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ABSTRACT:   In integrated circuits, ring oscillator (RO) has many applications. In these applications, how to obtain the accurate 

oscillation frequency is an important issue for the design. In this paper, we explore the feedback problem of a N-stage ring 

oscillator. This paper proposes a more rigorous approach to analyze the ring oscillator. It can be approximated that the feedback 

system of a ring oscillator can be a nonlinear Lur’e problem. With this Lur’e problem, circle criterion can be used to determine 

the stability of overall feedback system. With this Lur’e problem, the describing-function method is used to determine the 

oscillation frequency of the ring oscillator. A new formula will be presented. It can be also observed that if N (number of 

inverters) is large enough, the proposed formula will approach the conventional formula.  Moreover, with describing function 

method, a “necessary condition” for the existence of fundamental mode and higher order modes of oscillations are presented. 

Furthermore, it can be shown that as and the voltage gain is large enough; the higher harmonic oscillation may exists. 

Finally, with Tsypkin Function method, a more accurate formula for the oscillation frequency of ring oscillator will be presented. 

Finally, Simulation examples will illustrate these results. 

7N ≥

keywords-ring oscillator, describing function, Tsypkin function, Extended Nyquist Diagram 

 INTRODUCTION 

For Digital Integrated Circuit designs, the ring oscillator 
plays an essential role [1,2].  The ring oscillator is actually a 
feedback circuit composed of an odd number of inverters and is 
one of the most fundamental circuits in large-scale integration 
(LSI) technology. They can be used as voltage-controlled 
oscillators (VCO) in applications such as clock recovery circuits 
for serial data communications [3], disk drive read channels [3], 
on-chip clock distribution [3] and integrated frequency 
synthesizers [3]. Despite it widespread usage, the RO still pose 
difficulties when it comes to analysis and modeling.    

Conventionally, the ring oscillators are treated as a 
nonlinear negative feedback system. This means that for a 
nonlinear negative feedback system, the design of the system is 
maintained at the so-called stable “Limit Cycle Condition”[6-8].    

On the other hand, the describing function method has 
been widely used to determine the limit cycle and the dynamical 
behaviors for the nonlinear systems [4-8]. The advantages of the 
describing function method are that it can be applied in the large 
signal situations.  Moreover, the describing function method can 
be viewed as another kinds of harmonic balance method [7,8]. 

In this paper, we explore the feedback property of inverter-
based ring oscillator. In the digital circuits, the ring oscillator 
contains the nonlinear feedback elements. Conventionally, the 
derivation of period of RO is determined by the simple concept 
of addition of each delay of inverter. In the meantime, several 
researchers have proposed some methods to determine the 
frequency of RO [9-11]. This paper proposes a more rigorous 
approach to analyze the nonlinear ring oscillator by feedback 
theory. It can be shown that the feedback elements of ring 

transfer function. Then, the overall system becomes a Lur’e 
problem. With this Lur’e problem, Circle criterion can be used to 
determine the stability of overall system. Also, the describing 
function method can be used to determine the oscillation 
frequency of the ring oscillator. A new formula will be presented. 
It can be also observed that as N (number of inverters) is large 
enough, the proposed formula will approach the conventional 
formula.  On the contrary, with extended Nyquist Criterion and 
describing function method, we can show that if the voltage gain 
of the inverter in a N-stage ring oscillator is small enough, the 
oscillation will not exist. Furthermore, it can be shown that as 

7N ≥ and if the voltage gain is large enough; the higher 
c oscillation may exists. This result is the same as 

previous literature’s points [10,12]. With Tsypkin Function 
method [8,13], a more accurate formula for the oscillation 
frequency of ring oscillator will be presented. Finally, Simulation 
examples will illustrate these results. 
  

oscillator can be approximated by a nonlinear gain with a linear 

harmoni

I. RING OSCILLOTOR CIRCUIT 
 conventional derivation 

of the

the second

II
In this section, we will explore the
 period of a N-stage ring oscillator.  As seen in Fig.1, 

consider the cascade connection of three identical 
inverters, where the output node of the third 
inverter is connected to the input node of the first 
inverter. Fig.2 shows the typical output voltage 
waveform of the three inverters during oscillation. As the 

output voltage 1V of the first inverter stage rises from olV (output 

low voltage) to (output high voltage), it trigger   VoH
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If the non-linearity is an odd function, 
one has 00 =a . Furthermore, if the transfer 
function has the low-pass properties [4-8], i.e., 

inverter output to fall, from  to . Note that the 

difference between the -crossing times of and is the 

signal propagation delay 

2V oHV olV

50%V 1V 2V

2PHLτ of the second inverter. Similarly, 

for and ,  and  , 2V 3V 3V 1V 3PLHτ  and 3PLHτ are the signal 
propagation delay of the third and first inverter respectively.  

