial domain via the inverse 
Fourier Transform. As a result, these cross 
correlations can be represented by a product in 
the frequency domain. Thus, by using cross 
correlation in the frequency
an order of magnitude can be achieved during the 
detection process [14-47].  
Assume that the size of the GPS signal is 1xn.  In 
detection phase of GPS signal, a sub matrix I of 
size 1xn (sliding window) is extracted from the 
tested matrix, which has a size of 1xN. Such sub 
matrix, which may be an intrusion code, is fed to 
the neural network. Let Wi be the matrix of 
weights between the input sub-matrix and the 
hidden layer. This vector has a size of 1xn and 

e output of 
 as follows:  

⎟
⎟
⎠

⎜
⎜
⎝

+∑
=

= ib(k)I(k)
1k iWgih               (1) 

where g is the activation function and b(i) is the 
bias of each hidden neuron (i). Equation 1 
represents the output of each hidd

⎞⎛ n

⎟⎟
⎠

⎜⎜
⎝

∑
−=

++=
n/2k i bk)   Z(uk)(iWg(u)ih           (2) 

Eq.2 represents a cross corre

⎟
⎞

⎜
⎛ n/2

⎟
⎟

⎜
⎜ ∑ +=⊗
n

n)d(n)f(xf(x)d(x)                  (3) 
⎠

⎞

⎝

⎛ ∞

∞−=
as follows [14-

47]: 
( )ibZiWgih +⊗=                    (4) 

where hi is the output of the hidden neuron (i) 
and hi (u) is the activity of the hidden unit (i) 

n be 
expressed in terms of one dimen
Fourier Transform as follows [14]: 

when the sliding window is located at position 
(u) and (u) ∈ [N-n+1].  
Now, the above cross correlation ca

sional Fast 

( ) ( )( )iW*FZF1FZiW •−=⊗               (5) 

Hence, by evaluating this cross correlation, a 
speed up ratio can be obtained comparable to 
conventional neural networks. Also, the final 
output of the neural network can be evaluated as 
follows:  

e position 

ps is required 

ix under test, the total 

re, the total number of 
comp

ρ=6((N/2)

N real 

⎟
⎟
⎠

⎜
⎜
⎝
∑
=

+=
1i

ob)u(ih (i)oWgO(u)              (6) 

where q is the number of neurons in the hidden 
layer. O(u) is the output of the neural network 
when the sliding window located at th

⎞⎛ q

(u) in the input matrix Z. Wo is the weight matrix 
between hidden and output layer. 
The complexity of cross correlation in the 
frequency domain can be analyzed as follows: 
1- For a tested matrix of 1xN elements, the 1D-
FFT requires a number equal to Nlog2N of 
complex computation steps [15]. Also, the same 
number of complex computation ste
for computing the 1D-FFT of the weight matrix 
at each neuron in the hidden layer.  
2- At each neuron in the hidden layer, the inverse 
1D-FFT is computed. Therefore, q backward and 
(1+q) forward transforms have to be computed. 
Therefore, for a given matr
number of operations required to compute the 
1D-FFT is (2q+1)Nlog2N. 
3- The number of computation steps required by 
FTDNNs is complex and must be converted into 
a real version. It is known that, the one 
dimensional Fast Fourier Transform requires 
(N/2)log2N complex multiplications and Nlog2N 
complex additions [48]. Every complex 
multiplication is realized by six real floating 
point operations and every complex addition is 
implemented by two real floating point 
operations. Therefo

utation steps required to obtain the 1D-FFT 
of a 1xN matrix is: 

log2N) + 2(Nlog2N)                  (7) 
which may be simplified to: 

