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Abstract: - Close-form representations for the permissible sampling rates on the first-order sampling of two-band 
bandpass signals are presented in this paper. It is shown that the new sampling rates are much lower than the Nyquist 
rate for signals with scattered passbands.  A fast algorithm is developed for the symbolic operations on intervals, which 
makes the proposed sampling scheme more applicable. 
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1   Introduction 
    Digital Signal Processing (DSP) has been the driving 
force for the development of modern technologies in 
communication.  Its applications have been seen from 
space technology to household electronics.  An 
indispensable component of digital signal processing is 
sampling because an analog signal has to be sampled 
before any DSP procedures can be applied. 
    The process of selecting values of an analog signal at 
discrete-time instants is called sampling.  A sampling 
device is used to take measurements of the analog signal 
at a regular interval of time.  The sampling interval, the 
reciprocal of which is called sampling rate, has to be 
carefully selected so that the samples capture the 
characteristics of the original analog signal.  A well-
known industrial standard for sufficient sampling of an 
analog signal is that the sampling rate is at least twice 
the highest frequency, also known as the Nyquist rate [J. 
G. Proakis and D. G. Manolakis, 1996], of the signal.  
The challenge of effective sampling comes from signals 
with high frequency components because the sampling 
device has to perform at a much higher rate in order to 
cope with the high frequencies of the signal, and such 
sampling devices are expensive to make.  As the modern 
technologies advance at a faster pace than ever, DSP 
technologies have to be at least one-step ahead.  
Particularly with the emergence of broad-band signals 
from space, commercial applications, and military, the 
highest frequency of which is usually at the range of 
mega-hertz or even giga-hertz, construction of advanced 
sampling mechanisms have become one of the most 
active research areas in digital signal processing.  The 
goal of developing new sampling methods is always the 

same, that is, to reduce the sampling rate to a level that is 
much lower than the Nyquist rate.  
    In the past decade or so, higher-order sampling 
methods were developed to lower the sampling rate 
[Moon, 2000, Mitra, et. al., 1993, Xiao, 1995]. The idea 
of using a guard-band to reduce the susceptibility of the 
permissible sampling rates to aliasing was introduced in 
[Vaughan, et. al., 1991].  Similar treatment of the 
problem can be found in [Gaskell, 1978; Gregg, 1979; 
Coulson, 1994]. However, due to the excessive structural 
complexity, the implementation of those higher-order 
methods may add more cost to the making of such 
sampling devices.   
    It is observed that most broad-band signals are 
passband signals with existence of significant gaps 
among the spectral components of the signal displayed 
from the frequency domain [Proakis and Manolakis, 
1996], see Fig.1.1.  The objective of this work is to 
develop low-cost sampling methods to achieve a lower 
sampling rate than the Nyquist rate by utilizing the gaps 
among the spectra.  The proposed sampling mechanism 
is guaranteed to be low-cost because only first-order 
sampling is considered, which has the simplest design 
structure, known as sample-and-hold.  The idea of 
deriving such new sampling rates, both optimal and 
admissible sampling rates, is that the spectra of a 
passband signal do not intersect with each other (anti-
aliasing) as they shift horizontally at a step size that is 
equal to the designated sampling rate.  
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Fig 1 Two-band passband signals with gaps 

 
    Introduce the following interval notation for the 
compact support of a two-band signal in the frequency 
domain 

 

[ , ] [ , ] [ , ] [ , ] [ , ] [ , ]d c a bI c d b a d c∪ = − − ∪ − − ∪ ∪ a b     (1) 

 
  A signal ( )f t

]b
 is said to be bandpassed to 

, see Fig. 1.2, if its Fourier transform [ , ] [ ,d c a∪
( )F ω satisfies the condition ( ) 0F ω =  if 

[ , ] [d c aI , ]bω ∪∉ .  

    The illustration in Fig 1.2 gives a general idea of a 
signal bandpassed to[ , . Two bands on the 
negative frequency axis are mirror images of the original 
two bands on the positive side.  In this setting, there are 
six possible pairings to consider for the interaction 
between two bands, in which two pairs are redundant.  In 
section 2, we present results on the feasible step sizes for 
each pair and design a fast algorithm to calculate the 
feasible sampling rates from the six sets of step sizes. 