 
   ....4,3,2for     )()( =>> njnGjG ωω    (5) 

This assumption is called filtering hypothesis. In 
this case, the fundamental component )(1 tλ  must 
be considered, which can be described by 

In this three-stage circuit, the oscillation period T can be 
expressed as the sum of six propagation-delay times. Since the 
three inverters in the closed-loop cascade connection are assumed 
to be identical. We can express the oscillation period T [14][15] 
in terms of the average propagation delay τ )sin()sin()cos()()( 111 θωωωλλ +=+=≈ tMtbtatt (6) as follows: 

1 1 2 2 3 3

32 6
PHL PLH

av

PHL PLH PHL PLHT τ τ τ+ τ +τ +τ
τ τ

= + +
 (1) 

where 
)(tan),(  and   )(),(

1
112

1
2

1 b
aAbaAM −=+= ωθω (7) = =

where avτ means the average propagation delay. 
Generating this relationship for any arbitrary odd number (N) of 
cascade-connected, we obtain [14,15] 

1 1
2 avT Noscf

τ
= =    (2) 

The describing function of the nonlinear element 
is the complex ratio of the fundamental 
component of the nonlinear element as defined 
by the input sinusoid, such as 

( )
1

1 1
( ) 1( , ) ( )
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∫ ∫

∫
   (8) 

oscfThus, the oscillation frequency is found to be a very simple 
function of the average propagation delay of an inverter stage; 
however, with the above graphical approach to derive the 
oscillation frequency oscf of N-stage ring oscillator, even though 
it is simple, it is not rigorous and the accuracy is not good enough. 
In the sequel sections, we will explore more rigorous results with 
the feedback theory.  

IV. PREVIEW OF DESCRIBING FUNCTION 
The describing function method has been 

extensively used to determine the limit cycle and 
dynamical behavior for the nonlinear systems [6-
10]. According to Fig-3, a nonlinear element 
exists in the feedback loop described by 

Remark 1: The describing function method is valid for the case 
of the feedback loop where the linear transfer function 
possesses low-pass filter property. According to Fig. 3, if 
the linear transfer function G(s) possesses low-pass filter 
property then the high-order harmonic terms in the Fourier 
series can be ignored 

(.)φ . 
Consider a sinusoidal input to the nonlinear 

element, of amplitude A and frequency 
According to the definition of describing function, the 

characteristic equation for a feedback Lur’e problem can be 
expressed by 

ω, such 
as ( )e t sin( )tA ω= , as displayed in Fig. 3. The 
output of the nonlinear element 

1 ( ) ( )N A G j 0ω+ =     
 (10)  ( ) (t e)λ φ=  is 

frequently periodic. By using Fourier series, this 
periodic function 

V. LINEAR FEEDBACK SYSTEM OF A N-STAGE RING 
OSCILATOR )t(λ  can be expanded as The schematic diagram of ring oscillator is shown in Fig.1. 

It can be observed that in general, the number of inverters for a 
ring oscillator is odd [14-15]. Since the input-output DC 
characteristics for an inverter is shown in Fig.4. Let’s assume the 
slope of an inverter is –k. Then for a linearized ring oscillator and 
latch, the feedback gain for can be described as  

   ∑
∞

=

+
1

[
n

+ nb=)(t 0 )
2

t
a

ω )]sin(ncos( tnωnaλ    (3) 

where the Fourier coefficients an 's and bn 's are 
generally functions of A and ω, determined by ( 1) ( )N k− N      (11) 
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a where  is the number of inverters in the feedback path.  N

a   (4) 

In. Eq.(11), for a ring oscillator, the number N   is  odd. 
Therefore, the ring oscillator is a negative feedback system. As 
for a latch, it is a positive feedback system since n is even. 
Fig.4 shows the DC transfer characteristics for an inverter, the 
voltage gain (i.e. the slope) of an NMOS inverter, shown in Fig.7 
at the mid voltage MV is[14] 
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 When N=1, (i.e. there is only one inverter in the 
feedback system), this is the single-stage RO.  Note that 
according to Eq.(13), the overall system is actually a 
negative feedback system. The overall system correspond to 
conventional nonlinear Lur’e problem of Fig.3 can be 
expressed by  