ρ=5Nlog2N                              (8) 
4- Both the input and the weight matrices should 
be dot multiplied in the frequency domain. Thus, 
a number of complex computation steps equal to 
qN should be considered. This means 6q
operations will be added to the number of 
computation steps required by FTDNNs.  
5- In order to perform cross correlation in the 
frequency domain, the weight matrix must be 
extended to have the same size as the input 
matrix. So, a number of zeros = (N-n) must be 
added to the weight matrix. This requires a total 
real number of computation steps = q(N-n) for all 
neurons. Moreover, after computing the FFT for 
the weight matrix, the conjugate of this matrix 
must be obtained. As a result, a real number of 
computation steps = qN should be added in order 
to obtain the conjugate of the weight matrix for 
all neurons.  Also, a number of real computation 
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steps equal to N is required to create butterflies 
complex numbers (e-jk(2Πn/N)), where 0<K<L. 
These (N/2) complex numbers are multiplied by 
the elements of the input matrix or by previous 
complex numbers during the computation of 
FFT. To create a complex number requires two 
real floating point operations. Thus, the total 

 unit or processing 
(n) input data. The theoretical speed up 
can be evaluated as follows: 

number of computation steps required for 
FTDNNs becomes: 
σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N      (9) 
which can be reformulated as: 
           σ=(2q+1)(5Nlog2N)+q(8N-n)+N        (10) 

6- Using sliding window of size 1xn for the same 
matrix of 1xN pixels, q(2n-1)(N-n+1) 
computation steps are required when using 
CTDNNs for detection GPS

factor η 

   N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η         (11) 

Time delay neural networks accept serial input 
data with fixed size (n). Therefore, the number of 
input neurons equals to (n). Instead of treating (n) 
inputs, the proposed new approach is to collect 
all the incoming data together in a long vector 
(for example 100xn). Then the input data is 
tested by time delay neural networks as a single 
pattern with length L (L=100xn). Such a test is 
performed in the frequency domain as described 
before. The combined information in the 
incoming data may have real or complex values 
in a form of one or two dimensional array. 
Complex-valued neural networks have many 
applications in fields dealing with complex 
numbers such as telecommunications, speech 
recognition and image processing with the 
Fourier Transform []. Complex-valued neural 
networks mean that the inputs, weights, 
thresholds and the activation function have 
complex values. In this section, formulas for the 
speed up ratio with different types of inputs (real 
/complex) will be presented. Also, the speed up 
ratio in case of a one and two dimensional 
incoming input matrix will be concluded. The 
operation of FTDNNs depends on computing the 
Fast Fourier Transform for both the input and 
weight matrices and obtaining the resulting two 
matrices. After performing dot multiplication for 
the resulting two matrices in the frequency 
domain, the Inverse Fast Fourier Transform is 
determined for the final matrix. Here, there is an 
excellent advantage with FTDNNs that should be 
mentioned. The Fast Fourier Transform is 
already dealing with complex numbers, so there 
is no change in the number of computation steps 
required for FTDNNs. Therefore, the speed up 

tio in case of complex-valued time delay neural 
orks can be evaluated as follows: 

ra
netw

 

1) In case of real inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) 
real inputs requires (2n) real operations. This produces 
(n) real numbers and (n) imaginary numbers. The 
addition of these numbers requires (2n-2) real 
operations. The multiplication and addition operations 
are repeated (N-n+1) for all possible sub matrices in 
the incoming input matrix. In addition, all of these 
procedures are repeated at each neuron in the hidden 
layer. Therefore, the number of computation steps 
required by convention
calculated as: 

d up ratio in this case can be computed as 
follows: 

al neural networks can be 

θ=2q(2n-1)(N-n+1)                    (12) 
The spee

 
   N n)-q(8N N) 1)(5Nlog(2q 2 +++

         (13) 

The theoretical speed up ratio for searching short 
successive (n) code in a long input vector (L) 
using complex-valued time delay neural 
networks is shown in Tables 4, 5, and 6. Also, 
the practical speed up ratio for manipulating 
matrices of different sizes (L) and different sized 
weight matrices (n) using a 2.7 GH

 1)n-1)(N-2q(2n +
=η

z processor 

by conventional neural networks can be 
calculated as: 

d up ratio in this case can be computed as 
follows: 

and MATLAB is shown in Table 7.  