] [ , ]d c a b∪

 
 

2   Two-band sampling algorithm 
    We begin with introducing the symbols used in the 
derivation of feasible step sizes for the two-band signals.   

    Let the expression  

represent shifted version of the closed interval 
, where m

[ , ] [ ,m
a bI a m b mΔ = + Δ + Δ]

b[ , ] [ , ]a bI a= Ν∈ ,and +∈Δ R .  Throughout 

the text, it is always assumed that the intervals [ ]ba,

fΔ

f

  

and  are closed, disjoint, and 

satisfy . The symbol  will be used to 

designate a feasible step size.  

[ cd ,

cd <<
]

ba <

Δ  is a feasible step size 

for two intervals  and [ ba, ] [ ]cd ,  if the following 
conditions are satisfied, 
i.)  I [ ]

Δm
ba ,  intersects I [

Δn
cd , ]  at only one point, or the 

intersection is empty, for all non-negative integers m  
and .  n

]  intersects I [ ]
Δn

ba ,  at only one point, or the 

intersection is empty, for all non-negative integers m  
and .  n

ii.)  I [
Δm
ba ,

iii.)  I [
Δm

cd , ]  intersects I [
Δn

cd , ]  at only one point, or the 

intersection is empty, for all non-negative integers m  
and . n
    We first present four lemmas, including the closed 
form formula for the feasible step sizes for two-band.  
The proofs of the first three lemmas are left out because 
they are straightforward. These lemmas will be used in 
the proof of the main theorem. 

d c a b

 
Lemma 2.1 Let [ ]cd ,

≥
 and [  be closed disjoint 

intervals such that 

]ba,
)d(c −Δ  and )( ab −≥Δ . If ∃   

m ∈  Z +  such that mc a≤Δ  + d  
bd ≥

 an
m Δ++ )1( , then Δ  is a feasible step size.  

 
Introducing an integer 

                         ⎥
⎦

⎥
⎢
⎣

⎢
−+−

−
=

)()( dcab
cat ,               (2) 

where ⎢ ⎥⎣ ⎦  is the floor function, for example, 2.89 2⎢ ⎥ =⎣ ⎦ . 

This value can be thought of as the capacity of the gap 
between the two intervals [  and ]ba, [ ]cd ,  to 
accommodate shifting the interval through the gap in 
between without causing intersections. Using this value, 
we can partition the positive side of the real line and 
determine feasibility of the step size.   
 
Lemma 2.2 If  ⎥

⎦

⎥
⎢
⎣

⎢
−+−

−
=

)()( dcab
cat , then 

1+
−

t
db   ≤   

t
a c− . 

Lemma 2.3 Let ⎥
⎦

⎥
⎢
⎣

⎢
−+−

−
=

)()( dcab
cat ; then  

−
1+t

b d   ≥ )( ab −  and   
1+

−
t

db   . ≥ )( dc −

 

Theorem 2.1 Let ⎥
⎦

⎥
⎢
⎣

⎢
−+−

−
=

)()( dcab
cat  and 

fΔ ∈∪
1

1

,
1

−

=
⎥⎦
⎤

⎢⎣
⎡

−
−

+−
−t

n nt
ca

nt
db [ )∪ ∞− ,db ,    (3) 

then fΔ  is a feasible step size. 

 
Proof: If  fΔ  ∈ [ )∞− ,db , then it is greater than the 

Nyquist rate, and is feasible. Thus, we only consider  

fΔ  ∈  ∪
t

.  Then   
1−

=
⎥⎦
⎤

⎢⎣
⎡

−
−

nt
ca

1n

,
1+−

−
nt

db

fΔ  ∈   
⎥⎦
⎤

⎢⎣
⎡  for some , 

−
−

+−
−

kt
ca

kt
db

,
1

1,2,..., 1k t= −

implying 
1+−

−
kt

db   ≤   fΔ     ≤
kt
ca

−
− .  Thus, one has  

Proceedings of the 9th WSEAS International Conference on Multimedia Systems & Signal Processing