11 1
22 2

Wngm Lnk Wngm Ln
= =   (12) 

where are the transconductance of transistors 1,m mg g

2

2

1,M M respectively and W, L are channel length and channel 
width for the transistors.  ( ) ( )

(
1( )

1

ee sat
Vm k

G s

)

s

φ

τ

=

=
+

  (18) 
As to the CMOS inverter, the slope gain becomes [14] 

( )(mn mp on opk g g r r= + )    (13) 

where 2 ,   2mn n D mp p D
Wn Wp  In Eq.(10), the describing function N(A) of the 

nonlinear function of (.)φ of Eq.(18) can be written as [6-8] 
,g K I g K I

Ln Lp
= =  and 

are output impedance of NMOS and PMOS respectively.  ,on opr r 1 22( ) [sin ( ) 1 ( ) ]sat sat satv v vkN A
A A Aπ

−= + −   (19) 
VI. A TRANSFORMED LUR’E PROBLEM 

The overall feedback system of a ring oscillator and latch 
can be transformed into a Lur’e problem as shown in Fig.3 where 
the nonlinear element can be represented as seen in Fig.4. 
However, the slope is shown in Eq.(11) 

where m
sat

Vv
k

=  and A is the amplitude of oscillation.  

 According to the extended Nyquist diagram of Fig. 9(a), 
there is no intersection between the   locus of (G jIn this paper, we use a first-order RC delay model, shown 

in Fig.5, to represent the linear part of an inverter [14]. The 
transfer function for the first-order RC delay model can be 
approximated and written as 

1
1sτ +

   (14) 

)ω and 

1
( )N A

− . Note that the maximum value of  1
( )N A

−  is 1
k

− . 

Then the limit cycle not exists. 
 Also, on the other hand, it can be observed that the 
transfer function G(s) in Eq.(17) is a Strict Positive Real (SPR) 
function [6-8]; i.e. The locus (G j

where RCτ = is the RC time constant. 
Then, the nonlinear Input/Output transfer 

characteristics of an inverter can be shown as Fig.4. In Fig.4, it 
can be observed that the input-output characteristics can be 
converted to the saturation type function as Fig.7. Then the 
overall nonlinear model for an inverter can be approximated by 

1
1*)

)(
(

+
−=

s
k

V
esatV

m
out τ

 (14-1) 

)ω of Nyquist plot is always 

in the fourth quadrant ( Re( 0, R( ))G jω ω> ∀ ∈ .Then the 
overall system is globally asymptotically stable. This means there 
is no oscillation for single stage ring oscillator. 
Case (ii) N=odd number ( ) (Multiple-Stage 
RO) 

3,5,7,...N =

where * means convolution, x is the input and saturation function 
 can be defined as follows: (.)Sat

⎪
⎩

⎪
⎨

⎧

−−
≤−
≥

=
1,1

1
1,1

)(
pe

e
e

esat ≤ ,1 e    (15) 

Now consider the case that (multiple-
stage RO). From to Eq.(11), there is a minus sign in the feedback 
system. This means the overall system is a negative feedback 
system. In this case, the overall system is actually represented a 
multiple nonlinear system [13] shown in Fig.8.  

3,5,7,...N =

Then the describing function of the overall system can be 
written as[14] 

( )N A%

and also, in Eq.(11), the time constant τ can be expressed as 
1 2 1( ) ( ) ( )... ( ) ( )N NN A N A N A N A N A− −=%  (20) 

eq totR Cτ =    (16) 

where N(A) is defined in Eq.(19) and  
satisfy 

1 2 3 4,  , ,  ...   NA A A A Awhere    and  are called the 

equivalent resistance for NMOS and PMOS respectively [14]. 
Also, C is the effective total capacitance [14]. 

,   eq n pR R or R=

tot

,   nR and Rp

1

2 1 1

1 2 2

1( )
1

1( )
1

1( )
1N N N

A AN A
j

A A N A
j

A A N A
j

ωτ

ωτ

ωτ− − −

=
+

=
+

=
+

M

  (20-1)  

Remark 2: the transfer function of an inverter can be written of 
Eq.(14-1). The saturation function of Eq.(14-1) is based on the 
input/output characteristics of an inverter.    