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) 
real inputs requires (2n2) real operations. This 
produces (n2) real numbers and (n2) imaginary 
numbers. The addition of these numbers requires (2n2-
2) real operations. The multiplication and addition 
operations are repeated (N-n+1)2 for all possible sub 
matrices in the incoming input matrix. In addition, all 
of these procedures are repeated at each neuron in the 
hidden layer. Therefore, the number of computation 
steps required 

θ=2q(2n2-1)(N-n+1) 2                 (14)  

The spee

   N )n-q(8N )N log1)(5N(2q 222
2

2 +++

The theoretical speed up ratio for detecting (nxn) 
real valued submatrix in a large real valued 
matrix (NxN) using complex-valued time delay 
neural networks is shown in Tables 8, 9, 10. 
Also, the practical speed up ratio for 
manipulating matrices of different sizes (NxN) 
and different sized code matrices (n) using a 2.7 
GHz

 1)n-1)(N-2q(2n 22 +
=η   (15) 

 processor and MATLAB is shown in Table 
11.  

2) In case of complex inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) 
complex inputs requires (6n) real operations. This 
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produces (n) real numbers and (n) imaginary numbers. 
The addition of these numbers requires (2n-2) real 
operations. Therefore, the number of computation 
steps required by 
calculated as: 

The speed up ratio in this case can be computed as 
follows: 

conventional neural networks can be 

θ=2q(4n-1)(N-n+1)                    (16)  

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η         (17) 

The theoretical speed up ratio for searching short 
complex successive (n) code in a long complex-
valued input vector (L) using complex-valued 
time delay neural networks is shown in Tables 
12, 13, and 14. Also, the practical speed up ratio 
for manipulating matrices of different sizes (L) 
and different sized weight matrices (n) using a 

re, the number of 
computation ste
networks can be

The speed up ratio in this case can be computed as 
follows: 

2.7 GHz processor and MATLAB is shown in 
Table 15.  

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) 
real inputs requires (6n2) real operations. This 
produces (n2) real numbers and (n2) imaginary 
numbers. The addition of these numbers requires (2n2-
2) real operations. Therefo

ps required by conventional neural 
 calculated as: 

θ=2q(4n2-1)(N-n+1)2                     (18)  

   N )n-q(8N )N log1)(5N(2q 222
2

2 +++
=η   (19) 

The theoretical speed up ratio for detecting (nxn) 
complex-valued submatrix in a large complex-
valued matrix (NxN) using complex-valued 
neural networks is shown in Tables 16, 17, and 
18. Also, the practical speed up ratio for 
manipulating matrices of different sizes (NxN) 
and d

 1)n-1)(N-2q(4n 22 +

ifferent sized code matrices (n) using a 2.7 

hen using FTDNN. This is because the 

n onto the 
civilian GPS radio frequency in order to gain 
access to the m . 

be applied to fast detect any signal 
essfully. 

[1] 

[2] 

th

[5] 

[7] 

[8] 

[10]

[12]

[13]

sciences teaching", World Scientific and 

GHz processor and MATLAB is shown in Table 
19.  

An interesting point is that the memory capacity is 
reduced w
number of variables is reduced compared with 
CTDNN.  
It should be noted that most GPS jammers are 
illegal to build or use in many countries or 
localities due to the potential for misuse. For 
instance, a GPS jammer can confuse aircraft and 
other vehicle instruments, possibly causing 
mishaps. Some GPS jammers state that they are 
only for civilian GPS jamming only; however 
some military equipment, must first sig

ilitary GPS frequency
 

VII. Conclusion  
The major issues and problems associated with 
generating GPS jamming signal has been 
presented. Furthermore, Simulation of jamming 
signal using Matlab has been introduced. 
Moreover, a brief description about the design of 
GPS jamming signal suitable for laboratory use 
has been given. Furthermore, a fast neural 
algorithm for detecting GSP Signals has been 
presented. Theoretical computations have shown 
that FTDNNs require fewer computation steps 
than conventional ones. This has been achieved 
by applying cross correlation in the frequency 
domain between the input data and the input 
weights of time delay neural networks. 
Simulation results have confirmed this proof by 
using MATLAB. The proposed high speed neural 
networks can 
succ
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 Figure 1.GPS Applications. 
 
