Weighted inequalities with Hölder norms of solutions to \(Lu = \text{div} f \) in non-smooth domains

Caroline Sweezy
Department of Mathematical Sciences
New Mexico State University
Box 30001, 3MB
Las Cruces, New Mexico
U.S.A. 88003-8001
csweezy@nmsu.edu http://www.math.nmsu.edu

Abstract: The rate of change of a solution to \(Lu = \text{div} f \) in a bounded, non-smooth domain \(\Omega \) in \(\mathbb{R}^d, d \geq 3, u|_{\partial \Omega} = 0 \) is investigated using a local Hölder norm of \(u \) and different measures on \(\Omega \). Results for

\[
L = \sum_{i,j=1}^{d} \frac{\delta}{\xi_i} (a_{ij}(x) \frac{\delta}{\xi_j})
\]

are presented.

Keywords: elliptic equations, Lipschitz domains, Borel measures, semi-discrete Littlewood-Paley type inequalities

1 Introduction: Questions concerning the rate of change of a temperature function or of a potential function in a limited environment are of fundamental importance in many applications of mathematics. For solutions to the heat equation and for harmonic functions in the upper half space, Wheeden and Wilson [WW] proved necessary and sufficient conditions on two Borel measures, one, \(\mu \), defined in \(\mathbb{R}^{d+1} \), the other, \(v(x')dx' \), defined on \(\mathbb{R}^d \), so that

\[
\left(\int_{\mathbb{R}^{d+1}} |\nabla u(x)|^q d\mu(x) \right)^{1/q} \leq C \left(\int_{\mathbb{R}^d} |f(x')|^p v(x') dx' \right)^{1/p}
\]

for any solution to the Dirichlet problem

\[
Lu = 0 \text{ in } \mathbb{R}^{d+1}, u = f \text{ on } \mathbb{R}^d.
\]

Here \(L = \Delta \) or \(\partial/\partial t - \Delta \), and \(1 \leq p \leq q < \infty \) with \(q \geq 2 \). Later work by Sweezy and Wilson established analogous results for solutions to more general second order equations on bounded Lipschitz and on Lip(1,1/2) domains, [S1, SW1, SW2, W]. In this paper questions concerning the rate of change of solutions to the inhomogeneous equation \(Lu = \text{div} f \) in \(\Omega \), \(u|_{\partial \Omega} = 0 \) will be investigated for operators of the form

\[
L = \sum_{i,j=1}^{d} \frac{\delta}{\xi_i} (a_{ij}(x) \frac{\delta}{\xi_j}), \text{ with } L
\]

being symmetric and strictly elliptic, and \(\Omega \) a bounded domain in \(\mathbb{R}^d \) whose boundary satisfies an exterior cone condition. In [S2] the question of finding conditions on two measures \(\mu \) and \(v \), defined on \(\Omega \), to give the inequality

\[
\left(\int_{\mathbb{R}^{d+1}} |\nabla u(x)|^q d\mu(x) \right)^{1/q} \leq C \left(\int_{\mathbb{R}^d} \left(|f(x')|^p + \left| \text{div} f(x') \right|^p \right) dv(x') \right)^{1/p},
\]

was considered. It was shown that a condition involving a singular potential of the measure \(\mu \) gives the same kind of norm
inequality with a local H{"o}lder norm of the solution $u(x)$ replacing $|\nabla u(x)|$. The first result that will be proved here will be to define conditions on μ and ν, less restrictive than the conditions previously studied in connection with obtaining a norm inequality involving $\nabla u(x)$, that give the following result:

$$\left(\int_{\Omega} \left(\|u\|_{p(x)} \right)^{q} \, d\mu(x) \right)^{1/q} \leq C \left(\int_{\Omega} \left(\left| f(x) \right|^{p} + \left| \text{div} f(x) \right|^{p} \right) \, d\nu(x) \right)^{1/p},$$

where $\|u\|_{p(x)} = \sup_{y \in P_{x}(100)} \frac{|u(x) - u(y)|}{|x-y|^d}$, $x \neq y$. $P_{x}(100)$ is a small cube centered at x, whose side length is, say, less than or equal to $(1/(100))$ of the distance from x to $\partial \Omega$. (distance(x, $\partial \Omega$) $\equiv \delta(x))$. The strategy is to obtain a condition on Whitney type cubes in Ω for μ and ν that does not involve a singular potential and that does not require a reverse Hölder condition. In fact, the condition in Theorem A given below is similar to another of the conditions introduced previously [S3]. One more advantage of dealing with the H{"o}lder norm instead of the gradient of the solution is that we obtain the norm inequality on the domain for a much bigger range of exponents, p and q. To prove Theorem A we must use a square function result which is given in Theorem B. Theorems A and B were announced in a talk at the International Conference of Applied Mathematics and Computing at Plovdiv, Bulgaria, August, 2008.