Also, the relation between propagation delay, effective 
total capacitance and effective resistance can be expressed by 
[14]. 

  PLH p tot

PHL n tot

R C

R C

τ

τ

=

=
  (17)  

The derivation of Eq.(20) and Eq.(20.1), please see reference[13].     For the general case of a ring oscillator, let’s consider the 
following cases (i) N=1 (Single-stage RO)(ii) N=odd number 
( ) (Multiple-stage RO) 3,5,7,...N =

The characteristic equation of the overall system can be written 
as 

1 ( ) ( )N A G jω 0+ =%    (21) Case (i) N=1 (single-stage RO) 
And, also the linear transfer function can be represented as 
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Then, similarly in Eq.(20), we can have   1( )
( 1)NG j

j
ω

τω
=

+
  (21-1) 0 ( ) ,  As    0NN A k A< ≤ <% < ∞   (29) 

From Eq.(23) and substituting
(2 1)tan( )m

N
πωτ +

= into 

Eq.(21), we have  

From the characteristic equation of Eq.(21) and In the extended 
Nyquist diagram of Fig.9(a), Fig.9(b)(For Describing Function), 

the locus of (G j )ω and 1
( )N A

−
%

only intersects at the 

frequency ω such that 
1 (2 1)Re ( ) cos ( ),  m=0,1,2

( 1)
N

N

mal
j N

π
τω

+
=

+
  (30) 

1Im( ) 0
( 1)Njτω

=
+

 (22) 
From Eq.(29) and Eq.(30), we can conclude that for the existence 
of fundamental frequency of ring oscillator, it  requires  

(k Sec N )π>    (31) Then, we have  
1( ) 2N Tan mωτ π− = +   (23) where is the voltage gain for the inverter at mid voltage k MV . 

where m=0,…, 3
4

N −⎡ ⎤
⎢ ⎥⎣ ⎦

 and [ ]x denotes the round the 

number x to the smallest integer; i.e. As , 1l x l≤ < + [ ]x l= . 

Moreover  is some integer. l

Similarly, for the existence of first-mode frequency 
1, 7m N= ≥ of ring oscillator, it requires  

3(k Sec N )π>   (32) 

For the existence of second-mode frequency 2, 11m N= ≥ of 
ring oscillator, it requires  

From Eq.(23), we have the oscillation frequency for the ring 
oscillator  

5(k Sec N )π>   (33) 1 (1 2tan( )
2osc

mf
N

)π
πτ

+
=   (24) 

and etc. 
Note that in Eq.(24), the unit of f   is in frequency (Hz) and 

m=0,…, 3
4

N −⎡ ⎤
⎢ ⎥⎣ ⎦

. 

From Eq.(32) and Eq.(33), a “Necessary Condition” for the 
existence of fundamental and higher order frequency mode can 
be derived as 

)2sec(

,43

min N
mkk

mN
+

=>

+≥
π  (34) 

Now, let’s consider the fundamental frequency for ring oscillator, 
i.e. m=0, then Eq.(24) becomes  

 
1 tan( )

2oscf
N
π

πτ
=   (25) 

Note that in Eq.(25), as N (the order of ring oscillator)  is larger 
enough, then 

tan( )
N N
π π

≈    (26) 

where is the number of stage for RO, m is the order of 
higher frequency mode (As , it represents the 
fundamental mode; As , it represents the fundamental 

mode.) and  is defined as the minimum required midpoint 
gain of the inverter. 

N
0=m

1=m
mink

Therefore, with the approximation of Eq.(26), Eq.(25) becomes The stability of these limit cycles for the ring oscillator can be 
checked by the following equations  1

2oscf
Nτ

=          (27) 
0( ) Re( ( )) 0N A G jω′ ′ >  (35) 

Note that Eq.(27) is the same as conventional formula for the 
oscillation frequency of the ring oscillator [14][15].Also, in 
Eq.(24) and as , we call here the first-mode frequency of 
the ring oscillator. Similarly, as , we call here the second-
mode frequency of the ring oscillator and etc. The meaning of 

 means that there are two intersections of for the locus of 

1m =
2m =

2m =
(G j

where 0ω  (rad/s) is the oscillation frequency for RO 
Note that Eq.(34) is the “Necessary Condition” for the existence 
of  oscillation modes. i.e. When the voltage gain k satisfies 
Eq.(34), this cannot guarantee the existence of oscillation mode. 
However, if the voltage gain k don’t satisfy Eq.(34), the 
oscillation modes don’t exist. The multiple harmonic modes are 
coincide the results of some literatures [10,12]  )ω and negative real axis, which can be shown in Fig.9 (b) 

VIII Tsypkin’s Method 
 As we know, Eq.(22) is the condition the linear transfer 
function intersects the real axis.  To guarantee the 
existence of limit cycle, there should be at least one intersection 
between the locus of 

( )G s

( )G jω and  1
( )N A− . 

