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Abstract: - Fractional Gaussian noise (fGn) is a commonly used model of network traffic with long-range 
dependence (LRD). This paper revisits the basic results of fGn towards noticing its limitation in traffic 
modeling. 
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1   Introduction 
Fractal time series model of traffic belongs to a class 
of statistical models of traffic. As early as 1920th, A. 
K. Erlang presented his statistical works based on his 
experimental research regarding the statistics of 
traffic on telephony networks (Erlang [1], 
Brockmeyer et al. [2]). Briefly, the probability 
distribution functions (PDFs) he investigated are 
those that fast decay, such as the Poisson distribution 
and the binomial distribution.  

The Erlang’s results were so successful for 
characterizing the old telephony traffic to be used in 
queuing theory that the following PDF of the 
Erlang’s distribution was taken as a law in the field of 
traffic engineering (see e.g., Akimaru and 
Kawashima [3], Gibson [4], Cooper [5]),  
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where e is the base of the natural logarithm and ! is 
the factorial function. The parameter k is called the 
shape parameter and λ is called the rate parameter. 
This situation lasts to the early age of the Internet, see 
e.g., Pitts and Schormans [6]. 

The Internet is obvisouly the most remarkable 
modern communication network. Before the day of 
the Internet becoming popular, actually, in the 
seventies of the last century, Tobagi et al. [7] reported 
a noticeable behavior of traffic, which is called 
“burstiness” defined by peak to average transmission 
rate [8, p. 45]. It simply implies that there would be 
no packets transmitted for a while, then flurry of 
transmission, no transmission for another long time, 
and so forth if one observes traffic over a long period 
of time. This also means that traffic has 
intermittency. In 1986, Jain and Routhier [9] further 
described the intermittency or burstiness of traffic 

using the term “packet trains”. One of the significant 
results concluded in [9] is that traffic is neither a 
Poisson process nor a compound Poisson one. The 
results in [7] and [9] are quite qualitative but they 
may be taken as pioneering work in the field.  

The early literature that quantitatively describes 
the statistical properties of traffic from a view of 
fractals refers to Leland et al. [10], Beran et al. [11], 
Csabai [12], Paxson and Floyd [13]. Those scientists 
convincingly revealed some of the main fractal 
properties of traffic, such as self-similarity (SS), 
long-range dependence (LRD), power-law type 
autocorrelation function (ACF), power-law type 
power spectrum density (PSD) function, i.e., 1/f 
noise, and heavy-tailed distribution. The 
mathematical model of traffic described in [10,11,13] 
is the fractional Gaussian noise (fGn) that was 
introduced by Mandelbrot and van Ness [14]. 

Though fGn has been regarded as a common 
model of traffic, see e.g., Tsybakov and Georganas 
[15], Adas [16], Michiel and Laevens [17], Li et al. 
[18], Li [19], Lee and Fapojuwo [20], Karagiannis et 
al. [21], Gong et al. [22], computer scientists feel 
unsatisfactory in a way with it, see e.g., [13,15] due to 
highly local irregularity of traffic (Feldmann et al. 
[23], Willinger et al. [24]). This paper discusses the 
basic results of fGn and points out its limitation in 
traffic modeling. 

The rest of paper is organized as follows. In 
Section 2, the preliminaries of conventional 2-order 
stationary random processes are briefed. FGn is 
explained in Section 3. Its limitation in traffic 
modeling is discussed in Section 4, which is followed 
by conclusions. 

 
 

2   Conventional 2-order Stationary 
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Random Processes 
Let {xl(t)} (l = 1, 2, ...) be a 2-order stationary random 
process, where xl(t) is the lth sample function of the 
process. Usually, one simply uses xl(t) to represent 
the process without confusion causing. Its mean is 
given by 

1
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Its ACF is given by 
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In (2) and (3), the superscript s implies that the mean 
and the ACF are computed by using spatial average. 
The mean and ACF of a process expressed by time 
average are expressed by 
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where the superscript t indicates that the mean and 
the ACF are computed by time average.  

The process {xl(t)} is said to be ergodic if (6) and 
(7) hold,  

( ) ( ) const.,s t
x x xt tµ µ µ= =                        (6) 
( ) ( ) ( ).s t

x xR R Rτ τ τ=                                 (7) 
Note that a real-traffic trace is a series of single 
history. In what follows, we just use x(t) to represent 
a traffic process. 