2 Problem Formulation: To state Theorem A we need several definitions. First, W will denote the collection of certain Whitney-type dyadic cubes (these are dyadic cubes whose dimension compares with the cube’s distance from the boundary of Ω) that lie in Ω. These cubes have the property that their interiors are pair-wise disjoint; a fixed dilate of any such cube will also be a Whitney-type cube with respect to Ω, and $\Omega = \bigcup_{Q \in W} Q_{j}$ is a large dyadic cube that contains Ω. The cubes in W are dyadic sub-cubes of Q_{0}. The measures μ and ν will be taken to be Borel measures; μ is defined on Ω, with ν defined on Q_{0}, and ν is absolutely continuous with Lebesgue measure.

Next we define $M(Q_{j})$ for any dyadic cube Q_{j} that lies inside Ω, and for

$$d\sigma(y) = \left(\frac{d}{d\nu(y)} \right)^{1/p'} d\nu,$$

$$M(Q_{j}) = \max_{Q_{j} \subseteq Q_{0}} \left\{ \left(\frac{1}{|Q_{j}|} \int_{Q_{j}} \left(\frac{d\nu}{dx}(x) \right)^{p/(p'-s)} \, dx \right)^{-(d-s)/2} \, d\sigma(y) \right\}.\right.$$
The proof of Theorem A follows the same general outline initiated in [WW]; one employs a dual operator argument that depends on a Littlewood-Paley type inequality. Two standard results on Holder continuity for solutions to \(Lu = \text{div} \, \mathbf{f} \) will be used in the proof of Theorem A. They are paraphrased here in Lemmas 1 and 2 (see Gilbarg and Trudinger [GT], Chapter 8).

Lemma 1: \(L \) is strictly elliptic with coefficients bounded and measurable, and \(\mathbf{f} \in L^{s}(\Omega) \) for some \(s > d \). If \(Lu = \text{div} \, \mathbf{f} \) in \(\Omega \) with \(u \in W^{1,2}(\Omega) \), then for any \(\gamma > 1 \), \(B_{\gamma R}(y) \subset \Omega \), and any \(m > 1 \),

\[
\sup_{x \in B_{R}(y)} |u(x)| \leq C \left(\int_{B_{3R}(y)} |u(x)|^{m} \, dx \right)^{1/m} \]

\[
+ C \left(\frac{1}{\gamma} \right)^{d-s} \left\| \mathbf{f} \right\|_{L^{s}(\Omega)} \). \]

With the same hypotheses for \(L, \mathbf{f}, \) and \(u \) as in Lemma 1,

Lemma 2: For any \(B_{R_{0}}(y) \subset \Omega \), and any \(\gamma \),

\[\text{osc } u = \sup_{x \in \overline{B_{\gamma}(y)}} |u(x) - u(z)| \leq C \left(\frac{1}{\gamma} \right)^{s} \sup_{x \in \overline{B_{R_{0}}(y)}} |u(x)| \]

\[+ CR^{d} \left(\frac{1}{\gamma} \right)^{1/(1-s)} \right\| \mathbf{f} \right\|_{L^{s}(\Omega)} \]. \]

Note: \(\alpha = \alpha(d,s) \). The constant \(C \) in Lemma 2 depends on \(R_{0} \); however, this can be changed to a dependence on the diameter of \(\Omega \). Taking \(\Omega \) variously as itself, \(B_{\gamma R_{0}}(y) \) in \(\Omega \) with \(\gamma > 1 \), or as a fixed dilate of \(Q_{j} \), say \(\Omega = 4Q_{j} \) (which has the property that it is still a Whitney-type cube in the original domain), and taking \(m = 2 \), gives the form of these results used for local estimates below.