 It is known that for the nonlinear system, describing 
function method is only an approximate method for the 
derivation of frequency of RO. In this section, we will explore a 
more accurate method called Tsypkin method. The Tsypkin 
method is used the so called the Tsypkin Function to determine 
the exact period for a relay control system.  As seen in Fig.3, a 
conventional Lur’e Problem. However, the non-linearity is 
written as 

 In the sequel, we will explore the existence condition 
for the intersection between the locus of ( )G jω and  

1
( )N A− . From Eq.(19) and Eq.(20), it can be observed that  

the describing function in Eq.(19) satisfy ⎩
⎨
⎧

−<
>

=
1,0

1,0
)(

e
e

esign    (41) 

0 ( ) ,  As    0N A k A< ≤ < < ∞   (28) Then the Tsypkin is defined as [8,13] 
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2

t a n ( )
T

N

π τ
π=

  (49) 

1,3,5 1,3,5

1( ) Re( ( )) Im( ( ))
k k

T j G jk j G jk
k

ω ω
∞ ∞

= =

= +∑ ∑ ω  (42) 

The period of the oscillation can be determined by 

0Im( ( )) 0T jω =     (43) 
Also, with the simplified model of transfer function of Eq.(16), 
we can have [9,17] 

5 0 5 0 ( ln 0 .5 ) 0 .6 9 3a v Tτ τ− τ= = =   
  (50)  where 0ω  is the oscillation frequency. 

where RCτ = is the RC time constant. Consider the linear transfer function G(s) of Eq.(21-1), as N=3, 
we have Tsypkin Function as[13]  

3
2

2 0 0
0

Im ( ( ) ) ( 2 s in h ( ) t a n h ( ) 2 )21 6 c o s h ( )2
T j τ π πω π

0

π
ω τ ω τπ

ω τ
= − ω τ−

The simulation is performed by Is-spice Software. The NMOS 
and PMOS Spice parameters can be described as follows:  

 (44)  
Substituting Eq.(44) into Eq.(43) and with the numerical solution, 
we have 

1
5.2602

f
τ

=      (45) 

NMOS (LEVEL=1 VTO=0.80 KP=1.00E-02 GAMMA=1.08E-06 PHI=0.75 LAMBDA=1.40E-02 
RD=3.00E+01 RS=3.60E+01 IS=1.12E-14+ CBD=5.13E-12 CBS=6.16E-12 PB=0.80 MJ=.46
+ CGSO=3.60E-09+ CGDO=3.00E-09 CGBO=2.34E-08)

 
PM

Similarly, as N=5, we have Tsypkin Function as[13]  
4 3 3

2 2 2

3 2
5 5

1 1 1 1Im(T(j ))=(4.8cosh ( )sinh( )-83.21763ucosh( )-2ucosh( )2u 2u 2u 2u
1 1 1 1-118.435253cosh ( )sinh( )-19.87cosh ( )sinh( )u +2u 2u 2u 2u

1 1 188.82644cosh( )u+3cosh( )u +296.088133sinh( )u )  2u 2u 2u 1(cosh ( )u )2u

ω 3

(46) 

OS (LEVEL=1 VTO=-2.2 KP=2.5M GAMMA=5.43U+ PHI=.75
 LAMBDA=2.14M RD=56 RS=56 IS=10.7F PB=.8 MJ=.46+ CBD=9.46P 
CBS=11.3P CGSO=11.7N CGDO=9.75N CGBO=16.0N)

 

The comparisons of simulations, convention formula of Eq.(48), 
theoretical describing function of Eq.(49) and Tsypkin  function 
of Eq.(45-47) can be shown as the following Table. 

where 
0

u π
ω τ=  

   Also, from Eq.(43) and (46) and with the numerical solution, 
we have 

1
8.7726

f
τ

=    (47) 

In general, for the N-order Tsypkin Function, we can have 

Im( ( )) ( tanh( ))
4 2

N

N

d aT j
da a

π πω
ω

−
=  (48)  

