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Abstract: In this paper we use the polynomial splines-based nonparametric transfer function method to study how
river ¤ow is affected by multiple factors. The highly nonlinear relationship between river ¤ow and the independent
variables (the transfer function) is modeled using polynomial spline, and the noise term assumed to follow a para-
metric Autoregressive (AR) model. The transfer function is modeled jointly with the AR parameters. Because of its
¤exibility, spline functions are ideal for modeling highly nonlinear relationships with unknown functional forms;
by modeling the noise explicitly, the correlation in the data is removed so the transfer function can be estimated
more ef£ciently. Additionally, the estimated AR parameters can be used to improve the forecasting performance.
The proposed polynomial splines-based estimator is also highly computationally ef£cient. A comparison of the
results show that the performance of this model is better than some widely accepted benchmark models.
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1 Introduction

In this paper we consider a new method to model re-
lationships between ‘output’ and ‘input’ time series.
This is a problem that plays an important role in our
endeavor of forecasting and control. As a result, ex-
tensive research has been conducted in this area. For
example, the linear transfer function model (Box and
Jenkins, 1976) has been extensively used in practice
and proven successful in many applications. How-
ever, in practice we often encounter nonlinear rela-
tionships that cannot be well approximated by lin-
ear models. Consequently, many nonlinear parametric
models are introduced (Chen and Tsay, 1996; Tong,
1990; Haggan and Ozaki, 1981; Engel, 1982; Boller-
slev, 1986). One problem with nonlinear parametric
model is, beyond the linear domain there are in£nitely
many candidate nonlinear functions, so it is usually
dif£cult to justify the explicit parametric functional
forms a priori. To avoid the subjectivity in selecting
the parametric models, researchers adopt the princi-
ple of “letting the data speak for themselves” and use
nonparametric smoothing methods to model nonlinear
time series (Robinson, 1983; Auestad and Tjøstheim,
1990; Lewis and Stevens, 1991; Masry, 1996a&b; Fan
and Gilbels, 1996; Smith, Wong, and Kohn, 1998).
To overcome the ‘curse of dimensionality’, various
specially structured nonparametric models have been
proposed, including the functional-coef£cient autore-

gressive (FAR) model (Chen and Tsay, 1993a; Cai,
Fan and Yao, 2000), the nonlinear additive autore-
gressive model (Chen and Tsay, 1993b), the adaptive
functional-coef£cient model (Ichimura, 1993; Xia and
Li, 1999; Fan, Yao and Cai, 2003), the single index
model (e.g., Härdle, Hall, and Ichimura, 1993; Car-
roll, Fan, Gijbels, and Wand, 1997; Newey and Stoker,
1993; Heckman, Ichimura, Smith, and Todd, 1998;
Xia, Tong, Li, and Zhu, 2002) and the partially linear
models (Härdle, Liang and Gao, 2000). The literature
about nonlinear and nonparametric time series anal-
ysis is extensive, reviews can be found in Tjøstheim
(1994), Härdle, Lütkepohl and Chen (1997) and Fan
and Yao (2003).

In this paper we consider the following relation-
ship between two time series:

Yt = f(Xt) + et, (1)

where f(¢) is an unknown and smooth function,
{Xt, et} are jointly strictly stationary. Recently Xiao,
Linton, Carroll and Mammen (2003), Su and Ullah
(2006), and Liu, Chen and Yao (2007) developed
methods to estimate the transfer function ef£ciently.
In the studies local polynomial is used to model the
transfer function f(¢) and established that by model-
ing the serial correlation in the noise, f(¢) can be es-
timated at the usual rate of convergence as if et is iid.
The above methods differs mainly in the treatment of
the noise et. Xiao, et al. (2003) assumes the noise
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is a general linear process and approximates it by an
AR process whose order is allowed to grow to in£nity.
Su and Ullah (2006) assumes the noise is a £nite-order
nonparametric AR process. Liu, Chen and Yao (2009)
models the noise explicitly with an ARMA model.
The above methods are all local polynomial-based
therefore are computationally intensive. As a result
they may be dif£cult to apply in certain practical situ-
ations, for example, it may require a very long time to
generate multiple step ahead forecast by simulation.
By modeling the transfer function f(¢) nonparamet-
rically, the model is ¤exible therefore can be used to
model nonlinear relationship of unknown functional
forms. By modeling {et} explicitly, the autocorrela-
tion in the data is removed so f(¢) can be estimated
more ef£ciently. Additionally, the explicit correlation
structure can be used to improve the forecasting per-
formance.