3 Problem Solution

Outline of the proof of Theorem A: As usual we start by writing \(\int_{\Omega} \| u \|_{L^{p}(\Omega)}^{p} \, d\mu(x) \) as the sum of integrals over the Whitney-type cubes in \(W \):

\[
\int_{\Omega} \| u \|_{L^{p}(\Omega)}^{p} \, d\mu(x) = \sum_{Q_{j} \in W} \int_{Q_{j}} \| u \|_{L^{p}(\Omega)}^{p} \, d\mu(x) .
\]

This expression can be shown to be dominated by

\[
\frac{C \mu(Q_{j})}{\mu(Q_{j})^{d-p}} \left(\frac{1}{\mu(Q_{j})} \int_{(3/2)Q_{j}} |u(x) - \overline{u}(x)|^{2} \, dx \right)^{1/2} \]

\[+ \left(\frac{1}{\mu(Q_{j})} \int_{(3/2)Q_{j}} |\overline{u}(x)|^{2} \, dx \right)^{1/2} \gamma \]

\[+ C \mu(Q_{j}) \left(\int_{Q_{j}} |\mathbf{f}(x)| \, dx \right)^{1/2} \]

\[+ \left(\int_{3Q_{j}} |\mathbf{f}(x)| \, dx \right)^{1/2} \gamma .
\]

Here \(u^\gamma(x) \) is the solution to \(Lv = \text{div} \, \mathbf{f} \) in \(4Q_{j} \) \(, \) \(v(x') = 0 \) on \(\partial(4Q_{j}) \). A series of elementary estimates shows that we need only bound

\[
\sup_{\| \mathbf{f} \|_{L^{s}(\Omega)}} \mu(Q_{j}) \| u(Q_{j}) \|_{L^{s}(\Omega)} \cdot
\]

\[\left(\frac{1}{\mu(Q_{j})} \int_{(3/2)Q_{j}} |u(x) - \overline{u}(x)|^{2} \, dx \right)^{1/2} \] and

\[
\sup_{\| \mathbf{f} \|_{L^{s}(\Omega)}} \mu(Q_{j}) \| u(Q_{j}) \|_{L^{s}(\Omega)} \cdot
\]

\[\left(\frac{1}{\mu(Q_{j})} \int_{4Q_{j}} |\mathbf{f}(x)| \, dx \right)^{1/2} \] by a constant multiplying

\[\left(\int_{\Omega} \left(|\mathbf{f}(x)|^{p} + \left| \text{div} \, \mathbf{f}(x) \right|^{p} \right) \, d\nu(x) \right)^{1/p}, \]

and we will be done. The second sum can be shown to be less than or equal to
To show that \(\sum_{Q_j \in \mathcal{W}} \left(\frac{\mu(Q_j)g(Q_j)}{l(Q_j)^{q'}} \right) \) is dominated by \(\left(\sum g(Q_j)^{q'} \mu(Q_j) \right)^{\frac{1}{q'}} \), we exploit the fact that the sequence \(\{g(Q_i)\} \) can be assumed to have only finitely many non-zero terms (see [WW]). Moreover, \(q' \geq p \), so \(p' \geq q' \) and \(((q')/(p')) \leq 1 \). This means that

\[
\sum_{Q_j \in \mathcal{W}} \left(\frac{\mu(Q_j)g(Q_j)}{l(Q_j)^{q'}} \right) \leq \sum_{Q_j \in \mathcal{W}} \left(\frac{\mu(Q_j)g(Q_j)}{l(Q_j)^{q'}} \right) \leq \sum_{Q_j \in \mathcal{W}} \left(\frac{\mu(Q_j)g(Q_j)}{l(Q_j)^{q'}} \right) \leq \sum_{Q_j \in \mathcal{W}} \left(\frac{\mu(Q_j)g(Q_j)}{l(Q_j)^{q'}} \right).
\]

It will suffice to have the term by term comparisons

\[
\mu(Q_j)^{q'} g(Q_j)^{q'} l(Q_j)^{(1-\frac{4}{q'}-a)q'}.\]

\[
\left(\int_{4Q_j} \left(\frac{dx}{dx} \right)^{\frac{q'}{p'}} dx \right)^{\frac{1}{q'}} \leq C \mu(Q_j) g(Q_j)^{q'}.
\]

Rearranging terms and taking \(q' \) roots on both sides of the resulting inequality gives the sufficient condition

\[
\mu(Q_j)^{\frac{1}{2}} \left(\int_{4Q_j} \left(\frac{dx}{dx} \right)^{\frac{q'}{p'}} dx \right)^{\frac{1}{2}} \leq C l(Q_j)^{\frac{q'}{p'q'}}.
\]