ISSN: 1790-5117 124 ISBN: 978-960-474-077-2



c  + ( t  – k )   fΔ ≤ a
and   

d  + ( t  –  + 1) k fΔ    b . ≥

From Lemmas 2.1 and 2.3,  is a feasible solution 

with 

fΔ

1+
−

t
db  being the smallest feasible solution and 

hence the optimal solution. 
    It is given explicitly in Theorem 2.1 all possible step 
sizes that are less than the Nyquist rate, if any, that 
forbid intersections between the bands (intervals) during 
shifting along the frequency axis.  For the two band case, 
see Fig. 1.1, there are actually four bands in existence.  
Hence, there are six possible pairings among the four 
bands.  With the help of Theorem 2.1, one can calculate 
the intervals for each pair of intervals, then, find the 
intersection of all the intervals, which leads to the final 
solution for the feasible step sizes for the direct sampling 
of two-band passband signals.  
Introduce the ideal bandpass filters In that case  

                                              

                         (4)                   
⎩
⎨
⎧ ∈

= ∪

otherwise
I

S bacd

0

1
)( ],[],[ω

ω                          

The inverse Fourier Transform of  is ( )ωS

[ ] [ ]1 1 2 2

1 2
, ,( ) sin ( ) sin ( )s t c c t c cω σ ω σ

σ σ
π π

= + t  (5)  

where  

[ , ]

1 1 2 2

cos( )sin( / 2)
csinc ( ) ,

/ 2

, , , and .
2

t tt
t

c d a bc d b a

ω σ

2

ω σ
σ

σ ω σ ω

=

+
= − = = − =

+
 

    We are now ready to present the main theorem for the 
feasible step sizes for the first-order sampling of two-
band signals. 
 
Theorem 2.2 Suppose a signal ( )f t  is bandpassed over 

. Let [ ] [, ,d c a b∪ ] sω and be the sampling frequency 

and sampling interval, respectively, and

T
2

s T
πω = .  

Then, ( )f t
(
can be completely determined from its 

samples )f nT  via   

  
1 1

2 2

1
[ , ]

2
[ , ]

2
csinc ( )

( ) ( )
2

csinc ( )

s

n

s

t NT
f t f nT

t NT

ω σ

ω σ

σ
ω
σ
ω

∞

=−∞

⎧ − +⎪⎪= ⎨
⎪ −
⎪⎩

∑

⎫
⎪⎪
⎬
⎪
⎪⎭

           (6) 

if the sampling frequency sω satisfies the following 
feasibility condition,  
                        

)
16

, ,
11 0

t b d a ck k k k k b ds k kt n t nk n k k
ω

−⎧ ⎫⎡ ⎤− −⎪ ⎪⎡∪ − ∞⎢ ⎥⎨ ⎬⎣+ − −⎢ ⎥= ⎪ ⎪= ⎣ ⎦⎩ ⎭
∈ ∩ ∪  

                                                                               (7)  
where  is one possible pairing from 
the group of four intervals corresponding to the two-
band case { } , and 

[ , ] and [ , ]k k k ka b d c

[ , ],b a− − [ , ],[ , ],[ , ]c d d c a b− −

1,
( ) ( )

a ck k k
b a c dk k k k

⎢ ⎥−
⎢ ⎥= =

− + −⎢ ⎥⎣ ⎦
..., 6, .kt  

 
Proof: First, we introduce an impulse train modulated by 
the samples ( )f nT  of the signal ( )f t : 

∑
∞

−∞=
−=

n
nTtnTTftf ).()()( δδ

 

According to the Poisson formula, the Fourier 
transform of  is given by )(tfδ
                                                

        ( ) ( ) ( )jnT
s

n n
F Tf nT e Fω
δ nω ω ω

∞ ∞
−

=−∞ =−∞
= =∑ ∑ +        (8)                

where )(ωF
f
 is the Fourier transform of  The 

spectrum of  can be recovered from (8) by applying 

the ideal two-band bandpass filter (4) to 

).(tf

(

)(t
)ωδF  as 

follows:    

         ( ) ( ) ( ) ( ) ( ).s
n

F S F S F nδω ω ω ω ω ω
∞

=−∞
= = +∑          (9)   

This is guaranteed because none of the spectra 
( ),sF nω ω+  ,0≠n overlap with )(ωF  at the 

sampling rate sω  satisfying (7) according to Theorem 
2.2. Therefore, taking the inverse Fourier transform of 
(9) yields 

1 1

2 2

1 1

2 2

1
[ , ]

2
[ , ]

1
[ , ]

2
[ , ]

( ) ( ) ( )

csinc ( )
( )

csinc ( )

2
csinc ( )