This paper is organized as follows. In section 2,
the model is introduced and a short introduction of
polynomial spline is included. The estimation method
is introduced in section 3. The proposed procedures
are applied to forecast river ¤ow and the results are
presented in section 4. Section 5 contains summary
and discussion.

2 The model

In this paper we make the assumption that {et} in
model (1) follows a strictly stationary AR(p) process,
et =

∑p

i=1
φiet−i + εt. So model (1) can be rewritten

as
Yt = f(Xt) +

εt

1 ¡
∑p

i=1
φiBi

, (2)

where B is the back-shift operator, BiXt = Xt−i,
{εt} is a sequence of independent random variables
with mean 0 and standard deviation σ. Note that the
assumption of AR(p) noise is mainly for the conve-
nience of discussion, the idea presented in this pa-
per can be extended to more general structures of the
noise, such as the ARMA(p, q) model. We also as-
sume that {Xt} and {εt} are independent. Our inter-
est is in estimating both f(¢) and the AR parameters.

In this paper we use polynomials to model the
transfer function f . Polynomial splines are piecewise
polynomials de£ned on disjoint partitions of the sup-
port of X , with the pieces joining smoothly at a set
of interior points (the knots). Precisely, a polynomial
spline of degree m ¸ 0 de£ned on an interval X
with knot sequence λ = {¸0, ¸1, ¢ ¢ ¢ , ¸k+1} (¸0 <
¸1 < ¢ ¢ ¢ < ¸k+1) is a function consisting of pieces
of polynomials of degree m on each of the intervals
[¸i, ¸i+1), i = 0, ¢ ¢ ¢ , k, and [¸k, ¸k+1], where ¸0

and ¸k+1 are the end points of X . Given knot se-
quence λ and degree m, the collection of spline func-
tions form a function space spanned by basis func-
tions. Commonly used basis functions include the
well-known truncated power basis, which is the set of
functions {1, x, ¢ ¢ ¢ , xm, (x¡ ¸1)

m
+ , ¢ ¢ ¢ , (x¡ ¸k)

m
+},

where (x)m
+ ≡ (x+)m, the dimension of the spline

function space is given by K = m + k + 1. B-spline
is often used to develop the asymptotic properties
because of its nice theoretical properties (for details
please see de Boor, 2001; Schumaker, 1981), but the
result does not depend on the choice of the basis func-
tions. Denote a set of basis functions as {Bj(¢)}

K
j=1

,
using the polynomial spline to approximate the trans-
fer function f(¢) in (2), f(Xt) ≈

∑

K
i=1 aiBi(Xt), af-

ter “pre-whitening” the noise et, we have the follow-
ing regression model

Yt ≈
p

∑

i=1

φiYt−i+
K

∑

j=1

aj

[

Bj(Xt)¡
p

∑

i=1

φiBj(Xt−i)
]

+εt ,

(3)
the estimation of the unknown parameters are esti-
mated by solving the following optimization problem

argaj ,φ min
n

∑

t=1

{

Yt ¡
p

∑

i=1

φiYt−i ¡
K

∑

j=1

aj

[

Bj(Xt)

¡
p

∑

i=1

φiBj(Xt−i)
]}2

. (4)

3 Estimation methodology

The optimization of (4) can be carried out by stan-
dard nonlinear optimization methods. In this paper we
consider the following iterative estimation algorithm,
which is equivalent to the commonly used nonlin-
ear optimization methods, such as the Gauss-Newton
method. This algorithm allows us to investigate the
estimators individually, which makes the discussion
of the asymptotic properties more convenient.