To handle the first sum,

\[
\sup \|g(Q_j)\|^{\frac{1}{q'}} - 1 \sum_{Q_j \in \mathcal{W}} \frac{\mu(Q_j)g(Q_j)}{l(Q_j)^{q'}}.
\]

\[
\left(\frac{1}{|Q_j|} \int_{(3/2)Q_j} |u(x) - \tilde{u}(x)|^2 dx \right)^{\frac{1}{q'}}
\]

one can write, taking \(G \) and \(G' \) to be the Green functions of \(\Omega \) and \(4Q_j \) and \(M(x) = \int_{\Omega} \text{div} \bar{f}(y) \left(G(x,y) - \bar{G}(x,y) \right) dy, \)

\[
\left(\frac{1}{|Q_j|} \int_{(3/2)Q_j} |u(x) - \tilde{u}(x)|^2 dx \right)^{\frac{1}{q'}} \leq \sum_{Q_j \in \mathcal{W}} \mu(Q_j)^{q'} g(Q_j)^{q'} \leq \sum_{Q_j \in \mathcal{W}} \left(\frac{\mu(Q_j)g(Q_j)}{l(Q_j)^{q'}} \right).
\]

The first expression derives from writing the solution in the form

\[
u(x) = \int_{\Omega} \text{div} \bar{f}(y) G(x,y) dy,
\]

and likewise for \(u^*(x) \). The first inequality follows from Minkowski's inequality for integrals and the last inequality can be obtained by using Harnack's inequality on the non-negative solution \(G(x,y) - \bar{G}(x,y) \).
Next the order of summation and integration are interchanged to obtain

\[\sum_{Q \in \mathcal{W}} \frac{\mu(Q) \mathbb{E}(Q)}{|Q|^\alpha} . \]

\[\left(\frac{1}{|Q|} \int_{(3/2)Q} |u(x) - \mathbb{E}(x)|^2 \, dx \right)^{1/2} \leq \]

\[\int_{\Omega} |\text{div} \tilde{f}(y)| \left| \sum_{Q \in \mathcal{W}} \frac{\mu(Q) \mathbb{E}(Q)}{|Q|^\alpha} \right| \cdot \]

\[\left(\frac{1}{|Q|} \int_{(3/2)Q} \left| G(x,y) - \tilde{G}(x,y) \right| \, dx \right)^{1/2} \]

\[= \int_{\Omega} |\text{div} \tilde{f}(y)| \left(\sum_{Q \in \mathcal{W}} \lambda_Q \varphi_Q(y) \right) \, dy \]

With \(\lambda_Q = \frac{\mu(Q) \mathbb{E}(Q)}{|Q|^\alpha} \) and

\[\varphi_Q(y) = \frac{1}{|Q|} \int_{(3/2)Q} \left| G(x,y) - \tilde{G}(x,y) \right| \, dx. \]

At this point we will use the square function estimate provided by Theorem B.

Theorem B: Suppose that \(\tilde{f}(x) = \sum_{J \in \mathcal{F}} \lambda_J \varphi_J(x) \) is a function defined on \(\Omega \), where \(\mathcal{F} \) is a finite set of dyadic cubes from \(W \), and the \(\{ \varphi_J \}_{J \in \mathcal{F}} \) are a family of functions that satisfy conditions a), a'), b), and c), and such that \(\varphi_J(x) = 0 \) if \(x \in \Omega \setminus \mathcal{W} \). Then, if \(d\sigma \in A^p(Q_0, d\sigma) \), there is a constant \(C = C(d, \alpha, p, \Omega, \kappa, C_0) \) such that, for any \(0 < p < \infty \),

\[\|f\|_{L^p(Q_0, d\sigma)} \leq C \|g^*\|_{L^p(Q_0, d\sigma)}. \]

The proof of Theorem B and of a), a'), b), and c) is given in another paper [S3]. Next we need to define the function \(g^*(f)(x) = g^*(x) \) and to give the conditions a), a'), b), and c). When \(f(x) = \sum_{J \in \mathcal{F}} \lambda_J \varphi_J(x) \)

\[g^*(x) = \left(\sum_{J \in \mathcal{F}} \frac{\lambda_J^2}{|Q_J|^\alpha} \left(1 + \frac{|x-x_J|}{l(J)} \right)^{-\alpha} \right)^{1/2}. \]

\(g^*(x) \) is a discrete version of the \(g_\lambda^* \) function of classical Littlewood-Paley theory. The four conditions that will be assumed to hold for the family \(\{ \varphi_J(x) \} \) are (see the proof of Theorem B in [S3]):

\[S(Q) = \{ J \in \mathcal{F} | J \subset Q \} \]

\[a) \ |\varphi_J(x)| \leq C l(J)^{2-d/2} \left(1 + \frac{|x-x_J|}{l(J)} \right)^{2-d}. \]

for all \(x \in \Omega \).