The probability of x(t) is given by 
2
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where ( )p ξ  is PDF. 
The mean and the ACF of x(t) based on PDF are 

written by (9) and (10), respectively, 
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Let 2
xσ  be the variance of x. Then, x is said to 

follow the Gaussian distribution if 
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The Poisson distribution is a discrete probability 
distribution that expresses the probability of a 
number of events occurring in a fixed period of time 
if these events occur with a known average rate and 
independently of the time since the last event. In 
communication networks, one is interested in the 

work focused on certain random variables N that 
count, among other things, a number of discrete 
occurrences (sometimes called “arrivals”) that take 
place during a time-interval of given length. Denote 
the expected number of occurrences in this interval 
by a positive real number λ. Then, the probability that 
there are exactly k occurrences (k being a 
non-negative integer, k = 0, 1, 2, ...) is given by the 
Poisson distribution below 
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One thing worth noting in the conventional 
statistics is that either (11) or (12) fast decays, more 
precisely, exponentially decays. Therefore, 
according to (9) and (10), xµ  and xR  are convergent, 
which is actually a defaulted assumption in the 
traditional theory of communication networks. This 
assumption is natural from a view of 2-order statistics. 
However, actual traffic data challenges such an 
assumption. 

Computer scientists based on processing 
real-traffic data measured in the Internet claim that a 
traffic series is heavy-tailed, see e.g., Paxson and 
Floyd [13], Resnick [26], Willinger et al. [27], Abry 
et al. [28], Cappe et al. [29]. The tail of the PDF of 
traffic may be so heavy that its ACF decays slowly or 
hyperbolically. On the one hand, because of slowly 
decaying of the ACF, a random variable that 
represents a traffic series can be no longer considered 
to be independent. Hence, LRD. On the other hand, 
the Fourier transform  

( ) ( ) ,j
x xS R e ωτ dω τ

∞
−

−∞

= ∫ τ                          (13) 

of a slowly decayed ACF implies that the PSD of 
traffic with LRD obeys a power law. Hence, 1/f noise. 
These contents are actually in the domain of fractal 
time series. 

 
 
3   FBM and FGN 
 
 
3.1   ACF of fGn 
Let B(t) be a random process. Then, B(tn + 1) − B(tn) (n 
= 0, 1, 2, ...) is called increment process. If B(t) has 
the following characteristics: 
1) The increments B(t + t0) − B(t0) are Gaussian, 
2) E[B(t + t0) − B(t0)] = 0  
      and Var[B(t + t0) − B(t0)] = σ2t, 
3) in non-overlapping intervals [t1, t2] and [t3, t4], 

the increments B(t4) − B(t3) and B(t2) − B(t1) are 
independent, 

4) B(0) = 0 and B(t) is continuous at t = 0, 
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where σ2 = E{[B(t + 1) − B(t)]2} = E{[B(1) − B(0)]2} 
= E{[B(1)]2}. Then, B(t) is called Brownian motion 
(Papoulis and Pillai [30], Hida [31]). 

Let BH(t) be the fractional Brownian motion (fBm) 
with the Hurst parameter H ∈ (0, 1). Let Γ(⋅) be 
Gamma function. Then,  
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(14) 
The function BH(t) has the following properties. 
1). BH(0) = 0, 
2). the increments BH(t + t0) − BH(t0) are Gaussian, 
3). Var[BH(t + t0) − BH(t0)] = σ2t2H,   
where  

σ2 = E{[BH(t + 1) − BH(t)]2}  
= E{[BH(1) − BH(0)]2} = E{[BH(1)]2}.  

According to the properties of fBm, 
E{[BH(t2) − BH(t1)]2} = E{[BH(t2 − t1) − BH(0)]2}  

= E{[BH(t2 − t1)]2} = σ2(t2 − t1)2H.  (15) 

In addition,  

E{[BH(t2) − BH(t1)]2} =  

E{[BH(t2)]2} + E{[BH(t1)]2} − 

2E[BH(t2)BH(t1)] 

= σ2(t2)2H + σ2(t1)2H − 2r[BH(t2), BH(t1)]  

= σ2(t2 − t1)2H.                                          (16) 

Thus, the ACF of BH(t) is given by 

r[BH(t2), BH(t1)] = 2

2σ
[(t2)2H + (t1)2H − (t2 − t1)2H]. (17) 

Eq. (17) implies that fBm is non-stationary. 
The increment series, BH(t + s) − BH(t), is fGn.  