 

 
 Figure 2. Passive Tracking Life Cycle.  
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 Figure 3.Real time tracking life cycle.  

 
 
 

 
 
 

 
Figure 4.GPS Signal Structure.

 
 
 Figure 5.GPS Signal Structure block diagram. 
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Figure 6 .Band-Limited white noise in simulink  

 

 

 
 
 

Figure 7. Band-Limited white noise Block Diagram. 
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Figure 8.Band-Limited white noise Scope. 
 
 

 
 Figure 9.FM Modulation Block Diagram.  
 

 
 Figure 10.FM Modulation Scope. 
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 Figure 11. Multiband-Limited White Noise subsystem Block Diagram. 

 
 
 

 
 
 Figure 12. Multiband-Limited White Noise Block Diagram. 
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Figure 13. Multiband-Limited White Noise.  

 

 
Figure 14. Anti-GPS in A Laboratory Environment.  
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Table 1: U ming GPS ceiver. 
JS ) 

sing FM Jam  (OEM) re
Parameter R (dB

Beginning to lose track 35.5 
Loss of 3D navigation 36 
Complete loss of navigation 36 
Regaining 2D navigation 17.5 

Regaining 3D navigation 16 

 
Table 2: Using Band-l e Noise Jam  (OEM) receiver. 

JSR ) 
imited Whit ming GPS
Parameter  (dB

Beginning to lose track 53 
Loss of 3D navigation 53 
Complete loss of navigation 53.5 
Regaining 2D navigation 48 

Regaining 3D navigation 47.5 

 
Table 3: Specification  s of GPS Jammer.

Frequency 1450~1600MHz 
J  amming Range Average 5 meters radius 

Output Power 53 - 53.5 dB g Band-limited White Noise 
35.5 - 36 dB  using FM modulation 

  usin

 

e delay nTable 4: The theoretical speed up ratio for tim eural networks (1D-real values input matrix, 

classical complex-valued neural networks for fast complex-valued neural networks
p 

ratio  

n=400). 
Number of computation steps required forLength of 

input 
matrix 

 Number of computation steps required Speed u

10000 4.6027e+008 4.2926e+007 10.7226
40000 1.8985e+009 1.9614e+008 9.6793 
90000 4.2955e+009 4.7344e+008 9.0729 
160000 7.6513e+009 8.8219e+008 8.6731 
250000 1.1966e+010 1.4275e+009 8.3823 
360000 1.7239e+010 2.1134e+009 8.1571 
490000 2.3471e+010 2.9430e+009 7.9752 
640000 3.0662e+010 3.9192e+009 7.8237 

 
e delay nTable 5: The theoretical speed up ratio for tim eural networks (1D-real values input matrix, 

Length of 
classical complex-valued neural networks for fast complex-valued neural networks

p 
ratio  

n=625). 
Number of computation steps required for

input 
matrix 

 Number of computation steps required Speed u

10000 7.0263e+008 4.2919e+007 16.3713
40000 2.9508e+009 1.9613e+008 15.0452
90000 6.6978e+009 4.7343e+008 14.1474
160000 1.1944e+010 8.8218e+008 13.5388
250000 1.8688e+010 1.4275e+009 13.0915
360000 2.6932e+010 2.1134e+009 12.7433
490000 3.6674e+010 2.9430e+009 12.4612
640000 4.7915e+010 3.9192e+009 12.2257
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Table 6: The theoretical speed up ratio for time delay neural networks (1D-real values input matrix, 
n=900). 

Length of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

10000 9.823 e+008 4.2911e+007 22.8933
40000 4.2206e+009 1.9612e+008 21.5200
90000 9.6176e+009 4.7343e+008 20.3149
160000 1.7173e+010 8.8217e+008 19.4671
250000 2.6888e+010 1.4275e+009 18.8356
360000 3.8761e+010 2.1134e+009 18.3409
490000 5.2794e+010 2.9430e+009 17.9385
640000 6.8985e+010 3.9192e+009 17.6018

 
Table 7: Practical speed up ratio for time delay neural networks (1D-real values input matrix). 
Length of input matrix Speed up ratio (n=400) Speed up ratio (n=625) Speed up ratio (n=900) 

10000 17.88 25.94 35.21 
40000 17.19 25.11 34.43 
90000 16.65 24.56 33.59 
160000 16.14 24.14 33.05 
250000 15.89 23.76 32.60 
360000 15.58 23.23 32.27 
490000 15.28 22.87 31.99 
640000 14.08 22.54 31.78 

 
Table 8: The theoretical speed up ratio for time delay neural networks (2D-real values input matrix, 

n=20). 
Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

100x100 3.1453e+008 4.2916e+007 7.3291 
200x200 1.5706e+009 1.9610e+008 8.0091 
300x300 3.7854e+009 4.7335e+008 7.9970 
400x400 6.9590e+009 8.8203e+008 7.8898 
500x500 1.1091e+010 1.4273e+009 7.7711 
600x600 1.6183e+010 2.1130e+009 7.6585 
700x700 2.2233e+010 2.9426e+009 7.5556 
800x800 2.9242e+010 3.9186e+009 7.4623 

 

Table 9: The theoretical speed up ratio for time delay neural networks (2D-real values input matrix, 
n=25). 

Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

100x100 4.3285e+008 4.2909e+007 10.0877
200x200 2.3213e+009 1.9609e+008 11.8380
300x300 5.7086e+009 4.7334e+008 12.0602
400x400 1.0595e+010 8.8202e+008 12.0119
500x500 1.6980e+010 1.4273e+009 11.8966
600x600 2.4863e+010 2.1130e+009 11.7667
700x700 3.4246e+010 2.9425e+009 11.6381
800x800 4.5127e+010 3.9185e+009 11.5163
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Table 10: The theoretical speed up ratio for time delay neural networks (2D-real values input matrix, 
n=30). 

Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

100x100 5.4413e+008 4.2901e+007 12.6834
200x200 3.1563e+009 1.9608e+008 16.0966
300x300 7.9272e+009 4.7334e+008 16.7476
400x400 1.4857e+010 8.8201e+008 16.8444
500x500 2.3946e+010 1.4273e+009 16.7773
600x600 3.5193e+010 2.1130e+009 16.6552
700x700 4.8599e+010 2.9425e+009 16.5160
800x800 6.4164e+010 3.9185e+009 16.3745

 
Table 11: Practical speed up ratio for time delay neural networks (2D-real values input matrix). 

Size of input matrix Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)
100x100 17.19 22.32 31.74 
200x200 17.61 22.89 32.55 
300x300 16.54 23.66 33.71 
400x400 15.98 22.95 34.53 
500x500 15.62 22.49 33.32 
600x600 15.16 22.07 32.58 
700x700 14.87 21.83 32.16 
800x800 14.64 21.61 31.77 

 
Table 12: The theoretical speed up ratio for time delay neural networks (1D-complex values input 

matrix, n=400). 
Length of 

input 
matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

100x100 9.2111e+008 4.2926e+007 21.4586
200x200 3.7993e+009 1.9614e+008 19.3706
300x300 8.5963e+009 4.7344e+008 18.1571
400x400 1.5312e+010 8.8219e+008 17.3570
500x500 2.3947e+010 1.4275e+009 16.7750
600x600 3.4500e+010 2.1134e+009 16.3245
700x700 4.6972e+010 2.9430e+009 15.9604
800x800 3.9192e+009 6.1363e+010 15.6571

 
Table 13: The theoretical speed up ratio for time delay neural networks (1D-complex values input 

matrix, n=625). 
Length of 

input 
matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

100x100 1.4058e+009 4.2919e+007 32.7558
200x200 5.9040e+009 1.9613e+008 30.1025
300x300 1.3401e+010 4.7343e+008 28.3061
400x400 2.3897e+010 8.8218e+008 27.0883
500x500 3.7391e+010 1.4275e+009 26.1934
600x600 5.3885e+010 2.1134e+009 25.4969
700x700 7.3377e+010 2.9430e+009 24.9324
800x800 9.5868e+010 3.9192e+009 24.4612
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Table 14: The theoretical speed up ratio for time delay neural networks (1D-complex values input 
matrix, n=900). 