\[a') \ |\varphi_J(x)| \leq C \delta(x) l(J)^{2-d/2} \left(1 + \frac{|x-x_J|}{l(J)} \right)^{2-d}. \]

for all \(x \in \Omega \).

\[b) \ |\varphi_J(x) - \varphi_J(y)| \leq C |x-y|^{\alpha} l(J)^{2-d/2}. \]

for all \(x \) and \(y \) in \(\eta Q \) and \(J \in S(Q) \).

\[c) \ \left\| \sum_{J \in \mathcal{F}} \lambda_J \varphi_J(x) \right\|^2 \leq C \sum_{J \in \mathcal{F}} \lambda_J^2. \]

Assuming for now that the \(\varphi_J(y) \) satisfy the properties a), a'), b), and c), then Hölder’s inequality followed by the application of Theorem B to the function

\[h(y) = \sum_{Q \in \mathcal{W}} \lambda_Q \varphi_Q(y), \]

gives

\[\int_{\Omega} |\text{div} \tilde{f}(y)| \left(\sum_{Q \in \mathcal{W}} \lambda_Q \varphi_Q(y) \right) dy \leq \]

\[C \|g^*(h)\|_{L^p(\Omega, d\sigma)}. \]

It will suffice to show that

\[\|g^*(h)\|_{L^p(\Omega, d\sigma)} \leq C \|\langle g(Q) \rangle\|_{L^p(\Omega, d\sigma)}. \]

To utilize the fact that \(p > 2 \) implies \(p'/2 < 1, \)
we can assume that the sum defining \(h(y) \) is finite (see [WW]).

\[
\| g^*(h) \|_{L^p(Q_0, \partial \sigma)}^p = \int_{Q_0} \left(\sum_{i=1}^{\infty} \frac{x_i^j}{|Q_i|^{1/2}} \left(1 + \frac{|y-x_i|}{l(Q_i)} \right)^{-\frac{d-\alpha}{2}} \right)^p d\sigma(y)
\]

\[
\leq \sum_{i=1}^{\infty} \frac{x_i^j}{|Q_i|^{1/2}} \cdot \int_{Q_0} \left(1 + \frac{|y-x_i|}{l(Q_i)} \right)^{-\frac{(d-\alpha)p}{2}} d\sigma(y).
\]

So it suffices to show that the last sum is dominated by \(\left(\sum (g(Q_j)^q \mu(Q_j))^{p'/q} \right)^{p'/q} \).

Once again, taking advantage of the fact that \(q'/p' \leq 1 \), this is equivalent to showing that

\[
\sum_{i=1}^{\infty} \frac{x_i^j}{|Q_i|^{1/2}} \cdot \left(\int_{Q_0} \left(1 + \frac{|y-x_i|}{l(Q_i)} \right)^{-\frac{(d-\alpha)p}{2}} d\sigma(y) \right)^{q/p'}
\]

\[
\leq \left(\sum (g(Q_j)^q \mu(Q_j)) \right)^{p'/q}.
\]

So if

\[
\frac{x_i^j}{|Q_i|^{1/2}} \left(\int_{Q_0} \left(1 + \frac{|y-x_i|}{l(Q_i)} \right)^{-\frac{(d-\alpha)p}{2}} d\sigma(y) \right)^{q/p'}
\]

\[
\leq C(g(Q_j)^q \mu(Q_j)),
\]

we will have the desired result. But this is the same as requiring that

\[
\mu(Q_j)^{1/q} \left(\int_{Q_0} \left(1 + \frac{|y-x_i|}{l(Q_i)} \right)^{-\frac{(d-\alpha)p}{2}} d\sigma(y) \right)^{1/p'}
\]

\[
\leq C l(Q_j)^{d-\alpha}.
\]

4 Conclusion Future work will entail finding conditions on two measures so that one can prove a weighted norm inequality and a semi-discrete Littlewood-Paley type inequality in the setting that is appropriate for the generalized heat equation; in other words, to find and prove analogues of both Theorem A and Theorem B for solutions to

\[
Lu = \text{div} \vec{f} \begin{cases} \text{in} \Omega, & |u|_{\partial \Omega} = 0, \end{cases}
\]

where \(L = \frac{\partial}{\partial t} - \sum_{j=1}^{d} \frac{\partial}{\partial x_j} \left(a_{ij}(x,t) \frac{\partial}{\partial x_i} \right) \), and \(\Omega \) is a domain with a rough boundary in \(\mathbb{R}^{d+1} \).

References:

