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Abstract: - This work describes a useful method for detection broken rotor bars in AC motors. The start-up transient 
current of an induction machine is used as the medium for diagnoses. The fundamental component is extracted using an 
algorithm that predicts the instantaneous amplitude and frequency during start-up. The residual current is then analyzed 
using wavelets and a comparison is made between a healthy and damaged machine. This method of machine condition 
monitoring is not load dependant and can be used for machines that are unloaded. 
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1   Introduction 
     Induction motors are inherently reliable and require 
minimum maintenance. However, like other motors, they 
eventually deteriorate and fail. This gives rise to the need 
for cost effective preventive maintenance based on 
condition monitoring, which can be addressed by 
monitoring and analyzing the real-time signals of the 
motors. 
     The broken rotor bar fault at an early stage or partially 
broken rotor bars, which can lead to a larger failure or 
even be catastrophic, may not be detectable even under 
full load conditions. Therefore, mere is a strong need to 
develop condition monitoring techniques to address mess 
issues to allow earlier detection of rotor faults. 
     Broken rotor bars can be a serious problem with 
certain induction motors due arduous cycles. Although 
broken rotor bars do not initially cause a motor to fail, 
there can be serious secondary effects. The fault 
mechanism can result in broken parts of the bar hitting 
the end winding or stator core of a high voltage motor at 
a high velocity. 
     The most part of the methods of induction machine 
monitoring utilize the steady-state spectral components 
of the stator. These spectral components include voltage, 
current and power and are used to detect broken rotor 
bars, bearing failures and air gap eccentricity. 

     Broken rotor bars [3, 4] are one of the easiest AC 
Motor faults to detect using steady-state stator current 
condition monitoring. This is based on monitoring the 
amplitudes of the double slip frequency sidebands of the 
fundamental supply frequency in the current spectrum 
[1]. 
     Due to the nature of the signal, the conventional Fast 
Fourier Transform analysis is not suitable for analyzing 
starting currents [2]. 
 
 
2   Problem Formulation 
     The broken rotor bars can be detected by monitoring 
the current spectral components [1]. These spectral 
components are illustrated by the following equation: 
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where: fs, p and s are, respectively, the electrical supply 
frequency, number of pole pairs and the per-unit split; 
k/p=1,5,7,11,13 ... due to the normal winding 
configuration. For k/p=1, the additional component in 
the current spectrum is (l-2s) fs due to the broken rotor 
bar and (l+2s) fs, owing to the speed oscillations. 
     From (1) it is evident that the rotor bar frequencies 
are a function of the machine slip. If the machine is 
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unloaded, the slip will be almost zero. The rotor bar 
frequencies will be masked by the fundamental 
frequency and thus make detection difficult. The only 
solution is therefore to heavily load the machine in 
order to separate the frequencies. Overloading a 
machine is undesirable since it reduces the machine's 
operating lifetime and is not generally under control 
of the operator. Accurate detection therefore is 
difficult at light loading conditions. A fundamental 
disadvantage of the assumption of steady-state speed 
in condition monitoring is that there are many 
applications where constant speed operation is not 
achieved for example in wind generation or motor 
operated valves. 
     The frequencies form the stator current spectrum 
shown in Figure 1 and are present irrespective of the 
machine's condition. 
 

 
 
 
 
     The presence of broken rotor bars is indicated by the 
difference in amplitude between the fundamental and the 
left sideband. A difference less than 50 dB is an 
indication of broken rotor bars [3-7]. The amplitude of 
the left sideband frequency component of the 
fundamental frequency is proportional to the number of 
broken rotor bars present [8]. 
 
 
3   Problem Solution 
    Wavelet Analysis is introduced as a tool for analyzing 
signals with frequency spectrum varying in time. It 
allows a time-localization of the frequency components 
occurring within the signal, being able to extract their 
time evolution. This property makes possible the 
detection of characteristic patterns within the evolution 
of those components, which can be related to the 
occurrence of certain phenomena. 

     Fourier analysis uses the basic functions sin (t), cos(t) 
and exp(it). In the frequency domain, these functions are 
perfectly localized, but they are not localized in the time 
domain, resulting in a difficult to analyze or synthesize 
complex signals presenting fast local variations such as 
transients or abrupt changes. To overcome the 
difficulties involved, it is possible to window the signal 
using a regular function which is zero or nearly zero 
outside a time segment. 
     The orthogonal basis functions used in Wavelet 
analysis are families of scaling functions, Φ(t), and 
associated wavelets, υ(t). The scaling function, Φ(t), can 
be represented by the following mathematical 
expression: 

( )∑ −Φ=Φ
k

j
kkj ktHt 2)(, ,                  (2) 

where: Hk represents the coefficients of the scaling 
function, k is a translation and j represents the scale. 
     Similarly, the associated wavelet υ(t), can be 
generated using the same coefficients as the scaling 
function. 
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     The scaling functions are orthogonal to each other as 
well as with the wavelet functions as shown in (3), (4). 
This fact is crucial and forms part of the framework for 
multi resolution analysis. 
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     Using an iterative method, the scaling function and 
associated wavelet can be computed if the coefficients 
are known. 
     A signal can be decomposed into approximate 
coefficients, aj.k, through the inner product of the original 
signal at scale j and the scaling function. 
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     Similarly the detail coefficients, dj,k can be obtained 
through the inner product of the signal and the complex 
conjugate of the wavelet function. 
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     The original signal can therefore be reconstructed by 
a single series of scaling coefficients and a double series 
of the detail coefficients. 
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Fig. 1. The current spectrum of an AC Motor with 
broken rotor bars. 
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     A discretized signal can be decomposed at different 
scales as follows: 
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3.1 Algorithm for extracting the fundamental 

component of current 
     Let u(t) denotes a signal comprising a sinusoidal 
component in addition to a number of additional 
components and noise. A sinusoidal component of this 
function )sin()( δω += tAty  is of interest where A is 
the amplitude, ω is the frequency, δ is the phase 
and δωφ += tt )( , represents the total phase of this 
component. Ideally, parameters A, ω and δ are fixed 
quantities; but in practice, this assumption does not 
hold true [4]. 
     Let M be a continuous manifold containing all 
sinusoidal signals defined as: 

[ ] }⎩
⎨
⎧

=∈

∈
=

Sinusoidyni

Rty
M ii

i

i

:,,,1,,

,),,(

maxmin Kθθθ

θθ  

where is the vector of parameters which belongs to the 
parameter space 
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 and superscript T denotes matrix transposition. The 
objective is to find an element in M which is closest to 
the sinusoidal component of the signal u(t). The solution 
has to be an orthogonal projection of u(t) onto manifold 
M, or equivalently it has to be an optimum θ which 
minimizes a distance function d between y(t;ω(t)) and 
u(t), [ ])(),(,(minarg

)(
tuttyd

topt θθ
θ Θ∈

=  [4]. 

The following instantaneous distance function d is used: 
[ ] )e())(,()())(,( tttytuttd =−= φθ .            (12) 

     Hence, the cost function is defined as 
( ) ( ))(,d)(, 2 ttttJ θθ = . Although the cost function is 

not necessarily quadratic, the parameter vector θ is 
estimated using the gradient descent method. 
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     The algorithm employing this method converges to 
the minimum solution for the cost function. 
     The output signal is defined as: 
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     Formulating the algorithm accordingly using the 
parameter vector [ ]ωδθ ,,A= , the amplitude, phase 

angle and frequency of the desired component, results in 
the following set of equations: 
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)(sin)()( ttAty φ= ,                         (18) 

)()()( tytute −= .                          (19) 
     In the equations (15) to (19), the time variable t is 
replaced by a constant number. This replacement 
converts the time-varying system into a time-invariant 
system. The apparently arbitrary formulation of the 
algorithm calls for mathematically justification which is 
presented here. The dot on top (·) represents the 
differentiation with respect to time. Note, that 

⋅⋅

+= δξφ , is used in deriving the third differential 
equation. State variables A(t), )(tθ  and ω(t) directly 
provide instantaneous estimates of the amplitude, phase 
and frequency of the extracted sinusoid, respectively. 
Undesired components and noise imposed on the 
sinusoidal component of interest altogether are provided 
by e(t). The parameters µ1, µ2 and µ3 are positive 
numbers which determine the behavior of the algorithm 
in terms of convergence rate versus accuracy. 
     Equations (15) to (19) constitute the governing set 
of equations of the generalized algorithm [4] used of 
extracting a specified sinusoidal signal, estimating its 
amplitude, frequency and phase, and accommodating 
variations in the amplitude, frequency and phase of such 
a sinusoidal component. 
 
 
3.2 Numerical analysis 
     Two identical rotors (Pn = 750 W) induction motor 
are used in numerical analysis except that one had a 
broken rotor bar. 
     The same bearings and stator was used in order to 
minimize their influences on the start-up transients. The 
machine was analyzed under loading conditions varying 
from 30 % to 100 % to determine if this method of 
detection could be successful and independent of the 
loading conditions. 
     The start-up current transients of a 750 W induction 
motor are shown in Figure 2. Before implementing the 
fundamental extraction algorithm, the individual current 
is transformed into a single rotating current vector. 
 

RECENT ADVANCES IN APPLIED MATHEMATICS AND COMPUTATIONAL AND INFORMATION SCIENCES - Volume II

ISSN: 1790-5117 443 ISBN: 978-960-474-071-0



 
 
 
     It was found that the motor had a very low inertia and 
detection could not be done below 30 % loading because 
the transient times were too short. This vector is then 
transformed into the time domain and used as an input to 
the extraction algorithm. 
     The fundamental component is extracted with this 
algorithm. The resulting waveform shown in Figure 3 
has information relating to the health of the machine 
including bad bearings, broken rotor bars etc. 
 

 
 
 
     This vector is then transformed into the time domain 
and used as an input to the extraction algorithm. The 
fundamental component is extracted with this algorithm. 
     The resulting waveform shown in Figure 3 has 
information relating to the health of the machine 
including bad bearings, broken rotor bars etc. 
     The methodology employed was to apply the discrete 
wavelet transform to the residual current. The family of 
Daubechies wavelets was chosen as the basis functions 
for the decomposition. The family of Daubechies 
wavelets is classified according to the number of 
vanishings moments, N [4]. The smoothness of the 
wavelets increases with the number of vanishing 
moments. 

 
 
 
 
For the case when N=1, the Daubechies scaling function 
are discontinuous. It is desirable to have smooth 
wavelets and therefore N is increased. Although the 
Dubechies2 wavelet is continuous, its derivatives are 
discontinuous. For N>2, the wavelet and its derivative 
are both continuous. It has shown in applications such as 
compression, noise removal and singularity detection, 
that the number of vanishing moments plays a key role 
for efficient coding of signals. 
 

 
 
 

Fig. 2. Start up current transients for phases A, B and C. 

Fig. 3. The time domain of the current vector. 

Fig. 5. Wavelet decomposition levels D9 of a damaged 
machine loaded 30 % to 100%. 

Fig. 4. Wavelet decomposition levels D9 of a healthy 
machine loaded 30 % to 100%. 
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     The fundamental frequency of the stator current 
vector was removed from the total current using the 
extraction algorithm. The discrete wavelet transforms 
Daubechies8 wavelet, on applied to the residual 
current vector. 
    Figures 4 and 5 indicate the level 9 coefficients of 
both healthy and damaged machine under various loads. 
By inspection of figures 4 and 5, two dominant features 
are present that characterize the condition of the 
machine. The first feature is found between samples 8 
and 13 of all the loading conditions. The feature is 
present in both the healthy and damaged machine. The 
second feature found between samples 45 and 53 is only 
present in the case of the damaged machine. An 
automated fault detection analyzer is envisioned based 
on this algorithm. The algorithm takes a few cycles to 
converge to the amplitude and frequency of the 
fundamental. This is shown in Figure 6. 
 

 
 
 
 
     As a result when the estimated fundamental is 
subtracted from the original waveform, the algorithm's 
output between 0 and 0.4 seconds should be discarded to 
allow for convergence. Figure 6 shows the estimated 
frequency of the fundamental. An accurate estimate of 
the frequency is only available after 0.4s. 
 
 
4   Conclusion 
     This work investigates the detection of broken rotor 
bars using wavelet analysis of the starting current. The 
wavelet technique presented is able to extract useful 
characteristics of a transient signal, such as the starting 
current of an induction motor, and distinguish healthy 
and faulty motors by means of a numerical value called 
the wavelet indicator. 
     The wavelet indicator can also be used to classify the 
different degrees of broken rotor bar faults. As a general 
rule, the higher the value of the wavelet indicator is, the 
greater the severity of the fault. 
     Although the results of the partial broken rotor bars 
do not provide a clear indication about the severity of the 

fault, miss is primarily due to the small size of the motor 
under test. Due to miss, the effect of the resistance 
change under partial broken rotor bar is minimal. The 
broken rotor bars can be detected by the decomposition 
of the start-up current transient. This method has 
advantages over the traditional steady-state condition 
monitoring methods. It is not load dependant and can be 
effective on small lightly loaded machines. The machine 
does not have to be heavily loaded to make an accurate 
assessment of the machine's condition. There is no need 
for speed, torque or vibration measurement [9]. The 
analysis clearly shows that that the broken rotor bar can 
be detected using transient results only. This method can 
be used for standard induction motors, but also for 
machines that operate predominantly in the transient like 
wind generators or motor operated valves. 
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