( )
2

csinc ( )

n

s

n

s

f t s t f t
T t NT

f nT
T t NT

t NT
f nT

t NT

δ

ω σ

ω σ

ω σ

ω σ

σ
π
σ
π
σ
ω
σ
ω

∞

=−∞

∞

=−∞

= ∗ =

⎧ ⎫− +⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪−
⎪ ⎪⎩ ⎭
⎧ ⎫− +⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪−
⎪ ⎪⎩ ⎭

∑

∑

 

3   A fast algorithm on intervals  
    It is observed from (7) that the interval(s) for feasible 
sampling rates are calculated from the intersections of 
different groups of intervals.  The number of intervals 
could be large in (7), hence increase the amount of 
computation significantly.  In this section, we present a 
fast algorithm for computing the intersections among 
given intervals.  This algorithm takes advantage of the 
facts that the set of all feasible intervals for each pair of 
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bands is a union of disjoint intervals and the feasible 
intervals are ordered along the number line (frequency 
axis). 
   We present the algorithm in the form of a pseudo-code 
as follows: 
 
Initialization: 
Let each of the sets 

1 21, 2, ,, ,...,
kn n k nI I I  be a union of closed 

disjoint intervals and the intervals in each set are 
ordered, and is the i th  set containing  such 

intervals.    Thus,         
, ii nI in

1

2

1, 1,1 1,1 1,2 1,2 1, 1,

2, 2,1 2,1 2,2 2,2 2, 2,

, ,1 ,1 ,2 ,2 , ,

[ , ] [ , ] ...[ , ]

[ , ] [ , ] ...[ , ]

[ , ] [ , ] ...[ , ]
k

n

n

k n k k k k k n k n

I a b a b a b

I a b a b a b

I a b a b a b

= ∪ ∪

= ∪ ∪

= ∪ ∪

1 1

2 2

k k

n n

n n  

Step 1. 
:if one of the unions is empty, then stop. 
:find the maximum value of the left 
endpoint of the first interval in each union 
call it L ,  max

:find the minimum value of the right 
endpoint of the first interval in each union 
call it R . min

Step 2. 
:If    L R , then max ≤ min [ ]minmax , RL

min

 is 

an intersection and is stored in F. 
Remove the interval that R  occurred 
in from the union it was contained in, 
and go to Step 1. 
:Else remove  the interval that R  
occurred in from the union it was 
contained in and go to Step 1. 

min

 
Let represent the number of symbolic 

operations on the intervals required for the selection 
process, an upper bound (worst case scenario) on the 
complexity of this algorithm is given as follows 

1 21, 2, ,{ , ,..., }
kn n k nC I I I

 

      
1 21, 2, ,

1

{ , ,..., } (2 1) ( 1) 1
k

k

n n k n i
i

C I I I k n
=

⎡ ⎤
⎢ ⎥≤ − − +⎢ ⎥⎣ ⎦
∑            (10) 

A program is made in MATLAB to realize this 
algorithm.  In most experiment, the number of 
operations is much less than the upper bound in (10) 
because some runs out quickly during the process. , ii nI
  
 

4   Discussion and Conclusion 
    It is observed from (2) that the bigger the gap between 
the two passbands the greater the integer t, which 

implies that there is a greater opportunity for the gap 
between the passbands to be utilized for larger sampling 
interval (step size).  In other words, the more scattered 
the passbands, the higher possibility for lower sampling 
rate. 
    Consider a bandpass signal with the following band 
positions [ ] [ ]kHzkHzkHzkHz 520,50025,20 ∪

kHz1040

kHz

, then the 
Nyquist rate is . However, with the proposed 
sampling algorithm, the sampling rate is calculated as 
low as .  The difference is significant. 50
    Lower sampling rates are achievable for bandpass 
signals with significant gaps between the bands.  In this 
paper, the intervals for feasible sampling rates, including 
the optimal rates, are presented in closed forms.  These 
rates can be proved to be necessary for admissible 
sampling (anti-aliasing) too.  It is not difficult to extend 
the results to bandpass signals with arbitrary number of 
bands.  However, it is forewarned that the proposed 
algorithms are effective for bandpass signals with 
significant gaps in between the bands.  Otherwise, 
imperfections of sampling could lead to aliasing if the 
margin of error is small, particularly at the optimal 
sampling rates. 
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