1. Obtain preliminary estimates ˜ai, i = 1, ¢ ¢ ¢ , K,
which are the solutions of

argai
min

n
∑

t=1

{

Yt ¡
K

∑

i=1

aiBi(Xt)
}2

,

a preliminary estimate of f is given by ˜f(x) =
∑

K
i=1

˜aiBi(x).

2. For given aj , j = 1, ¢ ¢ ¢ , K, obtain ̂φ1, ¢ ¢ ¢ , ̂φp

by solving

argφi
min

n
∑

t=1

{

Yt ¡
p

∑

i=1

φiYt−i
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¡
K

∑

j=1

aj

[

Bj(Xt) ¡
p

∑

i=1

φiBj(Xt−i)
]}2

3. For given φ1, ¢ ¢ ¢ , φp, obtain ̂aj , j = 1, ¢ ¢ ¢ , K
by solving

argaj
min

n
∑

t=1

{

Yt ¡
p

∑

i=1

φiYt−i

¡
K

∑

j=1

aj

[

Bj(Xt) ¡
p

∑

i=1

φiBj(Xt−i)
]}2

It can be easily seen that the above algorithm is guar-
anteed to converge. The terminating values of ̂φ and
̂ai provide the £nal estimates, speci£cally, ̂f(x) =
∑

K
j=1

̂ajBj(x) is the £nal estimate of f(x). et is as-
sumed to follow a stationary AR process, so it is a
mixing process, and we can expect that the prelimi-
nary estimate ˜f to be consistent. The AR parameters
φ can be estimated with the parametric rate. By mod-
eling the serial correlation in et, the transfer function
f can be estimated as if et is iid and the asymptotic
results established in Huang (2003) continue to hold.

4 Modeling river ¤ow

River ¤ow forecasting is an important issue in many
practical areas. For example, accurate and ef£cient
forecast of river ¤ow is important to the safety of river
transportation and river structures such as river dams
and bridges, it also enables us to manage water re-
sources more ef£ciently and helps protect the envi-
ronment. A typical dif£culty in river ¤ow modeling
is that many factors affect the river ¤ow, usually in a
highly nonlinear fashion. Non-linear parametric mod-
els have been developed to address this issue (some
highly-regarded models include Tong, Thanoon and
Gudmundsson, 1985; Chen and Tsay, 1993b). A dif-
£culty in nonlinear parametric models is, with the in-
de£nitely many functions in the nonlinear domain, it
is very dif£cult to identify the best candidate function
a priori, therefore there is usually more subjectivity in
the model selection. The subjectivity can be avoided
by using nonparametric methods, because of the “let
the data speak for themselves” property.

In this section we use the proposed nonparamet-
ric transfer function model to study the effects of tem-
perature and precipitation on the ¤ow rate of River
Jökulsá eystri in Iceland. The data consists of daily
records of river ¤ow Yt (in m3/sec), temperature Xt

(in ◦C), and precipitation Zt (in mm) from January
1, 1972 to December 31, 1974. A interesting feature

of this river is that there is a glacier in its drainage
area, so we expect that the temperature effect on river
¤ow is more than melting snow. Tong et. al. (1985)
used the threshold autoregressive model (TAR) to an-
alyze this data set. Chen and Tsay (1993b) used it
as an example of the nonlinear additive ARX model
(NAARX). For more detailed information of the data,
see Tong, et.al. (1985).

To apply the proposed approach, we £rst check
the stationarity of the data. The sample ACF and
PACF of Yt show indications of non-stationarity,
(Figure 1), however the result of Augmented Dicky-
Fuller (ADF) test rejects the hypothesis that a unit
root exists. Similar analysis shows that the exogenous
variables Xt and Zt are stationary. The details of
the ADF tests are omitted to save space. To obtain
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Figure 1: Upper panel: The sample ACF of Yt. Lower
panel: The sample PACF plot of Yt.

some rough idea about the candidate variables of
the model, as an initial step of model identi£cation,
we estimated the linear transfer function weights
using the linear transfer function method (Liu, 1982).
The estimated linear transfer function weights are
plotted against the lags in Figure 2, with the 95%
con£dence band plotted in the dashed lines. The
estimated transfer function weights suggest the
following variables are good candidates of the model:
{Xt, Xt−1, Xt−2, Xt−3, Xt−4, Zt, Zt−1, Zt−6}.
However, without any restriction, a nonparametric
model containing all the above variables is dif£cult
to estimate because of the curse of dimensionality.
To overcome this problem, we consider an additive
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Figure 2: The estimated linear transfer function weights

model

Yt =
4

∑

i=0

fi(Xt−i) + g0(Zt) + g1(Zt−1)

+ g6(Zt−6) + et,

where each additive component is approximated by
regression spline. The truncated power basis is used
in the spline approximation. To simplify discussion,
we assume that the orders and the number of knots of
the spline functions are the same, thus the model can
be written as

Yt = a0 +
4

∑

i=0

[

k
∑

j=1

aijX
j

t−i
+

m
∑

r=1

air(Xt−i ¡ ¸r)
k
+

]

+
1

∑

i=0

[

k
∑

j=1

bijZ
j

t−i
+

m
∑

r=1

bir(Zt−i ¡ ¸r)
k
+

]

+ et.

We further assume that the knots are placed on the
percentile points so that there are equal number of ob-
servations between any two adjacent knots. A grid
search is conducted to determine the number of inte-
rior knots k and spline degree m. In the grid search
k is in the interval [1, int(5n1/(2m+3))], where the
upper limit is a multiple of the theoretical optimum
number of knots (Huang, 2003). We consider lin-
ear, quadratic and cubic splines, (m = 1, 2, 3, re-
spectively). The values k and m that minimizes
BIC=log(MSE) + log(n)[1 + (k + m)(dx + dz)]/n
is the optimal number of knots, where dx and dz are
the number of lags in Xt and Zt, respectively. The
results suggest a linear spline model with k = 1. Sim-
ilar to the case of Yt, the sample ACF and PACF of

the partial residual ˜et show indications of nonstation-
arity, however the ADF test results again reject the
existence of a unit root. As a result, an AR(4) model
is selected using the BIC criterion, the sample PACF
(Figure 3) also suggests such a model. Based on the

0 5 10 15 20

Lag

0
.0

0
.2

0
.4

0
.6

0
.8

A
C

F

0 5 10 15 20

Lag

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

P
a
rt

ia
l 
A

C
F

Figure 3: Sample ACF and PACF of the preliminary
residual ˜et

above preliminary information about the underlying
model, we re£ne the model by selecting the knots lo-
cations to minimize the residual sum of squares. The
results show that Zt and Zt−1 have such large knots
that beyond these knots there are only a few obser-
vations, this indicates that their effects are essentially
linear, also, Xt−4 and Zt−6 are found to be not signif-
icant. As a result, the model simpli£es further to

Yt = c +
3

∑

i=0

[

ai1Xt−i + ai2(Xt−i ¡ ¸i)+
]

+
1

∑

j=0

bjZt−j +
εt

1 ¡
∑

4

i=1 φiBi
. (5)

The optimized knots are -1.3, 0.5, 0.2, and -0.2 for
Xt, Xt−1, Xt−2, and Xt−3, respectively, and the esti-
mated parameters and their stand deviations are given
in Table 1. The sample ACF show that the residual
series is roughly “white”, the plots are omitted. To
put the performance of the proposed NPTF model in
perspective, we consider two models that were used to
analyze the same data set. The £rst model is the TAR
model used by Tong, et.al.(1985, page 658),

Yt = c1 + (1, ¢ ¢ ¢ , 6)Yt + (0, ¢ ¢ ¢ , 5)Zt

+(0, ¢ ¢ ¢ , 3)Xt + e1t, if Xt ≤ ¡2

= c2 + (1, ¢ ¢ ¢ , 8)Yt + (0, ¢ ¢ ¢ , 7)Zt
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Table 1: Parameter Estimates

Parameter c a0 a01 a11 a12

Estimate 29.67 .03 .47 -.11 2.44
StdErr. .08 .18 .08 .17 .03
Parameter a21 a22 a31 a32 b0

Estimate .05 1.42 .03 .61 .32
StdErr. 2.24 .08 .16 .08 .18
Parameter b1 φ1 φ2 φ3 φ4

Estimate .17 1.15 -.40 .25 -.09
StdErr .03 .03 .05 .05 .03

+(0, ¢ ¢ ¢ , 7)Xt + e2t, if Xt > ¡2, (6)

where (1, ¢ ¢ ¢ , 6)Yt means that Yt−1, ¢ ¢ ¢ , Yt−6 are in-
cluded in the model, other terms are similarly de£ned.
The second model is the NARRX model used by Chen
and Tsay (1993b, page 963),

Yt = c + φ1,1Yt−1 + φ1,2Yt−1I(Yt−1 ¸ c1)

+ φ1,3Yt−1I(Yt−1 ¸ c2) + φ2Yt−2 + φ3Yt−3

+ φ4Yt−4 + β1Zt + β2Zt−1 + ω1,1Xt−1

+ ω1,2Xt−1I(Xt−1 ¸ c3) + ω3,1Xt−3

+ ω3,2Xt−3I(Xt−3 ¸ c4) + εt (7)

The residual variances of the NPTF model, together
with the residual variances of the NAARX and the
TAR (Chen and Tsay 1993b) are shown in the last row
of Table 2. We can see while the within-sample per-
formance of NPTF, NAARX and TAR are similar, the
NPTF model has the smallest residual variance in the
three models. Although the NPTF model uses two
more parameters than the NAARX model, it is still
preferred by the AIC criterion. It is interesting to see
that the NPTF model (5) and the NAARX model re-
veals similar features of the underlying process, for
example, in both models piecewise linear functions
are found to well describe the relationship between
temperature and river ¤ow; in both models the precip-
itation effect is linear. The main difference is that in
the NPTF model (5) an AR model is used to model
the noise to account for the serial correlation, while in
the NAARX model lags of Yt is used.

To study the forecasting performance of the pro-
posed model, we consider the following post-sample
forecast scheme: model (5) is re-estimated using the
£rst two years of data, one-step to 12-step ahead post-
sample forecasts are conducted using the data of the
third year. This forecasting scheme is similar to the
one used in Chen and Tsay (1993b), the main differ-
ence is that in Chen and Tsay (1993b), actual observa-
tions of Xt, Zt and their lags are used in the forecasts,

Table 2: MSE of the post-sample forecasts

Lead Time NPTF NAARX TAR
1 68.38 70.06 72.84
2 164.38 169.49 183.35
3 229.10 242.17 262.32
4 291.03 303.28 336.04
5 337.66 349.77 390.82
6 366.83 382.34 421.13
7 386.43 406.94 443.02
8 391.70 418.05 457.87
9 400.98 431.81 476.08
10 408.22 439.77 490.63
11 419.27 453.05 506.71
12 440.58 477.45 536.99

In-sample 31.65 33.15 31.74

while here the forecast values are used. Two simple
AR(1) models are found appropriate for this purpose:
Xt = φxXt−1 + a1t and Zt = c0 + φzZt−1 + a2t.
The mean squared errors (MSE) are calculated and
shown in Table 2 under “NPTF”. For the purpose of
comparison we produce the forecasts using the afore-
mentioned NAARX model (7) and the TAR model (6)
under the same setting and report the MSE in Table 2.

The results in Table 2 show that the forecast MSE
of the nonparametric transfer function (NPTF) model
are consistently smaller than those of the NARRX
model and the TAR model. In this example, the pro-
posed NPTF model performances well in both within-
sample and post-sample, this shows the good potential
of the NPTF model in analyzing nonlinear time series
data.

5 Summary and Discussion

In this paper we introduce the regression spline-based
nonparametric transfer function model. This method
is ¤exible and ideal for modeling highly nonlinear re-
lationships between time series. Ef£cient estimation
of the transfer function model is achieved by incorpo-
rating the serial correlation in the noise. Compared
with the local polynomial-based methods, the explicit
functional form of polynomial splines makes estima-
tion much less intensive computationally. This model
is used to model river ¤ow based on temperature and
precipitation and found successful when compared
with widely-accepted nonlinear parametric models.
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