Let us consider the ACF of fGn. Note that 
E{[BH(t4) − BH(t3)][BH(t2) − BH(t1)]}  
= r{[BH(t4) − BH(t3)], [BH(t2) − BH(t1)]} 
= E{[BH(t4)BH(t2) − BH(t4)BH(t1)  
    − BH(t3)BH(t2)] + BH(t3)BH(t1)} 
= E[BH(t4)BH(t2)] − E[BH(t4)BH(t1)]  
    − E[BH(t3)BH(t2)] + E[BH(t3)BH(t1)] 
= r[BH(t4), BH(t2)] − r[BH(t4), BH(t1)]  
   − r[BH(t3), BH(t2)] + r[BH(t3), BH(t1)].   (18) 

According to (17), one has 

r[BH(t4), BH(t2)] =
2

2
σ [(t4)2H + (t2)2H − (t4 − t2)2H], (19) 

r[BH(t4), BH(t1)] =
2

2
σ [(t4)2H + (t1)2H − (t4 − t1)2H], (20) 

r[BH(t3), BH(t2)] =
2

2
σ [(t3)2H + (t2)2H − (t3 − t2)2H], (21) 

r[BH(t3), BH(t1)] =
2

2
σ [(t3)2H + (t1)2H − (t3 − t1)2H].  (22) 

Replacing the right hand of (18) by (19) ~ (22) yields 
E{[BH(t4) − BH(t3)][BH(t2) − BH(t1)]}  
= r{[BH(t4) − BH(t3)], [BH(t2) − BH(t1)]} 

=
2

2
σ [(t4 − t2)2H + (t3 − t2)2H − (t4 − t2)2H − (t3 − t1)2H].  

 (23) 
In the discrete case, we let 

t1 = n, t2 = n + 1, t3 = n + k, t4 = n + k + 1. 
Then, 

r{[BH(t4) − BH(t3)], [BH(t2) − BH(t1)]}  

=
2

2
σ [(k + 1)2H − 2k2H + (k − 1)2H].   (24) 

Therefore, the ACF of the discrete fGn (dfGn) is 
given by 

r(k) =
2

2
σ [(k + 1)2H − 2k2H + (k − 1)2H],   (25) 

where 
2 1( ) (1 2 )cos( )H H ,Hσ π π−= Γ −            (26) 

is the intensity of fGn. Since the ACF is an even 
function, (25) can be rewritten as 

( )σ ⎡ ⎤= + + − −⎢ ⎥⎣ ⎦

2
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2

HH H
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where ∈ .k Z� In the continuous case, the ACF of fGn 
is given by 

τ τσ ττ
ε ε ε
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2 2 22

( ) 1 1 2 ,
2

H H H
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where τ ∈R� and ε > 0 is a constant, which smoothes 
fBm so that the smoothed fBm is differentiable, see 
[14, p. 427-428] for details. 
 
 
3.2   PSD of fGn and 1/f Noise 
The PSD of dfGn was derived out quite early by Sinai 
[32]. It is given by 

S(ω) = 2Cf[1 – cos(ω)] π ω
∞

− −

=−∞

+∑ 2 1
2 ,

H

n

n   

ω ∈ [−π, π],                                  (29) 
where Cf =  and ω is the 
angular frequency. It has the applications to practice, 
e.g., analysis of fGn, simulation of fBm as well as 
fGn, see e.g., Beran [33, Eq. (2)], Beran [34, 
Proposition 2.1 on p. 53], Pipiras [35, p. 59], 
Purczyński and Włodarski [36, Eq. (10)], Ledesma 

σ π π− Γ +2 1(2 ) sin( ) (2 1)H H
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and Liu [12]. Nevertheless, the PSD of fGn seems 
more difficult to obtain than that of dfGn. 

Kou and Xie [38] presented the PSD of fGn. Late, 
Li and Lim [39] introduced a rigorous derivation of 
the PSD of fGn, which is given by 

1 22( ) sin( ) (2 1) ,HS H Hω σ π ω −= Γ +          (30) 
which exhibits that fGn is a type of 1/f noises. 
 
 
3.3 LRD and SS 
We say that f(t) is asymptotically equivalent to g(t) 
under the limit x → c if f(t) and g(t) are such that 

( )lim 1
( )x c

f t
g t→

=  (Murray [40]). We write  

f(t) ~ g(t) (t → c) if ( )lim 1,
( )x c

f t
g t→

=             (31) 

where c can be infinity. It is proved that if f(t) ~ g(t) (t 
→ c) and g(t) ~ h(t) (t → c) then f(t) ~ h(t) (t → c) [40]. 
That is, 

f(t) ~ g(t) ~ h(t) (t → c).                           (32) 

In this sense, f(t) is called slowly varying function if 
( )lim 1
( )u

f ut
f u→∞

=  for all t. 

Following the work of Beran [34], a random 
series x(i) is said to be of LRD if  

r(k) ~ ck β− ( k → ∞) for c > 0, β ∈ (0, 1), (33) 
where c can also be a slowly varying function.  