 3-stage 
ring 

oscillator

5-stage 
ring 

oscillator 

7-stage 
ring 

oscillator

9-stage 
ring 

oscillator

Simulations 11.8 ns 21.9 ns 32.0 ns 40.7 ns 
Convention
al formula 
of Eq. (48) 

Error % 

10.2 ns 
%6.13−

 

17ns  
%3.22−

 

23.8ns   
%6.25−

 

30.6ns     
-24.8% 

Describing 
Function of 

Eq.(49)      
Error % 

8.9ns      
-24.5% 

21.21ns    

 
%1.3−

32ns       
-0.01% 

42.34ns    
+4% 

Tsypkin 
Function of 

Eq.(43)-
(45)       

Error % 

12.7ns     
+7.6% 

21.52ns

 
%7.1−

×  ×  where 1a τ  .The derivation of Eq.(48) can be derived from 

reference [13], which is neglected here. 
IX Examples and Illustrations 

In this section, we will illustrate the above results with two 
simulation examples.   Table 1: The comparison of simulation and several theoretical 

predications of the period for N-stage ring oscillators Example 1: Let’s consider a N-stage ring oscillator. The 3-stage 
CMOS inverter is shown in Fig.3. The propagation delay is 
shown in Fig.10 can be obtained as (by simulation) 

(12.5 10) (20.9 20) 2.5 0.9 1.7
2 2 2

phl plh
av

ns ns ns
τ τ

τ
+ − + − +

= = = =  (47) 

From Table 1, it can be observed that with the describing function 
method, the theoretical prediction of the period of the limit cycle 
has very high accuracy (especially , the error is less than 
3%). However, with Tsypkin Function method, for 3-stage and 5-
stage ring oscillators is more accurate than describing function 
method. 

5N ≥

where avτ means as the average propagation delay and 

,phl plhτ τ are the high to low and low to high propagation delay 

respectively. 

 Secondly, let’s consider another case of a NMOS 
inverter of Fig.6(a). A NMOS inverter as shown in Fig.6(a). The 
voltage gain of this NMOS inverter can be obtained from Eq.(12) 
as (at the mid-voltage)  The simulation results of 3-stage, 5-stage, 7-stage, and 

9-stage ring oscillators are shown in Fig10-Fig.14 Respectively. 
The simulation results can be shown in Table1. 

11 1 1
2

W ng m L nk W ng m L n
= − = − = −

 (53) 
As for the conventional formula for the N-stage ring oscillator, 
the period of N-stage ring oscillator can be written as 

2 avT Nτ=      (48) 
It can be observed that the voltage gain at the mid-voltage is not 
large enough such that it not satisfies Eq.(32). From previous 
results, we can conclude that the limit cycle not exists. (Note that 
the condition of Eq.(32) is the so-called the “Necessary 
Condition”. i.e. If the condition of Eq.(32) is satisfied, it cannot 

However, with the describing function method of Eq.(25), the 
period of N-stage ring oscillator can be written as 
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guarantee the existence of limit cycle (it may exist). However, if 
the condition of Eq.(32) is not satisfied , the limit cycle is not 
existing). 
The DC Input/Output transfer characteristic curve can be shown 
as of Fig.15. It can be observed the voltage gain at the min-
voltage is –1 (slope).  The simulation results for a three-stage 
ring oscillator with a NMOS inverter is shown in Fig.16.  From 
Fig.16, it can be observed that this three-stage ring oscillator 
cannot oscillate. It coincides with the theoretical predictions.  
     
The following Example is directly adopted from the reference 
[14]. 
Example 2:Estimate the CN20 process (Orbit Semiconductor’s 
2.0 mμ double-poly, double-metal, n-well process).[14] (The 
spice parameters are listed in Appendix A). Also use hand 
analysis of five-stage ring oscillator with ). 

Also, compare it with the simulation results (with SPICE). 