Length of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

100x100 1.9653e+009 4.2911e+007 45.7993
200x200 8.4435e+009 1.9612e+008 43.0519
300x300 1.9240e+010 4.7343e+008 40.6410
400x400 3.4356e+010 8.8217e+008 38.9450
500x500 5.3791e+010 1.4275e+009 37.6817
600x600 7.7544e+010 2.1134e+009 36.6920
700x700 1.0562e+011 2.9430e+009 35.8870
800x800 1.3801e+011 3.9192e+009 35.2134

 
Table 15: Practical speed up ratio for time delay neural networks (1D-complex values input matrix). 

Length of input matrix Speed up ratio (n=400) Speed up ratio (n=625) Speed up ratio (n=900) 
10000 37.90 53.58 70.71 
40000 36.82 52.89 69.43 
90000 36.34 52.47 68.69 

160000 35.94 51.88 68.05 
250000 35.69 51.36 67.56 
360000 35.28 51.02 67.15 
490000 34.97 50.78 66.86 
640000 34.67 50.56 66.58 

 
Table 16:  The theoretical speed up ratio for time delay neural networks (2D-complex values input 

matrix, n=20). 
Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

100x100 6.2946e+008 4.2916e+007 14.6674
200x200 3.1431e+009 1.9610e+008 16.0281
300x300 7.5755e+009 4.7335e+008 16.0040
400x400 1.3927e+010 8.8203e+008 15.7894
500x500 2.2197e+010 1.4273e+009 15.5519
600x600 3.2386e+010 2.1130e+009 15.3266
700x700 4.4493e+010 2.9426e+009 15.1206
800x800 5.8520e+010 3.9186e+009 14.9340

 
Table 17: The theoretical speed up ratio for time delay neural networks (2D-complex values input 

matrix, n=25). 
Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

100x100 8.6605e+008 4.2909e+007 20.1836
200x200 4.6445e+009 1.9609e+008 23.6856
300x300 1.1422e+010 4.7334e+008 24.1301
400x400 2.1198e+010 8.8202e+008 24.0333
500x500 3.3973e+010 1.4273e+009 23.8028
600x600 4.9746e+010 2.1130e+009 23.5427
700x700 6.8519e+010 2.9425e+009 23.2856
800x800 9.0290e+010 3.9185e+009 23.0418
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Table 15: The theoretical speed up ratio for time delay neural networks (2D-complex values input 
matrix, n=30). 

Size of 
input 

matrix 

Number of computation steps required for 
classical complex-valued neural networks

Number of computation steps required 
for fast complex-valued neural networks

Speed up 
ratio  

100x100 1.0886e+009 4.2901e+007 25.3738
200x200 6.3143e+009 1.9608e+008 32.2021
300x300 1.5859e+010 4.7334e+008 33.5045
400x400 2.9722e+010 8.8201e+008 33.6981
500x500 4.7904e+010 1.4273e+009 33.5640
600x600 7.0405e+010 2.1130e+009 33.3197
700x700 9.7225e+010 2.9425e+009 33.0412
800x800 1.2836e+011 3.9185e+009 32.7581

 
Table 18: Practical speed up ratio for time delay neural networks (2D-complex values input matrix). 

Size of input matrix Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)
100x100 38.33 46.99 62.88 
200x200 39.17 47.79 63.77 
300x300 38.44 48.86 64.83 
400x400 37.92 47.23 65.99 
500x500 37.32 46.89 64.89 
600x600 36.96 46.48 64.01 
700x700 36.67 46.08 63.31 
800x800 36.38 45.78 62.64 
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