Eq. (33) implies that the ACF of a series with LRD is 
non-summable. That is, 

( ) .
k

r k = ∞∑                                                (34) 

Replacing β by the Hurst parameter H with 
β = 2 − 2H,                                                (35) 

yields another expression of (33), which is written by 
r(k) ~ ( k → ∞) for c > 0, H ∈ (0.5, 1). (36) 2 2Hck −

On the other side, if β > 1 or H ∈ (0, 0.5), r(k) is 
summable, corresponding to the case of short-range 
dependence (SRD) [33,34]. 

Without loss of generality, we consider traffic series 
y in the discrete case. By dividing y into 
non-overlapping blocks of size L and averaging over 
each block, we obtain another series given by 

y(i)(L) =
( 1)1 ( ).
i L

j iL

y j
L

+

=
∑                                    (36) 

According to the analysis in Beran [34], Willinger and 
Paxson [43], Mandelbrot [44], [6,10,11], in the sense of 
fGn, one has 

Var(y(L)) = L2H−2Var(y),                                (37) 
where Var implies the variance operator. Thus, fGn 
has the self-similarity measured by H. 

 
3.4   Asymptotic Expressions 
Note that 0.5[(τ + 1)2H − 2τ2H + (τ − 1)2H] can be 
approximated by H(2H − 1)(τ)2H − 2. As a matter of 
fact, 0.5[(τ + 1)2H − 2τ2H + (τ − 1)2H] is the finite 
2-order difference of 0.5(τ)2H (Mandelbrot [41]). 
Approximating it with 2-order differential of 0.5(τ)2H 
yields  
0.5[(τ + 1)2H − 2τ2H + (τ − 1)2H] ≈ H(2H − 1)(τ)2H − 2. 

(38) 
From (37), one immediately sees that fGn 

contains three subclasses of time series. In the case of 
H ∈ (0.5, 1), the ACF is non-summable and the 
corresponding series is of LRD. For H ∈ (0, 0.5), the 
ACF is summable and fGn in this case is of SRD. 
FGn reduces to white noise when H = 0.5. 

Applying the techniques of the Fourier transform of 
generalized functions as discussed in Lighthill [42] to 
the right side of (38), one has 

1 2( ) ~  for 0,HS ω ω ω− →                         (39) 
implying 1/f noise. 
 
 
4   Discussions 
Among LRD processes, fGn has its advantage in the 
theory of fractal time series. For example, it can be 
used to easily represent two types of fractal time 
series, namely, SS processes and processes with LRD 
or SRD. However, Tsybakov and Georganas [15, 
Paragraph 1, Section II] noticed that “the class of 
exactly self-similar processes (i.e., fGn) is too narrow 
for modeling actual network traffic”. Li [45] 
demonstrates the error order of magnitude for 
modeling ACF of interarrival times of network traffic 
using fGn. In this section, a possible reason why fGn 
is limited in traffic modeling is explained. 

From the discussions of H in Section 3.3, we see 
that LRD is a global property of traffic. However, in 
principle, SS is a local property of traffic. It is 
measured by fractal dimension, see e.g., Mandelbrot 
[44], Hall and Roy [46], Chan et al. [47], Adler [48], 
Kent and Wood [49]. Following [46-49], if the ACF 

( )R τ  of X(t) is sufficiently smooth on (0,  )∞  and if 

(0) ( ) ~  for 0,R R c ατ τ τ− →                (40) 
where c is a constant, then one has the fractal 
dimension of X(t) as 

2
2

D .α
= −                                                 (41) 

Denote  the fractal dimension of fGn. Then, 
according to the asymptotic expression (38), one has 

fGnD

2
fGn fGn(0) ( ) ~  for 0.Hr r cτ τ τ− →          (42) 
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According to (41) and (42), therefore, one 
immediately gets 

fGn 2D = − .H                                              (43) 
Hence, for fGn, the local properties happen to be 
reflected in the global ones as noticed by Mandelbrot 
[50, p. 27]. 

The above discussions exhibit that fGn has its 
limitation in traffic modeling because it uses a single 
parameter H to characterize two different phenomena, 
saying, local property and global one. Recently, Li 
and Lim [25] discusses a traffic model called the 
generalized Cauchy (GC) process, which may be 
taken as an advance in traffic modeling to release the 
limitation of fGn. 

 
 
5   Conclusion 
The results regarding fGn are revisited in its ACF, 
PSD and their asymptotic expressions. Its limitation 
in traffic modeling has been discussed. 
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