10n pW W um= =

The effective resistance of n- and p-channel MOSFETs are 

1

2

21 2 2 .4
1 0

23 6 7 .2
1 0

n

p

mR k k
m
mR k k
m

μ
μ
μ
μ

= =

= =

Ω

Ω

  (54) 

The total capacitance on the output of any inverter is the sum of 
its own output capacitance and the input capacitance of the next 
(identical) stage. This is given by  

5 ( )
2tot in out ox n n p pC C C C WL W L 80fF= + = + =  (55) 

Thus, 

1 2( ) /2 (2.4 7.2 ) 80 /2 384n p totR R C k k fF psτ = + = + =  (56) 

The oscillation frequency, from Eq.(2) is then 
1 260 MHz

10 384oscf
ps

= =  (57) 

The SPICE simulation results are shown in Fig.17. SPICE gives a 

oscf  of approximately 300 MHz [14].  From describing function 
method of Eq.(25), we have 

1 tan( ) 301
2 (386 ) 3oscf MHz

ps
π

π
= =  (58) 

Also, by Tsypkin function of Eq.(43)-Eq.(45), we have  
1 299

8.77(386 )oscf MHz
ps

= =  (59) 

It can be observed that with Describing Function and Tsypkin 
function methods, the predictions of oscillation frequency are 
very accurate such that both only have (0.3%) errors. However, 
with the conventional formula, it has 15.6% error.  

XI. Conclusions & Discussions 
In this paper, we proposed a rigorous approach to 

analyze the nonlinear feedback of an inverter-based ring 
oscillator. It can be shown that the (RO) ring oscillator can be 
approximated by a nonlinear Lur’e problem. With this Lur’e 
problem, Circle criterion can be applied to determine the stability 
of overall system. A simple first-order RC delay model is used to 
approximated by the model of the inverter.  

The describing function method is used to determine 
the oscillation frequency of the ring oscillator. A new formula is 
presented. It can be observed that if N (number of inverters) is 
large enough, the proposed formula will approach the 
conventional formula.  Moreover, with extended Nyquist 

Criterion and describing function method, a “Necessary 
Condition” for the existence of oscillation (all modes) is shown 
as Eq.(34). It can be shown that as and the voltage gain 
is large enough, the higher harmonic oscillation may exists. 
These results coincide with previous research reports [10][12]. 
Also, as

7N ≥

5N ≤ , the higher order harmonics will not exist .  
On the other hand, with Tsypkin Function method, a 

more accurate formula for the oscillation frequency of ring 
oscillator will be presented. Finally, Simulation examples already 
have verified these results.  

It should be further stress that the above results can be 
applied not only MOS transistor and can be also applied to 
Bipolar transistor. Also, for a RO, the voltage gain k should be 
large enough; otherwise, the oscillation doesn’t exist. In general, 
for the CMOS transistor the voltage gain is large enough since 
the output resistance (as seen in Eq.(13) )for NMOS and PMOS 
transistors are very large. However, for NMOS inverters, the 
voltage gain may not be large enough [14,16].  Therefore, for a 
NMOS ring oscillator design, suitable channel length and width’s 
selection should be further investigated [14,16]. Also, in this 
paper, we only address the ring oscillator with the number of 
inverter  is odd. However, in some cases, even   is even, 
the oscillation might be exist []. 

N N
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Figure 4: Input-Output (Transfer DC) Characteristics for an 

Inverter 
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Inverter First-Order RC Model  
Figure 1: Three-stage Ring Oscillator Circuit Consisting of 

Identical Inverters  Figure 5: Simplified first-Order RC Model for an Inverter 
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Figure 6: The schematics of NMOS and CMOS inverters 
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Figure 2: Typical Voltage Waveform of the Three Inverter 
shown in Fig.1   
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Figure 3: A Conventional Lur'e Problem 

 

 

Figure 7: The Equivalent Nonlinear Function (.)φ for an 

inverter 
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Figure 8: General Multiple Nonlinearity Systems 
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Figure12:  Simulation of Period for 5-Stage Ring 
Oscillator T=21.9 ns 

Figure 9: (a) The Extended Nyquist Diagram for Ring 

Oscillators (N=1,3,5) 

 

Figure13:  Simulation of Period for 7-Stage Ring 
Oscillator T=32 ns 

Figure 9: (b) The Extended Nyquist Diagram 

for Ring Oscillators (N=7) 

 

 
Figure14:  Simulation of Period for 9-Stage Ring 

Oscillator T=40.7 ns 

Figure10:  Simulation of Propagation 
Delays for Inverter 

 

 
Figure15:  DC Input/Output Transfer Characteristic for 

A NMOS Inverter 

Figure11:  Simulation of Period for 3-Stage Ring 
Oscillator T=11.8 ns 
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Figure16:  Simulation for a 3-stage NMOS Ring 

Oscillator (Example 2) 

 
Figure 17:  Simulation for a 5-stage Ring Oscillator 

(CN20 Process) 
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